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abstract
Cross-flow microfiltration is an efficient and energy-saving method for separating fine particles 
from liquids in many chemical, environmental, biochemical and materials processes. Although 
this filtration mode has many advantages, the flux decline at a constant pressure, or similarly, the 
transmembrane pressure increase at constant flux due to membrane fouling is a severe barrier to 
its further development and wide application. The objective of this research was to identify the 
seasonal characteristics of the raw water collected from the Han River, and to develop a model 
that can predict and/or monitor the fouling rate. An MLP (multi-layer perceptron) employing the 
sigmoid transfer function and the back propagation algorithm for training was constructed with 
the STATISTICA. The ANN input parameters were carefully selected to include the physically 
meaningful and easy-to-measure membrane operations. The results of the experiment indicated 
that the seasonal variations in the raw water quality parameters significantly affected the membrane 
fouling rate. The comparison of the ANN model calculations with the experiment results revealed 
that the ANN model is a useful tool for predicting the membrane fouling characteristics.
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1. Introduction

Microfiltration is a particularly efficient technique 
for separating particles ranging from 0.1 µm up to a few 
microns in size from a liquid medium [1]. It can be con-
ducted using two distinct modes of operation, referred 
to as dead-end microfiltration and cross-flow microfiltra-
tion. In the dead-end configuration, the feed suspension 
flows perpendicular to the membrane surface, whereas 
in cross-flow systems, the suspension flow is tangential 
to the membrane [2]. Cross-flow microfiltration is an effi-
cient and antifouling method for separating fine particles 

from liquids in many chemical, environmental, biochemi-
cal and materials processes. Although this filtration mode 
has many advantages, the flux decline at a constant pres-
sure, or similarly, the transmembrane pressure increase at 
constant flux due to membrane fouling is a severe barrier 
to its further development and wide application [3]. Mem-
brane fouling is responsible for the non-steady state of the 
membrane process as it causes permeate flux decline with 
the passage of time. For this reason, the steady-state flux 
decline models are not capable of accurately describing 
membrane performance in the membrane process. It is 
thus necessary to use the non-steady-state model for this 
purpose. Recently, several studies have been conducted 
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to predict membrane performance using artificial neural 
networks (ANNs) [4,5]. The artificial neural network is 
an effective predictive method for modeling the behavior 
of nonlinear dynamic systems.

The objectives of this research were to identify the sea-
sonal characteristics of the raw water collected from the 
Han River and to develop a model that can predict and/
or monitor the fouling rate for better fouling control and 
for the reduction of membrane fouling under constant 
flux using the artificial neural network.

2. Theory

2.1. Membrane fouling rate

Microfiltration membranes are designed to remove 
particulates from water via a sieving mechanism. There-
fore, particle fouling, the deposition of colloids and 
suspended solids on membranes remains a common phe-
nomenon in MF systems. It is thus necessary to develop 
the fouling rate to predict and/or monitor membrane 
fouling for better fouling control.

During filtration, when the particles are larger than 
the pores, they are removed on the surface as a cake. 
During unstirred filtration at a constant pressure under 
conditions of perfect retention, the following expression 
can be derived, relating the cumulative filtrate volume V 
to the filtration time t [6].
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where A is the membrane surface area, µ the absolute 
viscosity, DP the transmembrane pressure, Co the feed 
water particle concentration, and a the specific cake re-
sistance on a mass basis. aC0/1012 was used in this study 
as a membrane fouling rate. The fouling rate can also be 
determined in constant-flux filtration. The resistance-in-

Table 1
Summary of the model equations for the fouling rate in con-
stant flux 

Meaning Model equation
Flux through a resistance-in-series 
approach
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Substitution of Eq. (3) into Eq. (2)
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Rewriting V/A as Jt and rearrang-
ing it gives the following equation

2
mP J R J ItD = µ + µ 	 (5)

series model was applied under constant flux. Only a 
broad outline of the model is given in Table 1 since the 
details were provided separately [7].

The fouling rate can be determined from the slope 
of the linear region in a plot of DP vs. time, which cor-
responds to cake filtration or the manipulation of Eq. (5).

2.2. Artificial neural networks (ANN)

An artificial neural network is a nonlinear statistical 
data modeling tool inspired by the way biological nervous 
systems, such as the brain, process information. It con-
sists of an interconnected group of artificial neurons and 
processes information using a connectionist approach to 
computation. In most cases, an ANN is an adaptive sys-
tem that changes its structure based on the external or in-
ternal information that flows through the network during 
the learning phase. It can be used to model the complex 
relationships between the inputs and the outputs, or to 
find patterns in data. An artificial neural network consists 
of a collection of processing elements that are highly 
interconnected and that transform a set of inputs into a 
set of desired outputs. The result of the transformation 
is determined by the characteristics of the elements and 
the weights associated with the interconnections among 
them. By modifying the connections between the nodes, 
the network is able to adapt to the desired outputs [8,9].

An ANN model for predicting the membrane foul-
ing rate and permeability using a multilayer perceptron 
network (MLP) with a back propagation (BP) training al-
gorithm was used in this study. MLP is useful in research 
due to its ability to solve problems stochastically, which 
often allows one to obtain approximate solutions for 
extremely complex problems like fitness approximation. 
A multilayer feed forward neural-network architecture is 
shown in Fig. 1. A multilayer perceptron is a feedforward 
artificial neural network model that maps sets of input 

Fig. 1. Schematic diagram of a multilayer feed forward neural 
network.
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data onto a set of appropriate outputs. It is a modification 
of the standard linear perceptron in that it uses three or 
more layers of neurons (nodes) with nonlinear activation 
functions.

3. Materials and methods

3.1. Pilot scale membrane system

Fig. 2 illustrates the schematic diagram of a pilot plant 
(500 m3/d) for this study. The pilot-scale pressurized mem-
brane filtration system was composed of a rapid mixing/
coagulation/sedimentation process and filtration using 
PVDF membranes (H2L, Korea). Raw water collected 
from the Han River was used in this study as feed water 
after coagulation and sedimentation pretreatment using 
polyaluminum chloride (17%).

The specifications of the membrane are summarized in 
Table 2. The operation conditions are as follows: 40-min 
filtration, 30-s backwash with permeate and 1-min back-
wash with pressurized air. The system was automatically 
operated, and the data were collected using a computer.

3.2. ANN model establishment

Two ANN models were developed in this study 
to predict the fouling rate and permeability. An MLP 
employing the sigmoid transfer function and the back 
propagation algorithm for training was constructed with 
STATISTICA. The ANN input parameters were carefully 

Fig. 2. Schematic diagram of the hollow fiber membrane system.

Table 2
Specifications of the hollow fiber membrane

Item Content

Membrane material PVDF
Module type Hollow fiber
Pore size, µm 0.1
Operation mode Pressurized type
Filtration mode Constant flow rate
Surface area, m2 50 
Interval of physical cleaning, min 40 
Filtration method Cross-flow
Flow type Outside-in

selected to include the physically meaningful and easy-
to-measure membrane operations. The ANN model used 
input parameters for the operation conditions (coagulant 
dosage, operating time) and water quality (raw water 
turbidity, raw water pH, total algae number of the raw 
water). A total of 6,400 data samples were divided into 
5,120 training samples and 1,280 test samples. The neural-
network predictions were quantitatively evaluated using 
the root mean squared error (RMSE) and absolute fraction 
of variance (R2).
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where t is the predicted value, O the observed value, i is 
the sample number and n the pattern.

4. Results and discussion

4.1. Raw water quality

Fig. 3 shows the variation in the quality of the raw 
water that was used for membrane filtration. The turbid-
ity, total algae number, and TOC in the raw water signifi-
cantly changed with time. The TOC was high in winter 
(from January to February), and the algae number was 
high in spring (from March to May). In summer (from 
June to August), the raw water turbidity remained high 
due to frequent rains.

The characteristics of raw water quality are sum-
marized in Table 3. The turbidity, total organic carbon, 
algae number, and temperature of the feed water were 
2.02–150.00 NTU, 1.43–6.94 mg/L, 306–27,080 cell/mL, and 
1.16–25.89°C, respectively. The seasonal difference in the 
raw water quality suggests that the filtration characteris-
tics may be quite different.

4.2. Fouling rate

The fouling rate was calculated based on the 40-min 
filtration cycle, using the inclination of the straight line 
within the filtration time and the transmembrane pres-
sure graph. The fouling rate was determined from the 
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Fig. 3. Seasonal variations in the raw water quality: (a) Turbidity and TOC (b) Algae number and temperature.

slope of the linear region in a plot of AP vs. time, which 
corresponds to the cake filtration or the manipulation of 
Eq. (5). The fouling rate ranged from n.d. (not detected) 
to 14.16 m–2. Fig. 4 shows the changes in the fouling 
rate in the pressurized MF system. The extent of fouling 
significantly depended on the raw water quality. The foul-
ing rate remained high (between April and May) because 
of the increased concentration of organics and the algae 
number. It rapidly increased to a level about the middle 
of July because of high turbidity. From October, the foul-
ing rate continuously increased because of the increased 
concentration of organics, the algae number, and the 
decreased water temperature. Accordingly, the fouling 
rate was found to be sensitive to the seasonal variation 
in raw water quality. Therefore, it can be concluded that 
the fouling rate properly reflects the seasonal differences 
in the raw water quality.

(a)

(b)

Table 3
Characteristics of raw water quality in this study

Items Average Std. Dev. Min. Max.

Turbidity, NTU 13.28 20.07 150.00 2.02
Temperature, °C 14.00 8.12 1.16 25.89
TOC, mg/L 2.87 0.79 6.94 1.43
Algae no., cell/mL 7,404 6,921 306 27,750

Fig. 4. Changes in the fouling rate in the pressurized MF 
system.
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4.3. Prediction of membrane performance using the ANN model

STATISTICA, statistics program automatically deter-
mines the optimum network structure so it would become 
the minimum value of R2. The structure of the ANN that 
was used in this study to predict the fouling rate with five 
input and six hidden nodes is shown in Fig. 5a, and the 
structure of the other ANN that was used in this study to 
predict the permeability with five input and seven hidden 
nodes is shown in Fig. 5b.

4.4. Fitting of ANN to the fouling rate and permeability dataset

Figs. 6 and 7 show the observed and predicted values 
for the fouling rate and permeability in the pilot-scale 

Fig. 5. Architecture of the neural networks for predicting the fouling rate and permeability: (a) Five input neurons, six hidden 
layers, and one output neuron; (b) Five input neurons, seven hidden layers, and one output neuron.

(a)

(b)

membrane system, respectively. Figs. 5a and 6a, in par-
ticular, show a comparison of the observed and predicted 
values according to the operating time. Figs. 5b and 6b, 
on the other hand, show a comparison of the fouling rate 
and permeability in the experiment with the simulated 
data. The predicted values from the model match the 
experiment values very well.

The performances of the ANN model were evaluated 
using the root mean squared error (RMSE) and the cor-
relation coefficient (R2). The results of the RMSE and R2 
statistical criteria for the evaluation of the ANN model 
are presented in Table 4.

The ANN models showed high strength and a linear-
relationship direction between the predicted data and the 
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Fig. 6. Comparison of the ANN model fit with the experiment data on the fouling rate. The correlation of the experiment ob-
servations with the neural-network predictions is shown in (a) panel (b) shows the comparison of the observation data with 
the neural-network predictions according to the operating time

(a) (b)

Table 4
Statistical criteria for the evaluation of the ANN model

Item Partition R2 RMSE

Fouling rate Train 0.91 0.886
Test 0.92 0.867

Permeability Train 0.93 0.253
Test 0.94 0.239

Fig. 7. Comparison of the ANN model fit with the experiment data on permeability. The correlation of the experiment obser-
vations with the neural-network predictions is shown in (a) panel (b) shows the comparison of the observation data with the 
neural-network predictions according to the operating time.

observed data. This suggests that the ANN model has 
potential for use in the prediction of membrane fouling 
in pilot-scale systems.

Fig. 8 shows the RMSE and the number of iterations. A 
sharp drop in the RMSE in the first a few iterations (fast 
training) is shown. The training cycles stopped after 85 
and 65 iterations, with an RMSE value of 0.01 respectively.

5. Conclusions

The seasonal differences in the raw-water quality 
significantly affected membrane fouling in Korea. The 
fouling rate based on the cake filtration model is effec-
tive for quantitatively estimating the fouling degree of a 
pressurized MF system in constant flux. The prediction 
of the fouling rate using the artificial neural network 
model is effective for the prediction of plant operation 

(a) (b)
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Fig. 8. RMSE as a function of the number of iterations (a) Fouling rate; (b) Permeability.

(a) (b)

data, which have a sharp contrast in raw water quality 
by season. It is expected that the optimum operation 
conditions can be reduced by regulating the coagulant 
injection quantity and the backwash cycle and intensity, 
among others, based on the real time data of raw water 
quality, through the prediction of the fouling rate using 
the artificial neural network model.
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Symbols

A	 —	 Membrane area
C0	 —	 Concentration of pollutants
I = aC0	—	 Fouling index
J	 —	 Permeate flux
∆P	 —	 Transmembrane pressure
Rc	 —	 Cake resistance
Rm	 —	 Membrane resistance

t	 —	 Operating time
V	 —	 Filtration volume
α	 —	 Specific cake resistance
µ	 —	 Viscosity
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