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abstract
The filtration process within a membrane bioreactor (MBR) is mostly controlled in a classic way 
through typical set-points such as aeration flow rate, filtration duration, backwash frequency or 
relaxation duration. The values of these filtration set-points result from “experience” and remain 
often unchanged during the installation’s operational lifetime. Filtration is dictated considerably 
by membrane fouling phenomena. The fouling potential of the mixed liquor however can signifi-
cantly fluctuate, even daily, from changing influent characteristics. Fixed set-point values thus may 
represent sub-optimal filtration conditions. Consequently, a supervising advanced control system, 
being able to continuously adapt the set-point’s values would be beneficial regarding the MBR 
filtration process optimization. Such optimization could reduce the corresponding MBR energy 
consumption, e.g. linked to the filtration related membrane aeration. An Advanced Control System 
(ACS) based on Fuzzy Set Logic (FSL) is introduced here, enabling to supervise an existing classic 
membrane filtration control system. Such ACS is able to daily (or even more frequent) optimize the 
set-points of the underlying classic control system, from the input of various sensor and process 
parameter values. The theoretical background and practical implementation of the FSL based ACS 
concept is explained.
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1. Introduction

Set-points of the MBR filtration process control include 
e.g. aeration, backwash, filtration interval and relaxation 
interval. Those are mostly deduced from the experience 
of the MBR membrane module producer and/or MBR 
operator. These set-points are related to counter-acting 
membrane fouling phenomena since fouling can reduce 
the permeate flux significantly. Multiple membrane 

fouling phenomena exist and are in general extremely 
complex [1], since they are linked to particle fouling, 
molecular adhesion, biofouling and scaling. A universal 
mathematical fouling model which accurately describes 
the outcome of all these complex phenomena, acting 
moreover simultaneously, does not exist. In particular, 
it would take a wide range of sophisticated and expen-
sive on-line devices to measure the fouling determining 
parameters (e.g. particle size distribution of particle 
foulants, zeta-potential, chemical analyses, etc.). From 
an economical point of view, the implementation of such * Corresponding author.
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high-tech devices obviously would also be prohibitive. 
This would require the build of a control system, being 
based on a predictive model and multiple expensive (on-
line) characterization instruments. 

The pressure driven membrane filtration process in a 
MBR in fact cannot be adequately mathematically mod-
eled. It is not possible to implement model equations in 
the filtration control system. However, Fuzzy Set Logic is 
a well known and adequate approach in those cases that 
the human knowledge of a process is “vague”. The term 
“Fuzzy Logic” is not used here since such description 
evokes in some people’s minds the wrong perception of 
“logic” that would be “fuzzy”. The description “fuzzy set 
logic” (FSL) is therefore more appropriate since FSL in 
fact handles fuzzy sets in a logical way. FSL is nowadays 
implemented in many process controls within different 
industrial and civil domains, including automotive, 
chemical, metallurgical, food, photographical and video 
recording, image analysis, medical, etc. applications 
[2–7]. It is however novel in the MBR membrane filtration 
control, as described in this publication.

A FSL control system uses multiple FSL control blocks. 
Each block handles one particular set-point of the super-
vised (existing) classic control system. Such configuration 
resembles in some extent to the approach of a human 
operator who would manually fine-tune each set-point 
from experience/knowledge. The FSL based ACS, as 
described in this publication, completely maintains the 
existing filtration control system within an MBR instal-
lation, in whatever form (PLC, PC control based, etc.). 
The higher level ACS thus only supervises the set-points 
related to e.g. the duration of the relaxation, the flow of 
coarse bubble aeration of the membrane module or the 
flux of backwash cleaning. It does however not interfere 
further with the internal actions of the existing “lower” 
level control system.

The objective of this publication is to briefly intro-
duce FSL principles, to demonstrate the feasibility of the 
implementation of a FSL based, set-point supervising, 
ACS on top of a classic filtration control system  and to 
show some practical results of a working ACS.

2. Methods

2.1. Fuzzy sets and fuzzy control principles in brief

The first publication [2] by Prof. Lotfi Zadeh (“Systems 
Theory” at the University of California, Berkeley) on FSL 
appeared in 1965. The concept of fuzzy sets are demon-
strated here very briefly through an arbitrary example of 
temperature sets, while comparing crisp sets and fuzzy 
sets (the description “crisp” is used in FSL literature). 
Within Fig. 1 and Fig. 2 the example is restricted to only 
three sets A, B and C. Sets can be considered as distribu-
tion functions, while giving the frequency of occurrence 
of a specific temperature. 

Non-fuzzy “crisp” control systems use sets as shown 
in Fig 1. In the crisp set A “Temperature too low” of Fig. 1, 
all temperature frequency of occurrence values are equal 
to 1 for temperatures below 20°C and equal to 0 for tem-
peratures above 20°C. The complete crisp set A (“crisp” 
since a step function) is also called a “membership” func-
tion showing “membership values”. The crisp set C is also 
a step function and analogous to crisp set A while having 
a step at 25°C and reflecting a “temperature too high” 
membership. The crisp set B is somewhat more complex 
since there are now two steps involved: the temperature 
values between 20°C and 25°C have now a membership 
value of 1 ; the temperature values at the left from 20°C 
and at the right from 25°C have a membership value of 0.

In fuzzy control systems very special sets are used. As 
in the crisp set A of Fig. 1, all temperature values within 
the fuzzy set A of Fig. 2 also belong to the distribution 
curve called “Temperature too low”. But now, the fuzzy 
set aspect is introduced. In the fuzzy set A all values 
below 17.5°C have the membership value of 1 while all 
temperature values above 22.5°C have the membership 
value of 0. The temperature values within the interval 
17.5°C–22.5°C then have no longer a crisp value of either 
0 or 1 but a value between 0 and 1. 

This is also the case in the fuzzy set B within the in-
terval 17.5°C–22.5°C. It is observed that set A and Set B 
are overlapping. As a result, for a specific temperature 
value : in the overlapping interval 17.5°C–22.5°C of the 
fuzzy sets A and B, the sum of the membership values is 
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Fig. 1. Arbitrary example of crisp sets.
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equal to 1. In an analogous way the fuzzy sets B and C 
are also overlapping, but in the interval 22.5°C–27.5°C. 
One particular temperature value therefore can belong 
simultaneously to two, or even more, different member-
ship functions. This is the reason that the description 
“fuzzy” emerged.

This approach corresponds in some extent to differ-
ent human’s “vague” or “fuzzy” opinions. The fuzzy set 
approach therefore allows to mimic in a mathematical 
way the non-crisp judgment, but however very successful 
control approach of humans. The cybernetic abilities of 
the human brain to control very complicated processes 
are indeed remarkable. 

In a FSL based control block (Fig. 3, discussed in more 
detail in section 2.2) there are four basic modules: a fuzzi-
fication module, a logical inference module, a fuzzy rules 
module and a defuzzification module. The fuzzification 
module enables to process the incoming crisp sensor 
values into fuzzy set values. These are then processed by 
the fuzzy knowledge modules which consist of the logical 
inference and the fuzzy rules module. The fuzzy results 
then need to be defuzzified into crisp values which are 
send as new set-point values to the underlying existing/
classic control system.

2.2. Advanced MBR filtration control system

An existing MBR filtration control system is typically 
based on a PLC configured control. It is standard practice 
to define specific values (“set-points”) of the different 
filtration operational parameters. In most cases, the 
set-point values are determined from “human operator 
experience” (MBR system builder’s or MBR operator’s 
experience). The set-points are often fixed at the opera-
tional start of a new MBR installation. During further 
operation of the installation, the set points remain often 
unchanged or are either only adapted by a human op-
erator in a minor way. This evidently increases the risk 
of having an underperforming MBR, e.g. in the case of 
an excessive membrane aeration despite an actual low 
MBR’s mixed liquor fouling propensity. It is obvious that 
a continuous and automatic fine-tuning of the filtration 
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Fig. 2. Arbitrary example of fuzzy sets.

parameters within the basic level control system could 
enhance the MBR filtration performance. This is possible 
through an ACS, on top of the hierarchical “lower level” 
control system (Fig. 3).

A FSL based ACS was developed by first defining 
all possible set-points within the membrane filtration 
control of the MBR (it should be remarked here that this 
paper does not consider the control of the sludge aeration 
process which is related to the oxidation of the sludge 
and is not part of the membrane filtration process). The 
membrane filtration process set-points can be considered 
as output variables of the ACS. They can be linked to 
actions involving the removal of reversible foulants by 
“mechanical” actions such as backwashing, back pulsing, 
aeration and relaxation. In addition, the dosing of floc 
modifying or coagulating agents can be considered since 
such additives can prevent fouling. Finally, membrane 
maintenance cleaning related set-points (thus not the typi-
cal yearly intensive cleaning) can also be implemented in 
the ACS. A total of 17 set-points could be defined in this 
way as indicated in Table 1.

With respect to the input variables (sensor data), the 
membrane fouling propensity of the MBR mixed liquor 
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Fig. 3. Advanced control system based on FSL.
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is evidently the prime sensor information for an ACS. 
From the theoretical complexity of fouling phenomena, 
the direct measurement of the fouling propensity of a feed 
is a valuable approach. VITO thus developed a pragmatic 
fouling measurement method which enables to measure 
both the reversible and irreversible fouling propensity 
of an MBR sludge. The VFM originally was based on a 
dead-end filtration mode, as described in [8–10]. Within 
the AMEDEUS project (http://www.mbr-network.eu/
index.php ), the dead-end based VFM was extended 
into a cross-flow based MBR-VFM, while using a tubular 
membrane and a controlled aeration [11,12]. The MBR–
VFM is based on a single tubular membrane in which an 
air-lift effect is created, in a controlled way, by applying 
defined Taylor air slugs. As a result, a first filtration curve 
can be obtained while applying a standardized filtration 
protocol (at a specific trans-membrane pressure and a 
low air lift flow, thus low turbulence mode) on the MBR 
mixed liquor. From this first filtration curve the reversible 
fouling fingerprint of the MBR mixed liquor is extracted 
and converted into a standardized MBR–VFM revers-
ible fouling propensity curve. The succeeding filtration 
cycles in the MBR–VFM apparatus are then performed 
at a higher (standardized) aeration rate in order to pro-
mote irreversible fouling (from the higher turbulence and 
thus higher flux). From these additional filtration curves, 
which show a decline in membrane permeability, the ir-
reversible fouling propensity can be extracted. 

The MBR–VFM thus allows graphical representation 
in a standardized, filtration relevant way, of the revers-
ible and irreversible fouling propensity by plotting V/A 
(permeate volume per m² of membrane) against Rtot,rev/Rm 

Table 1
ACS related set-points

Output variable set point Output variable (ACS generated set point) Fouling class

1 Backwash Flux Reversible
2 Duration Reversible
3 Interval Reversible
4 Back pulse Amplitude Reversible
5 Duration Reversible
6 Interval Reversible
7 Aeration Flow Reversible
8 Duration Reversible
9 Interval Reversible

10 Relaxation Duration Reversible
11 Interval Reversible
12 Floc modifying agent 

(preventive)
Dose Reversible (/irreversible)

13 Frequency Reversible (/irreversible)
14 Chemical cleaning (mainte-

nance clean)
Dose Irreversible

15 Frequency Irreversible
16 Coagulant (preventive) Dose Irreversible/(reversible)
17 Dosing frequency Irreversible/(reversible)

or Rtot,irrev/Rm (ratio of total hydraulic reversible or ir-
reversible resistance versus membrane resistance). This 
approach preserves all measured fouling data and cor-
responds therefore to a multiple value fouling character-
ization method (in contrast with the single point fouling 
measurement techniques). Both MBR–VFM finger-print 
graphs are used as the primary sensor input for the ad-
vanced control system (ACS). It should be noted that, with 
respect to the automatic interpretation of both MBR-VFM 
fouling fingerprints, a fuzzy set logic (FSL) based image 
recognition system was also implemented, as illustrated 
in Fig. 4. Details on the MBR–VFM graphs fuzzy image 
recognition system will be the subject of an additional 
specific publication. 

The ACS receives from the MBR–VFM apparatus crisp 
values Frev and Firr which are standardized in the interval 
0–100 (%, low to high fouling). Next to the primary foul-
ing sensor input values from the MBR–VFM, additional 
process parameters can be used as input variables to the 
ACS. Such input parameters may include temperature, 
pH, mixed liquor suspended solids (MLSS), solids reten-
tion time (SRT), etc. In Fig. 5, the FSL based ACS main 
dialog window is shown, including the set-points and the 
input process parameters. The software handles the input 
parameter values as percentages (0–100%) within a user 
specified interval; e.g. the MBR temperature is between 
min 5°C (0%) and max 30°C (100%) over a one year’s 
period. Such standardization simplifies in an important 
way the definition and handling of the fuzzy sets within 
the fuzzification modules. 

Each set-point as represented in Fig. 3 has an indi-
vidual FSL control block (which also can be activated or 
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de-activated by a MBR operator). The crisp output value 
(a set-point value) of each FSL control block is also situ-
ated in a standardized range of 0–100% as to simplify the 
fuzzy set handling in the FSL control blocks. A range of 
0–100% for a specific set-point is then also correspond-
ing to that set-point’s minimum and maximum techni-
cal value. E.g. the set-point AirFlow of the membrane 
module aeration is defined in the range of a min value 
of “xmin” m³/h (corresponding to 0%) and a max value of 
“xmax” m³/h (corresponding to 100%). After defuzzifica-
tion, the ACS thus first produces a crisp set-point value 
between 0 and 100%. That value is then recalculated as 
the corresponding value in the range “xmin–xmax” and 
passed as the new set-point value to the “lower level” 
control system.

The 0–100 % range normalization of both input and 
output parameters introduces “general applicable” and 
“implementation friendly” ACS features. The tuning of 
the ACS thus becomes more transparent. The ACS can 
be considered as a supervising system which is able to 
control, “in parallel”, multiple set-point values.  Human 
expert operator knowledge is implemented in the fuzzy 
rules modules within the multiple FSL control blocks 
and executed.

MBR-VFM graphs reversible fouling
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Fig. 4. Conversion of MBR–VFM fouling graphs through FSL based image recognition software.

2.3. Implementation of the ACS

At VITO, MeFiAS® software was originally already 
developed under LabVIEW for the full control of any 
pressure driven membrane filtration system (MF, UF, NF, 
RO) [13]. The set-point values within this basic control 
software need to be set manually by the operator from 
her/his heuristic filtration process operational knowl-
edge. Such MeFiAS® software was thus adapted to the 
MBR filtration process control. It allows an automatic 
filtration parameter data acquisition and total control of 
the filtration process (even through a remote phone or 
internet connection). 

The FSL based ACS was then developed within Lab-
VIEW’s Fuzzy Toolbox [14]. Evidently the existence of 
such a dedicated Toolbox within the LabVIEW environ-
ment was a large advantage regarding the integration and 
linking of the ACS to the MeFiAS® software. 

As an example, a typical FSL related screen print from 
the Fuzzy Toolbox is illustrated in Fig. 6, showing the 
fuzzy sets as introduced for the input parameter “Tem-
perature” (upper) and the output (lower). As another 
example, Fig. 7 shows the typical fuzzy sets as used for 
the output parameter AirFlow (aeration), including the 

 

 

Ouput of ACS (see Table 1) :
17 set-points

Input parameters of ACS :
- VFM_rev
- VFM_irrev
- Temperature
- Transmembrane pressure
…

Fig. 5. ACS basic dialog window for the selection of ACS input (horizontal top) and output (vertical left) parameters.
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rules base of the AirFlow control. A very important aspect 
of FSL control with respect to the fuzzy rules is the use 
of linguistic variables. This allows the straightforward 
writing of control rules, mimicking the reasoning and 
actions of a human operator. 

A fuzzy rule is then typically written symbolically as:

If U = Low AND if V = Low AND if W = High AND if X 
= Very Low then Y = Medium

It should be noted that fuzzy operators AND, OR, 
etc. are not related in any way to classic Boolean logical 
operators since Boolean operators cannot handle condi-
tions which are “more-or-less true”. Therefore specific 
fuzzy operators have been defined mathematically in 
fuzzy set handling. These definitions are however not 
the subject of this publication and can be found in the 
existing literature on FSL (e.g. [4]).

If the linguistic input variables U, V, W and X e.g. each 

Input variables : e.g. VFMrev , Temp, Flux

Input variable membership functions (Temperature)

Output variable membership functions

Fig. 6. Fuzzy sets for the input variable “Temperature” and output.

Input/Output relationship :
Out versus (VFMrev, Temp)

Fuzzy control rules

Fig. 7. Fuzzy set rules (lower part) and output response. 
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consist of 5 fuzzy sets having the linguistic names Very 
Low, Low, Medium, High and Very High, then it is obvi-
ous that it is possible to create 54 = 625 fuzzy rules based 
on MBR operator expertise. It is however not necessary 
to define all 625 rules since it is possible to de-activate IF-
rule combinations of U, V, W and X which are irrelevant 
or of low importance. 

It is not the goal of this publication to go into details 
with respect to the actual implementation of all the fuzzy 
rules (also for proprietary reasons). The basic approach 
being involved is assumed to be clear while specific in-
formation on the handling of fuzzy rules can be found 
in the literature [2–7,14].

During the fuzzy inference handling of the fuzzy rules, 
there are two major actions: aggregation (the calculation 
of the IF parts) and composition (the calculation of the 
THEN parts). These calculations result in the linguistic 
value of the linguistic output variable. Information on the 
specific methods as used for aggregation and composition 
can be found in the literature on FSL (e.g. [4]).

It is possible to implement relevant operator knowl-
edge as fuzzy rules and evaluate first the fuzzy control 
block response of an output variable by simulation. The 
fuzzy rules or even the fuzzy membership sets can then 
be further fine-tuned in order to obtain a proper fuzzy 
controller response. This tuning can also be enhanced 
over time while operating the MBR. In the extreme case, 
it would also be possible to implement neuro-fuzzy 
methods which would allow the MBR filtration system 
to become self-learning. In principle, neuro-fuzzy self-
learning allows the system to automatically optimize over 
time, during the operation of the MBR, the fine-tuning of 
the knowledge (fuzzy rules) or the fuzzy sets. 

3. Experimental and first results

Detailed MBR pilot test results over a long test period 
in 2008–2009, involving a FSL based ACS is presented 
in [15]. Therefore only first results are discussed here 
briefly, as obtained at the start of the European FP6 project 
AMEDEUS (see acknowledgments), while proving here 
the ACS functionality.

The FSL based ACS, as described in section 2, was 
implemented on a MBR pilot unit and tested at a munici-
pal waste water treatment plant (WWTP) in Belgium. The 
pilot unit included pretreatment (screen, grease tank, grit/
grease trap and pH correction) and was fed by the waste 
water arriving at the WWTP. The pretreated waste water 
was thereafter handled by an anoxic compartment (2 m³) 
and an aerobic compartment (4 m³). The pilot was fully 
automated (MeFiAS® controlled) and had on-line sensors 
for oxygen, temperature, pH, level, flow and pressure. 
The MeFiAS® process data and control parameters were 
analyzed and tuned through remote control at the VITO 
premises.

Two 20 m² membrane modules (A3 Water Solutions 
GmbH, Gelsenkirchen, Germany) were submerged in a 
separate 2 m³ filtration compartment in a double deck 
configuration. The aeration of the module was flow con-
trollable. The permeate flux during filtration was adjusted 
by a flow controlled pump. 

The effect of the ACS is indicated here for a single 
experimental case at the start of the MBR experiments, 
and for a restricted combination of operational MBR 
conditions. After a start-up period and gradual increase 
of the flux to the 15 L/h.m² value, the MBR was operated 
for about another 4 weeks (without the ACS). A regime 
of 8 min filtration and 2 min relaxation was applied. Dur-
ing that reference period the coarse bubble aeration flow 
through the filtration modules was constant at a level of 
18 Nm³/h. It can be observed in Fig. 8 that around April 
20th 2008 there was an electrical failure which induced a 
standstill for a few days after which the installation was 
restarted at a lower flux of 10 L/h.m² for about one week. 
The flux was then  again increased to 15 L/h.m². Some 
gradual decline of the permeability was noticed during 
the succeeding operational days of the reference period. 

On May 5th, the first ACS test with variable membrane 
aeration was initiated. The functioning of the ACS was 
studied during the succeeding period of three weeks by 
activating two ACS input parameters (MBR–VFMrev and 
Temperature) in order to have the set-point of the coarse 
bubble aeration flow within MeFiAS® being supervised 
by the ACS. The reversible fouling propensity value Frev 
was determined daily with the MBR–VFM measurement. 
The crisp Frev value and the mixed liquor temperature 
value were then used as the ACS input. The fouling 
propensity of the mixed liquor was found to be low dur-
ing this initial ACS test period. An alarm however on 
Friday evening May 9th halted the pilot for another few 
days after which the testing was continued. In the ACS 
settings (Fig. 5), the 0–100% normalized interval for the 
temperature corresponded to the range of 5–40°C while 
the 0–100% normalized interval for the coarse membrane 
bubble aeration flow ranged from 10–18 Nm³/h. The ACS 
determined the corresponding value for the set point of 
the aeration flow and transferred that value to the “lower 
level” MeFiAS® control system. As a result of the low 
fouling propensity, the ACS actually reduced the aeration 
flow to the low normalized value of 0% (10 Nm³/h). The 
flux was kept constant at 15 L/hm². It can be noticed from 
Fig. 8 that the permeability was comparable to the one 
in the reference period. It was thus concluded from this 
preliminary first run of the ACS that the ACS software 
was in principle functional and seemingly allowed for a 
substantial reduction of the MBR filtration module aera-
tion. This conclusion is also extrapolated in [15] which 
describes in more detail the broad experimental work 
on the ACS within the framework of the AMEDEUS FP6 
MBR project. As discussed in [16], aeration involves up to 
60–70% of the energy consumption. From that perspective 
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Fig. 8. First ACS results. 

and from the results in this publication and those referred 
to in [15], the energy savings by using the ACS could well 
be in the substantial range of 20–30%.

There was also a comparable biological performance 
of the MBR pilot during both periods, as deduced from 
the COD removal. That removal was thus not negatively 
influenced by the lower coarse bubble aeration flow in 
the submerged membrane compartment. Additional foul-
ing indicators such as DOC, sugar/protein concentration 
and mean particle diameter also did not differ much for 
both periods.

4. Conclusions

It is illustrated that an advanced MBR control system 
can be based on FSL. An FSL approach does not need com-
plex mathematical input-output process model equations 
or complex control algorithms. Even more, the imple-
mentation of mathematical models would invoke the 
need for multiple (expensive) characterization systems, 
which moreover need high-skilled operators, thereby 
increasing costs. It is also often the case that a complex 
process requires a substantial and costly development 
time of the mathematical model, additionally often be-
ing sensitive to a risk of low accuracy. The alternative 
approach of a FSL control approach typically requires 
less development time.

As a result of the availability of a Fuzzy Toolbox 
software module for LabVIEW, a FSL based ACS could 
be developed. The LabVIEW compatibility significantly 
enhanced the linking of the “higher level” ACS and the 
“lower level” MeFiAS pressure driven membrane soft-
ware control. The ACS software was fully implemented 
for specific input and output process parameters and 
tested in a MBR pilot on location of a WWTP. The first 

results from MBR pilot tests showed that the ACS concept 
was fully feasible.  

It should also be remarked that the ACS, based on 
FSL, and the VFM is not restricted to the control of the 
filtration process within MBR’s but could also be used in 
the control of classic pressure driven membrane filtration 
(MF, UF, NF) processes.
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