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abstract
The advances in models based on fuzzy neuronal logic networks in field of water quality in the last 
few years have been quite significant. This article develops a decision tool based on this methodol-
ogy that allows the analysis of instant and seasonal behavior of brine discharge from desalination 
plants into the sea. This is to establish management measures to maximize discharge dilution and 
thereby reduce brine impact on the receiving medium. Over 70% of the increase in salinity of the 
affected area can be explained by just three significant variables: one associated to brine discharge, 
one associated to seasonality and one associated to climate conditions.
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1. Introduction

The placement of the brine generated in desalination 
processes by means of reverse osmosis is one of the main 
problems confronting the desalination industry. Brine 
discharge in coastal areas is an appropriate solution, 
but it must be carried out in an environmental way by 
complying with authorized regulations.

In Spain, in the last few years, there has been a spec-
tacular increase in the use of inverse osmosis in the desali-
nation process of sea water. In most cases, environmental 

brine impact has been evaluated from contrasted models 
such as CORMIX, which is useful in the design phase 
but limited in the operation phase. Also, deterministic 
models do not yet have the necessary capacity to solve 
the complex problem of transport and brine diffusion 
in the marine environment. This slow development is 
partly caused by the lack of experimental data from the 
natural environment.

One of the objectives of the ASDECO Project (Auto-
mated System for Desalination Dilution Control) is the 
evaluation of salinity variations in the marine environ-
ment over periods of time. This information can be used 
to improve the applicability of deterministic models, but * Corresponding author.
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until this is possible, it would be very convenient to have 
a mathematical tool that allowed this information to be 
used for predictive tasks in real time.

An interesting possibility has become available with 
the current development and application of models that 
combine fuzzy inference systems and artificial neuronal 
networks in the water quality field. Even though math-
ematical models based on neural networks have been 
successfully used in fields such as hydrology and coastal 
engineering, it hasn’t been that successful in the water 
field. The main reason for this is that a great amount of in-
formation that is difficult to obtain is required. However, 
the benefits in environmental aspects have continued to 
increase. Currently, these models of this kind have been 
used to build a system to predict the water level in a res-
ervoir [2], to predict the appearance of pesticides in wells 
with limited information [6] and also to mould nutrient 
loads in water masses [4].

In transport and brine dispersion, the physical pro-
cesses of turbulent mix are predominant in chemical and 
biological ones; therefore, the application of models based 
on fuzzy logic can be viable provided if there is enough 
information.

2. Objectives

The main objective of this research, which is integrated 
in the ASDECO program, is to develop a computational 
requirements tool that, given the brine discharge levels 
and the environmental conditions, can predict salinity 
evolution in the marine environment. 

The data available comes from two sources: from 
historical registers for 2006 and 2007 gathered in the 
Environmental Vigilance Programs (PVA) and from 
the measuring instruments for salinity, currents, swells, 
winds, etc installed in one of the buoys of the ASDECO 
system. The buoy is located in the influence area of the 
brine discharge of Desalination Plants I and II of Alicante 
(Spain). The characteristics of the discharge as well as the 
ASDECO system have already been described in previous 
reports (Annual Report 2008).

Due to the wide availability of data and the current 
difficulty of using turbulent dispersion classic models, a 
computational tool based on neural and fuzzy systems 
has been developed as support to the alert system in-
stalled by ASDECO.

3. Description and implementation of models

The tool used is based on adaptative neuro-fuzzy 
inference systems (ANFIS), which is a neural fuzzy 
Sugeno-type model that is implemented by Matlab. It 
is an application that combines fuzzy logic with neural 
networks. 

Fuzzy systems are formed by input and output vari-
ables, fuzzy rules and an inference method that allows 

obtaining the output values when the input values are 
known. When the inference method used is a neural 
network, the tool is called as adaptative neuro fuzzy 
inference system (ANFIS). This system is used to create 
or improve fuzzy inference systems based on Takagi–Sug-
eno rules. In this kind of inference, rule’s consequences 
are linear combinations of the input variables and the 
output is a weighted linear combination of the rule’s con-
sequences. On one hand, fuzzy inference systems provide 
an intuitive mechanism to represent knowledge using 
If-Then rules helped by an expert choice; on the other 
hand, neural networks are highly adaptive and have an 
extraordinary learning ability. Using tools that combine 
these two methods constitute an efficient mechanism to 
model real systems. This is because a method that learns 
from the input data is provided and the expert choice is 
included.

In this case, a programming developed in modeling 
the continental water quality has been adapted [4].

There are two fundamental reasons for using this 
tool in the model. The parameters that can influence the 
dilution of a brine plume in the sea can be of very dif-
ferent types with a highly non-linear relationship due 
to interaction with each other. Also, the transformation 
of parameter field data does not provide statistically 
significant results which would allow the use of other 
more traditional regression models. 

Before using this application, one of the first decisions 
to be taken is to define the objective function and the sig-
nificant variables. The objective function is the increase 
of salinity in the area affected by the brine discharge. 
From other studies [1], it has been determined that base 
salinity in this area is 37.5 psu. These studies also state 
that the quality objective to fulfill in the area to protect 
is that the maximum increase can reach 1 psu for areas 
where there is Posidonia oceanica, and 2 psu in the case of 
Cymodocea nodosa. 

As first option, with the aim to develop a predictive 
model as easy as possible, we thought to use only two sig-
nificant variables: those associated to the brine discharge 
and those associated to environmental variables. The first 
refer to discharge flow and its excess salinity with respect 
to the base salinity. This is expressed in a combined form, 
which is known as excess salt load over the salinity in 
the sea. The second refer to swell, which is represented 
by significant height, wave period and direction. In ad-
dition, the number of explanatory variables that can be 
used depends on of the number of available data. In this 
first phase of the study the number of valid data did not 
allow more than two explanatory variables.

4. Results

4.1. Model adjustment with data from the Vigilance Programme 
2006

First, a series of preliminary tests were carried out 
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using the historical registers of 2006 from the Environ-
mental Vigilance Programs in the area affected by brine 
discharge. The purpose was to evaluate the possible vi-
ability of the parameters according to the results and then 
to make the decision to apply the model with the new data 
obtained by the ASDECO system. For 2004, there are dif-
ferent CTDs in the area of influence of brine discharge that 
register salinity in the perimeter of protection of Posidonia 
oceanica. In Fig. 1 we can see the location of the sensors 
which, for different reasons, have moved over time, from 
positions A1–A6 to L1–L5. The data used in this section is 
related to station A3 of the PVA 2006, since it was verified 
that this station gathers the influence of the plume of brine 
discharge more directly than other stations.

The first simulations were carried out using the input 
of excess salt load as one of the variables to represent the 
excess salinity with respect to the base salinity of the sea 
and the day of the year of the discharge as another one to 
represent seasonality. The number of data used was three 
hundred, distributed at regular intervals in the year 2007. 
Two hundred were used for the training phase while the 
last one hundred served for validation/prediction. A total 
of eleven membership functions, making combinations 
thereof to be reduced the average quadratic error func-
tions were tested. During the training we paid particular 
attention to the risks of overtraining, fixing the number 
of iterations in 20–30. Finally, the employed member-
ship functions were a total of five Gaussian type, which 
provided quadratic errors under 0.49. The first results 
are shown in Fig. 2.

Fig. 1. Location of stations and distribution of Posidonia oceanica 
(Annual Report 2006).

The increase of salinity measured in the area and the 
one simulated by means of ANFIS is quite close with 
a regression coefficient R2 0.719. This shows that salt 
load is a key factor just as expected. Since the model has 
limitations due to the number of registers available, the 
experiments were limited to three variables. Based on 
these results, another parameter representing hydrody-
namics in the area under study was added to the model. 
This variable, maximum wave height was selected and 
the changes and the results in the model are shown in 
Fig. 3. As expected, there is an inverse relation between 
the salinity of the plume observed in the station A3 and 
the maximum wave height. This relation leads to a re-
duction of approximately 0.75 psu/m of increase in the 
maximum wave height.

4.2. Model adjustment with data from the Vigilance Progamme 
2007

During 2007, the active CTDs are found in positions 
L1–L5 and have more data available for these sensors 
than in 2006. This is relevant because stations that are 
farther away from the discharge provide results that are 
closer to the actual measured results. This is true even 
though additional parameters are influencing the results 
of the model.

4.3. Model adjustment with ASDECO data 2008–2009

The data provided by the sensors installed in the 
SADO I buoy by the ASDECO control, follow-up and 
alarm prototype started to be available in October 2008. 
The data became more uniform in February 2009. 

The increase of salinity produced in the control 
point where the buoy was located (according to excess 
salt lead and maximum wave height) is currently being 
studied. Also, the introduction of new parameters has 
been attempted in order to achieve better results from 
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Station A3.  Moving average (4 days)

R2 = 0.719
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Fig. 2. Results for salt load for A3.
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Fig. 3. Results for salt load and swell for A3. 

Simulated vs Measured 
Station L3. Moving average (4 days)

R2 = 0.778
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Fig. 4. Results for salt load and swell for L3.
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Simulated vs Measured 
Station L4. Moving average  (4 days)

R2 = 0.862
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Fig. 5. Results for salt load and swell for L4.

the model and the standardization of other parameters. 
Other variables besides maximum wave height have been 
introduced to define the specific behaviors of the brine 
plume: the significant wave height, the wave period, the 
intensity of the wind up to 10 m of height, the direction of 
the wind up to 10 m height and the direction of the swell.

Finally, it is necessary to introduce a parameter that 
represents previous sea states since the salinity accumu-
lated in the seabed on a specific day is not just a conse-
quence of the climate conditions of that day, but of an 
accumulation of previous sea states. Thus, the longer the 
period calm, the lower the energy of dispersion accumu-
lated. This results in a lower mix and a lower dilution of 
the plume. In contrast, extended storm periods will cause 
great turbulence, thus favoring the mix.

5. Conclusions

A decision tool has been presented in this work that 
allows the analysis of instantaneous and seasonal brine 

discharge behavior. A fuzzy logic application that is 
combined with neural networks has been developed and 
applied to the environmental management of desalination 
plants to predict increase of salinity in the perimeters of 
the Posidonia oceanica to be protected. With this applica-
tion, measures can be taken to maximize brine discharge 
dilution and, thereby reduce its impact on the marine 
environment.

Research has proven that the most influential environ-
mental variables in salt concentration are the wave height 
(within the climate scenario), brine discharge, the increase 
of salinity with respect to base salinity of the receiving 
medium, and the dilution relations.

These results show that the model predictions are 
fulfilled. The increase of salinity is higher when the pa-
rameter that represents the excess salt load is higher. The 
increase of salinity is lower when the maximum wave 
height is higher.  It is worth mentioning that the maxi-
mum wave height does not explain the average disper-
sion condition of the plume in the sea nor the decrease 
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peaks of specific salinity. For prolonged periods of calm, 
the increase of salinity with respect to the base salinity is 
high, while for large wave heights the plume undergoes 
more dispersion.

These results demonstrate that the application of neu-
ral fuzzy types such as ANFIS can be an acceptable option 
for the follow-up and control of brine discharge into the 
sea. This is true at least until the deterministic models 
finally correctly represent the turbulent dispersion pro-
cesses in transport and brines dispersion in real time.
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