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A B S T R AC T

Pressure fi lters are popular in small municipal water treatment plants. One of the principles 
for designing and using the various units of water treatment plants is the ability of assign-
ing and predicting the performance of those units under different and various conditions that 
could be verifi ed by making pilot scale tests and could be modeled by means of available pro-
grams and software such as artifi cial neural network. The goals of this study that was con-
ducted to predict pressure fi lter effi ciency are: (1) evaluations of pressure fi lter effi ciency for 
turbidity removal under different conditions such as turbidity of raw water, fi ltration rate and 
fi lter pressure changes; (2) statistical analysis of results and determination of the minimum 
and maximum and maximum effl uent turbidity from fi lter; (3) application of Artifi cial Neural 
Network as a suitable model of fi lter effi ciency for turbidity removal; and (4) determination of 
considered model index for the prediction of similar fi lters effi ciencies. For approaching those 
goals, pilot designation, sampling and analysis were done for 1,300 samples, and the maximum 
and the minimum effl uent turbidity from fi lter were determined based on statistical analyses. 
Different structure of Artifi cial Neural Network were evaluated based on results, and the best 
structure was selected and its indexes was proposed for future studies; for example the best 
value for different network schemes like momentum coeffi cient and training rate were 0.5 and 
0.2, respectively.
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1. Introduction

Pressure fi lters, as one of the fi ltration alternatives, 
have many advantages such as high rate of treatment, 
less space occupied, low price. There are constructed 
using metal frameworks of cylindric shape, with a verti-
cal or horizontal confi guration. Pressure fi lters are not 
generally employed in large treatment works because 

of size limitations. They are popular in small municipal 
water plants.

In water treatment processes because of compli-
cated and nonlinear relationships between a number of 
physical, chemical and operational parameters, using 
of analytical models that have the ability to capture 
underlying relationships using examples of the desired 
input-output mapping is very suitable. Artifi cial Neural 
Networks (ANN) has been increasingly applied in the 
area of environmental and water resources engineering. 
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The main advantage of Artifi cial Neural Networks over 
physically based models is that they are data-driven. The 
ANN modeling approach does not require a description 
of how the processes occur in either the micro or macro 
environments, but only the knowledge of important fac-
tors that governed the process. This situation makes the 
ANN modeling approach a rational choice for process 
modeling and controlling in water treatment.

The removal of turbidity and color to produce water 
that is aesthetically acceptable to consumers is a very 
important component of water treatment. The purpose 
of this research is to study the performance of pressure 
fi lters on removing the turbidity from water according to 
several parameters such as different turbidities, varieties 
of fi ltration rates, and different pressures, and to use 
these results to introduce the artifi cial neural network 
model as a powerful tool in predicting the performance 
of full scale plants. The reason of using pressure fi lters in 
this research is the lack of enough investigations on this 
kind of fi lters in the past, and also the need for study-
ing the performance of these fi lters according to several 
parameters simultaneously. Moreover in this research, 
the neural network has also been used for modeling the 
results and providing an acceptable pattern to utilize the 
data, which as an important part of this research, will 
be analyzed further. The neural networks, which are 
inspired from the biological neural networks, are made 
of some parallel simple operational elements. The struc-
ture of neural networks are determined by the type of 
the connections between components, so we can build 
an artifi cial structure similar to the natural ones, and 
assigning the communication type between the compo-
nents by adjusting the value of each connection, known 
as connection weights. After adjusting, or in another 
term, training the neural network, a specifi c result can 
be obtained by providing a specifi c input. The network 
adapted due to input and target contrast, until the net-
work results and target do match [1,2]. Zhang and Stan-
ley developed ANN models for predicting treated water 
turbidity and color, respectively, at the Rossdale Water 
Treatment Plants (WTP) in Edmonton, Alberta, Canada 
[3]. Gagnon et al. developed an ANN model for predict-
ing the optimal alum dosage for the Ste-Foy WTP in Que-
bec, Canada [4]. Joo et al. developed a similar model for 
Chungju WTP in Korea, and van Leeuwen et al. devel-
oped an ANN model for the prediction of optimal alum 
dosage based on jar tests conducted on surface waters 
collected in southern Australia [5]. In all this studies, the 
raw water quality was more stable, not changing, e.g. 
when an unusual condition occurs, such as a heavy rain, 
the storm water brings high turbidity to water source. 
Based on these concepts, a project was initiated to study 
the potential capacity of ANN and Adaptive Network-
Based Fuzzy Inference System (ANFIS) process control 

in WTP. The adaptive ANFIS was developed by Jang [6]. 
Guan and Shang have been shown the ANN model is 
better than the ANFIS model to be used to achieve the 
optimal predicting model for the optimal PAC dosing 
in real time when the storm water brings high turbidity 
to water source; also have been shown two simulation 
tools, ANN and ANFIS, were developed that enabled 
operators to obtain real-time PAC dosage more easily [7].

2. Materials and method

2.1. Pilot plant

A pressurized pilot fi lter with a circular area, metal 
made with 4 mm thickness, was used in this research. 
Prior to use, the interior surface of the fi lter was painted 
with two layers of epoxy, and then, all of the mechanical 
parts such as infl uent and effl uent pipes, valves, barom-
eter, nozzles, etc., were installed in appropriate places. 
Give a fl ow diagram of the fi lter with all the auxiliary 
equipment-valves, pressure meters, pump etc. In Table 1, 
the characteristics of the fi lter used are shown. Charac-
teristics of the silica layers are provided in Table 2 [8].

The main variables in this research are the infl uent 
turbidity, fi ltration rate, and infl uent pressure. The infl u-
ent water with different turbidities and fl ows and opera-
tional pressures were studied. The characteristics of the 
variables are provided in Table 3 [8].

Table 1
The characteristics of the fi lter used in this research

Tem Unit Value

Filter diameter cm 60

Filter kind – Steel

Bed height cm 105

Bed material – Silica

Total fi lter height cm 140

Maximum pressure m 30

Allowable head loss m 2–4

Number of nozzles per 
square meter

Number 50

Table 2
The characteristics of the fi lter layers

Layer number Layer thickness (cm) Grain sizes (mm)

1 60 0.4–0.5

2 15 0.8–1.2

3 10 3–10

4 10 10–25

5 10 25–39
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The sampling and necessary tests examining were 
performed due to standards method mentioned in 
“Standard Methods” [9] and by using the portable 
turbidity meter, model HACH-2100, in seven months 
period, and under different conditions based on infl uent 
variables. All samples were collected after backwashing 
the fi lter and putting it in the circuit and in the opera-
tional period, in the time period 10–630 min. The accept-
able head loss to begin the backwashing process was 
between 2 and 4 m, which 0.2 m was due to constant 
head loss and the remainder was caused in the opera-
tional period. After analytical calculations and analysis, 
the effl uent turbidities from the fi lter, which were 
exceeded 1,300 samples, were sorted in a minimum and 
maximum probable value [8].

2.2. Artifi cial Neural Network

Neural networks are composed of simple elements 
operating in parallel. These elements are inspired by bio-
logical nervous systems. As in nature, the network func-
tion is determined largely by the connections between 
elements. Commonly neural networks are adjusted, or 
trained, so that a particular input leads to a specifi c target 
output. The back-propagation neural network (BPN) is 
the most representative learning model for the ANN. The 
feed-forward, back-propagation architecture was devel-
oped in the early 1970s by several independent sources 
(Werbor; Parker; Rumelhart, Hinton and Williams).
This network is used more than all others combined. 
It is used in many different types of applications. This 
architecture has spawned a large class of network types 
with many different topologies and training meth-
ods. Generally, the neural network is created for two 
phases, commonly referred to as the ‘training phase’ 
and the ‘production phase’. The network parameters (or 
weights) are initially set to random value. During the 
training phase sample data containing both–inputs and 
desired outputs–are processed to optimize the network’s 

output in order to minimize deviation. The neural net-
work is operated using back-propagation networks. 
Back-propagation neural networks generally have a 
layered structure with an input layer, an output layer, 
and one or more hidden layers. Units in the input layer 
represent the possible infl uential factors that affect the 
network outputs and have no computation activities, 
while the output layer contains one or more processing 
units that produce the network outputs. Layers between 
the input and output layer are called hidden layers and 
may contain a large number of hidden processing units. 
As the name of this kind of network indicates, propa-
gation takes place in a feed-forward manner from the 
input layer to the output layer, compares the network 
outputs with known targets, and propagates the error 
back to the network using a learning mechanism to 
adjust the weights and biases. Nodes in the input layer 
represent possible infl uential factors that affect the net-
work outputs and have no computation activities, while 
the output layer contains one or more nodes that pro-
duce the network output. Hidden layers may contain a 
large number of hidden processing nodes [10]. Simple 
processing unit of an artifi cial neural network is shown 
in Fig. 1.

Among the several algorithms used in artifi cial neu-
ral networks, the “Multilayer Perspetron Algorithm”
with “Back Propagation Training Algorithm” is preva-
lent in engineering fi elds. This algorithm is used in 
this research to update the parameters used in artifi cial 
neural network. This method works by minimizing the 
errors while adjusting the network parameters. In this 
method, the mean square of errors is used as a scale 
to measure the teaching data, and those parameters 
minimizing the error, are then measured [1]. In neural 
networks and in the training period of the network, 
the mean square of errors and nomination coeffi cient, 
which are defi ned by Eqs. (1) and (2), are used, while 
during the test period, the mean error percentage, as is 
provided in Eq. (3), is used.

Table 3
The characteristics of the input parameters

Turbidity [NTU] Filtration rate
(m3/m2 day)

Pressure (mwc) Turbidity (NTU) Filtration rate
(m3/m2 day)

Pressure
(mwc)

10 8.5 0.2 100 76.5 1.5

11 13 0.2 125 85 2

12 17 0.2 165 102 2.8

13 24 0.2 285 143 4.5

15.7 25.5 0.255 390 153 5.5

33.3 42.5 0.5 600 198 8.5

50 56 0.8 790 221 10

90 63 1 – 306 15.5
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where MSE = mean square errors; R2 = nomination coef-
fi cient; MPE = mean error percentage; p = number of 
input data; j = counter of data in process; t = actual out-
put and o = predicted output.

Data used as input to an artifi cial neural network, 
should be in a numeral form and in a specifi c range, like 
(0, 1) or (−1, 1) [1, 7]. To achieve this goal, the beneath 
equations are used sequentially to normalize the data 
for an artifi cial neural network. By using these terms, 
the output results will also be in the range of (0, 1) or 
(−1, 1), which can be converted to their original form by 
using the inverse type of Eqs. (4) and (5). The variables 
used in Eqs. (4) and (5) are defi ned as below.

x
x x

x xN = min

max mx in
 (4)

x
x x

x xN = 2 1
x x −min

max mx in
 (5)

where xN = the normalized data; xmin = the minimum 
value in whole data; x = the unnormalized data and 
xmax = the maximum value in whole data.

In this research, Eq. (5) has been used to normalize 
the data, due to use of Tan-Sigmoid transfer func-
tion. The input data used in neural network pattern 

include input turbidity, output turbidity including 
minimum and maximum probable values, input pres-
sure, filtration rate, and network outputs from filter 
including minimum and maximum probable values 
of turbidity.

The most important stage in ANN is selection of 
model architecture. The neural network used in this 
study possesses one input layer, two hidden layers and 
one output layer. The input data are being processed 
while passing through the fi rst hidden layer, and the 
results are used as the input data for the next hidden 
layer, and after being analyzed for fi nal processing, are 
passed to the last layer. Data come out from the last 
layer are known as the output data. A schematic of the 
network architecture used is presented in Fig. 2. While 
developing an artifi cial neural network model, available 
data are divided into two groups. One group is used for 
network training and the remaining is used for investi-
gating the network generality ability. The TRAINGDM 
training function in MATLAB has been used in this 
research. A summary of used network characteristics is 
presented in Table 4 [1,2].

Fig. 1. Mathematical model of a neuron.

Fig. 2. Schematic architecture of artifi cial neural network in 
use.

Table 4
The characteristics of artifi cial neural network in use

Item Characteristic

Number of hidden layers Two layers

Total number of layers Four layers

Network algorithm Multilayer Perceptron

Training algorithm Back propagation

Transfer function Tan-Sigmoid

Training function TRAINGDM
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 3. Results and discussion

After setting up the fi lter successfully and sampling 
the effl uent from the fi lter for different input conditions 
such as different turbidities, infl uent fi ltration rate, and 
the fi lter pressure, the output results were statistically 
analyzed. These results, which are determined according 
to 1,300 samples in different situations, have been used 
randomly as the artifi cial neural network inputs, after 
being normalized by Eq. (5) [8]. A fi gure with raw data, 
i.e. turbidity versus operation time are missing; further-
more, the effect of various operation parameters is not 
shown in the existing fi gures.

The goal of using artifi cial neural network in this 
study is to provide a pattern for predicting the minimum 
and maximum values of probable turbidity in outputs of 
pressure fi lter systems. The network used for this pat-
tern contains three types of input parameters including 
fi ltration rate, infl uent turbidity, and fi lter pressure and 
also two output parameters including minimum and 
maximum probable turbidity. In this study, the MATLAB
software was used for training and testing the data in 
the artifi cial neural network [1]. To create different situ-
ations and fi nding the optimum condition, the neuron 
numbers in the training layer was increased from 8 to 15 
to obtain the most accurate outputs. After successfully 
training the network with a fraction of data, the network 
was tested with the remaining data and statistical ana-
lyzes was fi nally used to compare the obtained results. 
After investigating and controlling different neural net-
work conditions, such as number of hidden layers and 
number of neurons in each, 3-11-11-2 was determined as 
the best network structure, in which 3 and 2 are referred 
to input and output layers variables, respectively, and 
11-11 is the number of neurons in two hidden layers. 
Among 68 sets of data which were obtained by statisti-
cally analyzing the laboratory data, 59 sets were used 
randomly for training and verifying procedures and the 
remaining were used for testing the trained network 
errors. Moreover, the best values of momentum coeffi -
cient optimum range and training rate coeffi cient were 
determined after investigating different conditions, to 
be 0.5 and 0.2, respectively. These values were used in 
different structures, such as the fi nal structure. To deter-
mine the optimum range of each of these coeffi cients, 
each was evaluated in the range of 0.1–0.9. In Table 5, 
the results of investigating some of different structures 
of artifi cial neural network are provided. The results 
for the best conditions are also provided in Table 6. 
Diagrams were plotted according to these results, shown 
in Figs. 3–6. In Fig. 3, effi ciency changes (error value) is 
shown for artifi cial neural network training and verify-
ing stage. In Figs. 4–6, the correlation diagrams for train-
ing, verifying, and network testing stages, have been 
shown, and the experiment results are compared to the 

Table 5
The results of investigating some of different structures of 
artifi cial neural network in test

Network 
structure

Nomination 
coeffi cient (R2)

Mean error 
percentage for 
maximum
output turbidity
(MPE) (%)

Mean error 
percentage for
minimum
output turbidity 
(MPE) (%)

3-11-11-2 0.987 4.2 5.3

3-10-10-2 0.974 6.1 7.2

3-9-9-2 0.93 6.2 8.1

3-8-6-2 0.90 9.3 11.2

3-8-8-2 0.65 22.3 29.2

Table 6
The results of the best pattern from investigating several 
neural network structures

Item Characteristic

Network structure 3-11-11-2

Training rate 0.2

Momentum coeffi cient 0.5

Number of training cycles 2,000

Transfer function Tan-Sigmoid

Training period 41 s

Target error value 0.0001

Fig. 3. Effi ciency changes in training and verifying stage.

predicted results from the artifi cial neural network in 
each stage. The dispersal diagrams show that the neural 
network model has been truly trained and has a high 
accuracy in predicting the minimum and maximum 
probable turbidities in output.
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Fig. 4. Correlation diagrams for training stage.

Fig. 5. Correlation diagrams for verifying stage.

Fig. 6. Correlation diagrams for testing stage.

4. Conclusions

The beneath results were obtained from this study, 
in which the pressure fi lters effi ciency and providing a 
pattern to show this effi ciency due to artifi cial neural 
network, was investigated. Whereas the most important 

feature of a neural network with a high generality abil-
ity, is the ability of predicting the unseen numeral out-
puts accurately, we truly benefi ciated this feature of an 
artifi cial neural network, and the multilayer Perceptron 
structure with Back Propagation Training Algorithm has 
been shown to be a useful tool for predicting the output 
turbidity from pressure fi lters. In this study several net-
work architectural parameters such as momentum coef-
fi cient and training rate were investigated in different 
conditions. The best conditions were 0.5 and 0.2, respec-
tively, and several neural network structures with differ-
ent number of neurons were investigated to determine 
the optimum condition. The 3-11-11-2 structure for the 
artifi cial neural network was fi nally determined as the 
optimum pattern. According to training and testing dis-
persal diagrams, the output turbidities were predicted 
with a high accuracy, and the slop of diagrams and of 
interpolating functions were close to 1 and 0, respec-
tively, showing the suitability of this pattern for pre-
dicting the pressure fi lters performance. It is concluded 
from the optimum pattern dispersal diagrams that the 
provided neural network is truly trained and has a high 
accuracy in predicting the minimum and maximum 
probable turbidities in output. The low values of errors 
for this model in several stages such as training, testing, 
and verifying, represents the high accuracy of experi-
mental results and selection of appropriate variables, 
which can be used by other researchers in any other 
places with the same conditions of this pattern.
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