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abstract 
Knowledge of the thermodynamic properties of water is necessary for the interpretation of physical 
and chemical processes. In the current research a new method based on artificial neural network 
(ANN) was applied for the prediction of water gases thermodynamic properties. The required data 
were collected and after pre-treating was used for training of ANN. Also the accuracy and trend 
stability of the trained networks were tested by it generalization ability in predicting of unseen 
data. The back-propagation learning algorithm, with different training methods such as scaled 
conjugate gradient (SCG), Levenberg–Marquardt (LM), gradient descent with momentum (GDM), 
variable learning rate back propagation (GDA) and resilient back propagation (RP) were used for 
the purpose. The SCG with seven neurons in the hidden layer showed the best performance with 
minimum mean square error of 0.0001517. Finally, ANN model performance was compared with 
classical thermodynamical models for the specific volume prediction of superheated water. Some 
equations of state such as Lee Kesler, NRTL, Soave–Redlich–Kwong and Peng–Robinson were used 
for the purpose. The comparisons showed the ANN capability for prediction of the thermodynamic 
properties of water gases. 
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1. Introduction

The thermodynamic properties of water are important 
factor to study the mentioned processes [1]. Experimental 
activities can not be enough to achieve a clear picture of 
the condition and possible problems as widely doing the 
experiments, besides involving high costs, is impossible 
in some cases. Therefore a model with a reasonable ac-
curacy is proposed to predict the required data instead 
of doing more experiments. The major processes found 
in chemical engineering are unfortunately nonlinear 

processes, and previously mentioned approaches fail to 
respond correctly because of process nonlinearity [2]. 
ANN is a model that attempts to mimic simple biologi-
cal learning processes and simulate specific functions of 
human nervous system [3]. This model creates a con-
nection between input and output variables and keeps 
underlying complexity of the process inside the system. 
The ability to learn the behavior of the data generated by 
a system is the neural network’s versatility and privilege 
[4]. Fast response, simplicity, and capacity to learn are 
the advantages of ANN compared to classical methods. 

This model has been widely applied to predict the 
physical and thermodynamic properties of chemical com-* Corresponding author.
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pounds. Recently, ANN has been used to predict some 
pure substances and petroleum fraction’s properties [5], 
activity coefficients of isobaric binary systems [6], ther-
modynamic properties of refrigerants [3,7–9], and activity 
coefficient ratio of electrolytes in amino acid’s solutions 
[10], etc. Using the ANN to predict the thermodynamic 
properties of superheated water instead of approximate 
and complex analytical equations are the main focus of 
the current research. Finally, the ability of this model in 
prediction of water gases thermodynamic properties was 
valuated in comparison with some equations of state by 
using unseen data and with the help of experiment data.

2. Artificial neural networks 

In order to find relationship between the input and 
output data derived from experimental work, a more 
powerful method than the traditional ones are necessary. 
ANN is an especially efficient algorithm to approximate 
any function with finite number of discontinuities by 
learning the relationships between input and output 
vectors [3,5,11]. These algorithms can learn from the 
experiments, and also are fault tolerant in the sense that 
they are able to handle noisy and incomplete data. The 
ANNs are able to deal with non-linear problems, and 
once trained can perform prediction and generalization 
rapidly [12]. They have been used to solve complex prob-
lems that are difficult to be solved if not impossible by 
conventional approaches, such as control, optimization, 
pattern recognition, classification [3,7]. 

Artificial neural networks are biological inspirations 
based on the various brain functionality characteristics. 
They are composed of many simple elements called neu-
rons that are interconnected by links and act like axons to 
determine an empirical relationship between the inputs 
and outputs of a given system. Multiple layers arrange-
ment of a typical interconnected neural network is shown 
in Fig. 1. It consists of an input layer, an output layer and 
one hidden layer with different roles. Each connecting line 
has an associated weight. ANNs are trained by adjust-
ing these input weights (connection weights), so that the 
calculated outputs may be approximated by the desired 
values. The output from a given neuron is calculated by 
applying a transfer function to a weighted summation of 
its input to give an output, which can serve as input to 
other neurons, as follows [3,13]:
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where αjk is neuron j’s output from k’s layer βjk is the 
bias weight for neuron j in layer k. The model fitting pa-
rameters wijk are the connection weights. The nonlinear 
activation transfer functions Fk may have many different 
forms. The classical ones are threshold, sigmoid, Gaussian 
and linear function, etc. [2,3,13–15].

Fig. 1. Schematic of typical multi-layer neural network model.

The training process requires a proper set of data 
i.e. input (Ii) and target output (ti). During training the 
weights and biases of the network are iteratively adjusted 
to minimize the network performance function [16]. The 
typical performance function that is used for training feed 
forward neural networks is the network mean squares 
errors (MSE) Eq. (2) [2,3,17]:

( ) ( )2 2

1 1

1 1MSE
N N

i i i
i i

e t
N N= =

= = −α∑ ∑  (2)

Also another statistical parameters as RMSE was used 
to show the accuracy of the ANN model. The RMSE is 
defined as follows [18]:
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where ti and αi are the experiment and predicted data 
value respectively. N is the number of used data.

There are many different types of neural networks, 
differing by their network topology and/or learning algo-
rithm. In the current research, the back propagation learn-
ing algorithm, which is one of the most commonly used 
algorithms, is designed to predict the thermodynamic 
properties of water. Back propagation is a multilayer feed-
forward network with hidden layers between the input 
and output [2,3,17,19]. The simplest implementation of 
back propagation learning is the network weights and 
biases updates in the direction of the negative gradient 
that the performance function decreases most rapidly. 
An iteration of this algorithm can be written as follows 
[2,3,13,17,19]:

1k k k kx x l g+ = −  (4)

The process details flowchart to find the optimal 
model is shown in Fig. 2. There are various back propaga-
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tion algorithms such as scaled conjugate gradient (SCG), 
Levenberg–Marquardt (LM), gradient descent with 
momentum (GDM), variable learning rate back propaga-
tion (GDA) and resilient back propagation (RP). LM is 
the fastest training algorithm for networks of moderate 
size and it has the memory reduction feature to be used 
when the training set is large. One of the most important 
general purpose back propagation training algorithms is 
SCG [2,3,14,16,17,19].

The neural nets learn to recognize the patterns of the 
data sets during the training process. Neural nets teach 
themselves the patterns of the data set letting the analyst 
to perform more interesting flexible work in a changing 
environment [3]. Although, neural network may take 
some time to learn a sudden drastic change, but it is 
excellent to adapt constantly changing information. How-
ever programmed systems are constrained by designed 
situation and they are not valid. Neural networks build 
informative models. Because of handling very complex 
interactions, the neural networks can easily model data, 
which are too difficult to model traditionally (inferential 
statistics or programming logic). Performance of neural 
networks is at least as good as classical statistical model-
ing, and even better in most cases [19]. Neural networks 
operate well with modest computer hardware. Although 
neural networks are computationally intensive, the rou-

Fig. 2. A training process flowchart.

tines have been optimized to the point that they can now 
run in reasonable time on personal computers [3]. They 
do not require supercomputers as they did in the early 
days of neural network research.

3. Thermodynamic models used [20]

3.1. Soave–Redlich–Kwong (SRK) equation of state

Introduced in 1949 the Redlich–Kwong equation of 
state was a considerable improvement over other equa-
tions of the time. It is still of interest primarily due to its 
relatively simple form. While superior to the Van-der 
Waals equation of state, it performs poorly with respect 
to the liquid phase and thus cannot be used for accurately 
calculating vapor–liquid equilibria. However, it can be 
used in conjunction with separate liquid–phase correla-
tions for this purpose.
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c
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The Redlich–Kwong equation is adequate for calcula-
tion of gas phase properties when the ratio of the pressure 
to the critical pressure (reduced pressure) is less than 
about one-half of the ratio of the temperature to the criti-
cal temperature (reduced temperature):

2c c

p T
p T
≺  (8)

In 1972 Soave replaced the a/√ (T) term of the Redlich–
Kwong equation with a function α (T, ω) involving the 
temperature and the acentric factor. Α function was de-
vised to fit the vapor pressure data of hydrocarbons and 
the equation does fairly well for these materials.
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ω is the acentric factor for the species. Note especially 
that this replacement changes the definition of a slightly, 
as the Tc is now to the second power.

3.2. Peng–Robinson (PR) equation of state

The Peng–Robinson equation was developed in 1976 
in order to satisfy the following goals: The parameters 
should be expressible in terms of the critical proper-
ties and the acentric factor. The model should provide 
reasonable accuracy near the critical point, particularly 
for calculations of the compressibility factor and liquid 
density. The mixing rules should not employ more than 
a single binary interaction parameter, which should be 
independent of temperature pressure and composition. 
The equation should be applicable to all calculations of 
all fluid properties in natural gas processes. 
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In polynomial form:
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where ω is the acentric factor of the species and R is the 
universal gas constant. For the most part the Peng–Rob-
inson equation exhibits performance similar to the Soave 
equation, although it is generally superior in predicting 
the liquid densities of many materials, especially non-
polar ones. 

3.3. NRTL equation of state

The NRTL (non-random-two-liquid) equation, pro-
posed by Renon and Prausnitz in 1968, is an extension of 
the original Wilson equation. It uses statistical mechanics 
and the liquid cell theory to represent the liquid structure. 
These concepts, combined with Wilson’s local composi-
tion model, produce an equation capable of representing 
VLE, LLE, and VLLE phase behavior. Like the Wilson 
equation, the NRTL model is thermodynamically consis-
tent and can be applied to ternary and higher order sys-
tems using parameters regressed from binary equilibrium 
data. The NRTL model has accuracy comparable to the 
Wilson equation for VLE systems. The NRTL combines 
the advantages of the Wilson and van Laar equations. 
Also it is an activity coefficient model that correlates the 
activity coefficients γ with the composition of a mixture 
of chemical compounds, expressed by mole fractions x. 
For a binary mixture the following equations are used:
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τ12 and τ21 as well as α12 are suitable parameters. In most 
cases the parameters τ:
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and
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are scaled with the gas constant and the temperature and 
then the parameters Δg12 and Δg21 are fitted. The NRTL 
parameters are fitted to activity coefficients that have been 
derived from experimentally determined phase equilib-
rium data (vapor–liquid, liquid–liquid, and solid–liquid) 
as well as from heats of mixing.

3.4. Lee–Kesler (LK) equation of state

The Lee–Kesler correlation is a three parameter cor-
responding state method for estimating thermodynamic 
properties of pure, non-polar fluids. For the compress-
ibility factor Z, it takes the form: 

0 1Z Z Z= +ω  (26)

where Z0 is the compressibility factor for fluids of nearly 
spherical molecules ω is Pitzer’s acentric factor and Z1 
corrects for non-spherical intermolecular forces. Tables 
and charts provide values of Z0 and Z1, from which Z 
and, hence, the molar volume can compute. At sub critical 
temperatures, Z1 is typically negative (Z1 < 0), indicating 
that attractive forces dominate the non-spherical contri-
bution to Z. At supercritical temperature, Z1 is typically 
positive (Z1 > 0), indicating the dominance of repulsive 
forces that arise when molecules collide. Note that simple 
fluids have ω = 0.

4. Experimental data

Table 1 lists the range of data that are used to model 
the water properties [20]. The network inputs are tem-
perature and pressure while outputs are the specific 
volume, enthalpy and entropy.

Table 1
Minimum and maximum of data used to train the neural 
network (Perry, 1999)

Superheated vapor region

Properties min max

Temperature, °C 50 1300
Pressure, kPa 10 50000
Specific volume, m3/kg 0.001503 72.6025
Enthalpy, kJ/kg 1699.51 5409.7
Entropy, kJ/kg K 3.714 11.581

5. Neural network model development

Developing the neural network model to accurately 
predict thermodynamic properties of water requires its 
exposure to a large data set during the training phase. 
The back propagation method with SCG, LM, RP and 
GDA learning algorithm has been used in feed forward, 
single hidden layer network. Input layer neurons have 
no transfer functions. The neurons in the hidden layer 
perform two tasks: summing the weighted inputs con-
nected to them and passing the result through a non linear 
activation function to the output or adjacent neurons of 
the corresponding hidden layer. The computer program 
has been developed under MATLAB (R2006). Two thirds 
of data set is used to train each ANN and the rest have 
been used to evaluate their accuracy and trend stability. 
The number of the hidden layer neurons is systematically 
varied to obtain a good estimate of the trained data. The 
selection criterion is the net output MSE. The MSE of vari-
ous hidden layer neurons are shown in Fig. 3. As it can 
be seen the optimum number of hidden layer neurons is 
determined to be seven for minimum MSE.

Similarly the MSE of various training algorithms are 
calculated and listed in Table 2 for the obtained seven 
hidden layer neurons. As Table 2 shows, the Levenberg–
Marquardt (LM) and scaled conjugate gradient (SCG) 
algorithms have the minimum MSE.

Now the trained ANN models are ready to be tested 
and evaluated against the new data. Table 3 lists the 
various MSE of the network testing. According to this 
table the scaled conjugate gradient (SCG) algorithm is 
the most suitable algorithm with the minimum MSE. 
Consequently, SCG provides the best minimum error 
average for both training and testing of the network. Fig. 4 

Fig. 3. Determining the optimum number of neurons for some 
algorithms.
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Table 2
MSE comparison between different algorithms to ANN 
training

Algorithm MSE of network training 

trainlm
trainscg
trainrp
traingda
traingdm

0.005835
0.005668
0.007897
0.008218
0.008806

shows the SCG algorithm relative error fluctuations for 
superheated water. 

A scatter plot of typically measured experimental 
data against the ANN model predictions was shown in 
Fig. 5. It is obvious from this figure that the ANN pro-
vides results very close to process measurements. The 
predictions which match measured values should fall on 
the diagonal line. Almost all data lay on this line, which 
confirms the accuracy of the ANN model. ANN’s results 

Fig. 4. The relative errors between predicted data by ANN and 
experimental data; superheated water.

Table 3
MSE comparison of different algorithms to ANN testing

Algorithm MSE of network testing

trainlm
trainscg
trainrp
traingda
traingdm

0.02752000
0.00006794
0.01106300
0.00729000
0.00114900

Fig. 5. Evaluation of ANN performance; a scatter plot of typi-
cally measured experimental data against the ANN model for 
unseen data.

showed acceptable estimation performance for prediction 
of the water properties.

6. Results and discussion

The results show that the ANN predicts water proper-
ties very close to the experimentally measured ones. Fig. 6 
shows the scatter diagrams that compare the experimental 
data versus the computed neural network data (enthalpy, 
entropy and specific volume) over the full range of op-
erating conditions. As it may be seen, a tight cloud of 
points about the 45° line is obtained for the new data 
points. This indicates an excellent agreement between 
the experimental and the calculated data.

To check the performance of ANN model, its esti-
mation ability was compared with some classical ther-
modynamic models such as Lee–Kesler, NRTL, Soave–
Redlich–Kwong and Peng–Robinson. These comparisons 
for the specific volume of superheated water are shown 
in Figs. 7–14. Table 4 shows also the RMSE for the used 
best network in thermodynamic properties predicting.

The results show that NRTL equation of state in high 
pressure has variation than experimental data. Fig. 15 
shows the average relative errors of ANN simulations 
and equation of state calculations.

7. Conclusion

The ability of ANN to model and predict the super-
heated water properties have been investigated in this 
work. The MSE based analysis of the results, are used 
to verify the suggested approach. The results show a 
good agreement between experimental data and those 
predicted by ANN. It has been clearly shown that of the 
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Fig. 6. A comparison between ANN and experimental data for 
the superheated water.

Fig. 7. Comparison between ANN, experimental data and 
thermodynamic model results for volume of water (P = 10 kPa).

Fig. 8. Comparison between ANN, experimental data and ther-
modynamic models results for volume of water (P = 100 kPa).

Fig. 9. Comparison between ANN, experimental data and ther-
modynamic models results for volume of water (P = 500 kPa).
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ANN calculates the water thermodynamic properties 
based on the experimental data only, instead of using 
equations of state. Therefore it is not necessary to use ap-
proximate and complex analytical equations to calculate 
water thermodynamic properties. 
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Fig. 10. Comparison between ANN, experimental data and 
thermodynamic models results for volume of water (P = 
1600 kPa).

Fig. 11. Comparison between ANN, experimental data and 
thermodynamic models results for volume of water (P = 
2500 kPa).

Fig. 12. Comparison between ANN, experimental data and 
thermodynamic models results for volume of water (P = 
5000 kPa).

Fig. 13. Comparison between ANN, experimental data and 
thermodynamic models results for volume of water (P = 
8000 kPa).

Symbols

e — Difference between target data and simulation
F — Transfer function
g — Gradient
I — Input data
l — Learning rate
N — Number of data
t — Target data
x — Vector of weights
w — Connection weights
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Fig. 14. Comparison between ANN, experimental data and 
thermodynamic models results for volume of water (P = 
15000 kPa).

Fig. 15. Comparison between average relative error of ANN 
and some equations of state.

Table 4
RMSE between experimental and ANN estimated data

Thermodynamic property RMSE 

Specific volume 0.083638
Enthalpy 0.13496
Entropy 0.011937

Greek

α — Output of neuron
b — Bias weight
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