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ABSTRACT

In this study, to design an efficient control system for a Reverse osmosis (RO) desalination
plant, a model predictive control (MPC) was established and compared to the obtained con-
trol system based on proportional–integral–derivative (PID) controllers. In order to control
two controlled variables, namely permeate flow rate and conductivity, two PID controllers’
parameters were tuned based on the internal model control (IMC) rule and an MPC con-
troller was established using the dynamic matrix control algorithm. The control perfor-
mance assessment of both PID and MPC controllers were carried out using prediction error
approach and their control performances were compared to that of the PID controllers
which tuned by Ziegler–Nichols rule from the literature. The results showed that among the
designed controllers, the PID controllers tuned by IMC method are more capable than other
controllers to control the considered RO desalination plant.

Keywords: Control performance assessment; Model predictive control; Proportional–
integral–derivative; Performance evaluation; Reverse osmosis

1. Introduction

Reverse osmosis (RO) membrane desalination has
emerged as the leading method for water desalination
due to the low cost and energy efficiency of the
process. The performance of the RO plants is quite
sensitive to the quality of the feed and plant operating
conditions. This means that an RO plant requires a
very efficient pre-treatment process and an accurate
control system to maintain its operation close to the
optimum conditions, which results in increased

productivity and prolongs the life of the membranes
due to the reduction of membrane fouling [1].

Proportional–integral–derivative controller (PID)
and model predictive control (MPC) are two control
strategies which are widely used to control the reverse
osmosis desalination systems [2]. Control systems for
reverse osmosis desalination plants based on PID and
MPC controllers have been studied in the literature in
particular for seawater desalination plants [3,4].

The control performance evaluation of the con-
trollers in the sea water desalination process is one of
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the best ways to compare the performance of the
controllers which are used to control the RO systems.
Aiming at evaluating controller performance from
route closed-loop data, control performance assess-
ment (CPA), as a relatively young branch of research,
has attached growing interest in control system
monitoring and maintenance in the past few years.
Based on the variance of output error, CPA techniques
are used to find how current controller performance
compares to the ideal control performance [5].
Recently, a few studies have been focused on using
CPA techniques for assessing the control performance.

Therefore, this study contributes to use the CPA
techniques to assess the control performance of the
RO system controller and comparing the control per-
formance potentials of controllers in order to select
the best one in the RO desalination plant. This paper
consists of three major parts. In the first part, two-in-
put two-output (TITO) RO system was decoupled to
two individual single-input single-output (SISO) sys-
tems. Two PID controllers’ parameters were tuned for
each control loop based on internal model control
(IMC) rule. The CPA technique was used to compare
the capability of the PID controller tuned by IMC
and PID controller tuned by Ziegler–Nichols rule
from the literature [6–8]. In the second part, a MPC
controller was established and the CPA technique
was used to determine the optimal tuning parameters
of MPC controllers with different output weighing
matrices. In the third part, the capability of MPC and
PID controllers for RO desalination plant were
compared together and the best one was selected
among them.

2. Material and methods

2.1. RO plant description and model

Fig. 1 shows the schematic diagram of RO plant.
The sea water is first pre-treated to avoid the mem-
brane fouling in the pre-treatment system and then is
passed through the membrane using a high pressure
pump. Pure water permeates through the membrane
and concentrated water (brine) is rejected back to the
sea or sent to an energy recovery device.

Four RO system parameters which should be mon-
itored and controlled for proper RO system perfor-
mance are: feed pressure and pH as well as permeate
conductivity and flux. In addition to these variables,
there are others which may need to be monitored and
controlled such as chlorine concentration and feed
temperature [4]. In this study, the empirical model
presented by Riverol and Pilipovik [9] is used to
model the RO process. This model addresses two con-
trol cases: first the permeate flow rate is controlled by
adjusting feed pressure and second, both the flow rate
and conductivity of permeate are controlled by adjust-
ing the feed pressure and pH [2]. As shown in Fig. 1,
two valves are available to control the flow rate and
conductivity of permeate, namely manipulating flow
rate of chemicals at the pre-treatment unit and manip-
ulating flow rate of the brine at the brine stream. The
Laplace domain form of the linear model for consid-
ered RO plant is given by Eqs. (1)–(5) [2].
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Fig. 1. Schematic of RO process.

I. Janghorban Esfahani et al. / Desalination and Water Treatment 57 (2016) 26692–26699 26693



G11 ¼ 0:002 0:056 s þ 1ð Þ
0:003 s2 þ 0:1 s þ 1

(2)

G12 ¼ 0 (3)

G21 ¼ �0:51 �0:35 s þ 1ð Þ
0:213 s2 þ 0:7 s þ 1

(4)

G22 ¼ �57 0:32 s þ 1ð Þ
0:6 s2 þ 1:8 s þ 1

(5)

where F and C are permeate flow rate and conductiv-
ity, and P and pH are feedwater pressure and pH.
The system works in a range of p = 800–1,000 kPa,
F = 0.85–1.25 m3/h, pH 6–7, and C = 400–450 μs/cm.

2.2. PID controller and tuning rule

The classic PID law is normally given by Eq. (6):

u ðsÞ ¼ K 1 þ 1

s Ti
þ s Td

� �
e ðsÞ (6)

where the controller parameters are the proportional
gain K, integral time Ti, and derivative time Td [10].
The tuning parameters of the PID controllers should
be set with in-depth consideration of the process
dynamic. One of the well-known empirical tuning
methods is the Ziegler–Nichols empirical formula.
Table 1 lists the modified Ziegler–Nichols settings for
the two individual control loops calculated by Alatiqi
et al. [11]. IMC is a controller design approach that
uses the process model in the controller implementa-
tion [12]. In this study, IMC rule which is listed in
Table 2 is used to tune the PID controllers for two
individual control loops. In the considered RO pro-
cess, since the G12 element is zero, the matrix of the
process is an upper triangular which means the

system has one way interaction. It means that in the
RO system changing the pH of the feedwater has no
effect on the permeate flow rate, while changing the
feedwater pressure has effect on both the permeate
flow rate and conductivity. In order to compensate the
effect of the interaction, the additional controller
which called decupler should be added to the system
for changing the TITO system to two independent
SISO control loop which is calculated by Eq. (7):

d1 ¼ G21

G22
(7)

2.3. Model predictive control (MPC)

Model predictive control has two major advantages
compared to the decentralized control strategy. First,
it is a multivariate control strategy which makes it
more suitable for multiple inputs multiple outputs
(MIMO) plant where strong interference exists among
the process variables. The second selling point is that
it can explicitly take constraints into account. A com-
prehensive review [13] is suggested for a better under-
standing of the evolution of MPC technique.

Consider the following quadratic cost function
used in the MPC algorithm:

J ¼
XHp

i¼1

ðŷðk þ iÞ � rðk þ iÞÞTQðŷðk þ iÞ � rðk þ iÞÞ

þ
XHu

i¼1

ðuðk þ iÞ � u0ÞTRuðuðk þ iÞ � u0Þ

þ
XHu

i¼1

Duðk þ iÞTRDuDuðk þ iÞ

(8)

where k is the sampling instant, ŷ is the predicted out-
put variable, r is the set point, u is the input variable,
Δu is the input rate variable, u0 is the steady state
input value, Hp the prediction horizon, Hu is the con-
trol horizon, Q is the output weighing matrix, Ru is
the input weighing matrix, and RDu is the input rate
weighing matrix.

Table 1
Modified Ziegler–Nichols settings for the two individual
control loops [11]

Loop P PI PID

Gp11 Kc 596 536 715
τI – 0.23 0.14
τd – – 0.03

Gp22 Kc −0.06 −0.05 −0.07
τI – 1.81 1.09
τd – – 0.27

Table 2
IMC rules used to tune the PID controllers [12]

KpK Ti Td Tf

ISE optimal 3Lþ 2k
2L2 þ 4kLþ k2

3L þ 2k 2L Lþ kð Þ
3Lþ 2k

Lk2

2L2 þ 4kLþ k2

IAE optimal 2
Lþ k 2 L þ kð Þ L Lþ 2kð Þ

2ðLþ kÞ –
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The constraints can be expressed as follows:

ymin � y � ymax

umin � u � umax

Dumin � Du � Dumax

(9)

2.4. Control performance assessment

CPA approaches can be classified into the several
benchmarkings: MVC benchmarking, linear quadratic
Gaussian benchmarking, MPC benchmarking, user
specified benchmarking, historical data benchmarking,
and prediction error approach (PEA) [14]. Among
these methods, PEA is one of the most promising ones
which describe in detail as follows:

For a multivariable process, the closed-loop output
driven by a white noise can be expressed as a time
series model (assuming the set point is zero):

Yt ¼ Gclat (10)

where Gcl is the closed-loop time series model and at
the white noise signal. This model can be easily
obtained using the common identification procedure.

A series expansion of Eq. (10) results in the infinite
order moving average model:

Yt ¼
X1
k¼0

Fkaðt�kÞ

¼ F0at þ F1 at�1 þ � � � þ Fi�1 at�ði�1Þ þ Fi at�i þ � � �
(11)

where F0, F1, …, Fi are the impulse response matrices
of the closed-loop time series model.

Then, the optimal ith step prediction can be
obtained as:

Ytjt�i ¼ Fi at�i þ Fiþ1 at�ðiþ1Þ þ � � � (12)

and its prediction error:

etjt�i ¼ Yt � Ytjt�i ¼ F0 at þ F1 at�1 þ � � � þ Fi�1 at�ði�1Þ
(13)

The covariance of the prediction error can be
calculated as:

covðetjt�iÞ ¼ F0 Ra F
T
0 þ F1 Ra F

T
1 þ � � � þ Fi�1 Ra F

T
i�1

(14)

Define a scalar measure si as:

si ¼ trðcovðetjt�iÞÞ
¼ trðF0 Ra F

T
0 þ F1 Ra F

T
1 þ � � � þ Fi�1 Ra F

T
i�1Þ (15)

and closed-loop potential pi as:

pi ¼ s1 � si
s1

(16)

Finally, a CPA index expressed as pi is obtained. This
index indicates how much performance potential can
be expected if process has a time delay i. Faster decay
of the potential to zero indicates less possibility to
improve the performance of the related controller.
Therefore, controller parameters can be tuned by
comparing the decay rates of pi.

2.5. The procedure for comparing the performance of RO
controllers

The frame work for comparing the performance of
the RO controllers including PID controllers and MPC
controller is shown in Fig. 2. First, the plant model
was used, with P, and pH as manipulated variables
and F, and C as controlled variables. Second, two indi-
vidual control loops were defined by calculating the
decouplers for TITO RO system. Third, two PID con-
troller were tuned for two SISO control loops using
IMC method. Fourth, the performance of the tuned
PID controllers by IMC method was compared to the
performance of the PID controllers tuned by Alatiqi
[11] which used ZN method. Sixth, the MPC controller
was tuned based on the tuning rules suggested by

Fig. 2. Frame work for comparing the controllers of the
RO system.
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Gurban and Andreescu [12] and the best weights for
manipulated and controlled variables were defined
using CPA. Seventh, the set point tracking response of
the PID and MPC controllers was compared to define
the best controller for RO system.

3. Results and discussion

The tuned parameters of the PID controllers
obtained by IMC tuning method as well as tuned
parameters obtained by ZN tuning method are shown
in Table 1. CPA technique is used to compare and
assess the performances of each tuned PID controller.
Fig. 3 shows the comparison of the individual overall
closed-loop potential between the two pairs of the PID
controllers, of which one of them is tuned by IMC and
other pair is tuned by ZN tuning method. As shown
in Fig. 3, there are potentials for all of four tuning
cases, especially when the time lag is small. For the
first control loop which controls the permeate flow

rate by controlling the feed pressure, the closed-loop
potential of the PID controller with tune IMC1 is less
than that of the PID controller with tune ZN1. It

means that the PID controller with tune IMC1 can
achieve better control performance than ZN1. For the
second control loop which controls the permeate con-
ductivity by controlling the feedwater pH, similar to
the first control loop, the closed-loop potential of the
PID controller with tune IMC2 is less than that of the
ZN2. Overall, the PID controllers tuned by IMC
method have lower potential to be improved com-
pared with ZN method.

The parameters of the MPC controller were tuned
using the procedure presented by Shridhar and
Cooper [15]. The sampling time was chosen as 0.1 s.
The prediction horizon and the control horizon were
set to 20 and 1, respectively. Tuning the weighting
matrixes was done as follows: first, the input weight-
ing matrix and the input rate weighting matrix were
set as zero. Since the output weighting matrix Q is
important to the performance of output variables,
therefore, the following six tuning scenarios with dif-
ferent Q matrix were considered:

where the first weight in the diagonal matrix is used
for controlling permeate flow rate (F) and second one
is used for controlling permeate conductivity (C).

Fig. 3. Closed-loop potential from PID controllers tuned by
IMC and ZN tuning methods.

Fig. 4. Closed-loop overall potentials corresponding to the
eight MPC tuning scenarios.

QTune1 ¼
10 0

0 1

� �
QTune2 ¼

1 0

0 10

� �
QTune3 ¼

100 0

0 1

� �

QTune4 ¼
1 0

0 100

� �
QTune5 ¼

1000 0

0 1

� �
QTune6 ¼

1 0

0 1000

� � (17)
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Among the six tuning scenarios, tunes 1, 3, and 5 give
more control effort to the second output variable,
which means to make the permeate flow rate have
higher set point tracking and disturbance rejection
performance. On the other hand, tunes 2, 4, and 6 con-
centrate more on the permeate conductivity.

Fig. 4 shows the overall closed-loop potentials for
different MPC tuning scenarios. As shown in Fig. 4
among MPC controllers tuned by scenarios 1, 3, and 5
which have the higher weight on the permeate flow
rate, the MPC controller with tune 3 has less overall
closed-loop positional. Also, among the MPC con-
trollers with tunes 2, 4, and 6 which have the higher
weight on the permeate conductivity, both MPC con-
troller with tunes 4 and 6 have same closed-loop
potential which is less than that of the tune 2. Overall,

among the six tuning scenarios, the MPC controller
with tune 3 has less positional value. Therefore, three
more scenarios for tuning the MPC controller were
considered which have same output weighting matrix
with scenarios 3 and different input weighting matrix
as follow:

RuTune7 ¼ 0 0
0 1

� �
RuTune8 ¼ 1 0

0 0

� �
(18)

where the first weight in the diagonal matrix is used
for manipulating the feed pressure (P) and second one
is used for manipulating the feedwater pH. As shown
in Fig. 4, the MPC controller with tune 7 has less

Fig. 5. Comparison of disturbance rejection performance using PID-IMC and MPC controllers for controlling to controlled
variables: (a) permeate flow rate, (b) and (c) permeate conductivity.
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value of the closed-loop potential. Therefore, the MPC
controller with tune 7 which has the QTune3 as the out-
put weighing matrix and RuTune7 as the input weighting
matrix is the best controller for considered RO plant.

Since among the two tuned PID controllers, the
PID controller tuned by IMC method has higher per-
formance than that of the controller tuned by ZN
method, therefore, the variations of the output vari-
ables corresponding to the PID controller tuned by
IMC method and MPC controller tuned by scenarios 7
were compared together with unmeasured distur-
bance. As shown in Fig. 5(a), the PID controller indi-
cates faster response and the overshoot to the set
point change is very small than the MPC controller.
The variations of the permeate conductivity corre-
sponding to the PID and MPC controllers are shown
in Figs. 5(b) and (c), respectively. As shown in these
figures, the disturbance rejection by the PID controller
is very fast as the magnitude of the permeate conduc-
tivity variations is too smaller than that of the MPC
controller. Therefore, the control performance of the
PID control in disturbance rejection of the permeate
flow rate is almost similar to the MPC controller,
while the control performance of the PID control in
disturbance rejection of the permeate conductivity is
very higher than that of the MPC controller.

4. Conclusions

In this study, CPA technique was used to compare
the PID and MPC controllers for controlling an RO
desalination plant. The following conclusions can be
drawn:

(1) The control performance of the PID controller
tuned by internal control model (IMC) was
higher than that of both PID controller tuned
by Ziegler–Nichols method and MPC
controller.

(2) The capability of the PID controller tuned by
IMC method in disturbance rejection for the
permeate flow rate is similar to the MPC con-
troller, while its capability in disturbance rejec-
tion for the permeate conductivity is very
higher than that of the MPC controller.
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