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ab s t r ac t
In this study, permeability variations of clay soil and removal rates of ions presented in the leachate are 
determined. Penalized linear regression (Lasso) and support vector regression methods are applied 
in order to model the relationship between the metal ions and the permeability. For this purpose, 
leachate is collected from Sanitary Landfill at Şile-Komurcuoda, Istanbul. Permeability of samples is 
determined via consolidated clays which are compacted via standard methods. The concentrations 
of Fe2+, Mn2+, Zn2+, Cu2+ and Pb2+ ions in influent and effluent of reactor are anayzed and the removal 
rate of these ions are calculated in order to detect removal ability of clay soil. An overall evolution of 
Fe2+, Mn2+, Zn2+, Cu2+ and Pb2+ parameters is that removal rate of clay soil which was compressed with 
standard methods and consolidated was found higher than that of clay soil compressed with standard 
compaction method. For prediction accuracy and interpretation purposes, two methods are consid-
ered for modelling the data. Both methods show good generalization capabilities.

Keywords:  Leachate; Metal ions; Permeability; Standard compaction; Consolidation; Lasso regression; 
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1. Introduction

Groundwater and surface water are usually used for 
drinking water. However solid waste landfill areas produce 
leachate that may contain high concentration of organic 
and inorganic contaminants. Thus these contaminants pol-
lute groundwater and surface waters. Compacted clay soils 
are used in solid waste landfill areas due to their low per-
meability and cost effectiveness, and they must have a low 

permeability to prevent the leakage of leachate from the solid 
waste into the groundwater [1].

Several studies have been carried out to investigate how 
soil and liquid properties control the permeability of clay soil 
liners [2–5]. In general, the permeability of soils decreases 
with increasing fine particle content [6]. The decrease in per-
meability can also be related to the exposure to domestic waste 
leachate due to bacterial clogging, layer expansion, some ions 
adsorption and changes in the arrangement of the soil parti-
cles due to the effect of ion charges [7]. It has been mentioned 
in various studies that leachate may also cause changes in the 
clay soils’ chemical composition, mineral composition and 
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physical properties of compacted clay soils. This is related to 
the increase of the permeability of compacted clay soil [8,9]. 
Some different studies reported that pure, reagent-grade 
organic chemicals may cause large increases in permeability 
of compacted clay soil [10–12]. Another study claims that cer-
tain chlorinated hydrocarbons of solvent type attack integ-
rity of clay liners, causing them to be highly permeable [13]. 
Concentrated organic chemicals can increase permeability of 
compacted clay due to reduction in thickness of diffuse dou-
ble layer that surrounds particles of clay soil. Various interde-
pendent factors, which affect clay soil permeability, include 
density of soil, amount of water content used in compaction, 
void ratio, and composition of clay, structure of soil and char-
acteristics of leachate used. Permeability of compacted soil 
with constant water content and density depends on grain 
size distribution [10,14]. Although, there are several studies 
in the literature, modelling of clay samples which used in 
landfill areas to prevent leachate leakage is not investigated.

Different statistical learning methods such as multi-
ple linear regression and support vector regression (SVR) 
are successfully applied in various fields of environmental 
engineering. Aya et al. [15] investigated the fouling effects 
of Fe2+ and Mn2+ on membrane in a submerged membrane 
system for various concentrations of Fe2+, Mn2+, fulvic acid 
and iron hydroxide using SVR. The outcomes from the study 
of Ahmadi et al. [16] showed that the least squares support 
vector machine model can predict the SiO2 solubility in the 
steam of boilers with high accuracy. For the classification 
and identification of pigmented soil bacteria Kumar et al. [17] 
used Raman spectroscopy. The minimally invasive nature of 
the technique coupled with a robust chemometric tool like 
radial kernel SVM makes the method ideally applicable 
for real-time taxonomic analysis of different cultivable and 
uncultivable bacteria from many environments.

In this study, the permeability of clay soils and the 
removal rate of some metal ions which are present in leach-
ate are investigated. Clay soil sample and leachate are taken 
from Şile-Komurcuoda Sanitary Landfill Sites. Clay soil is 
used in two formats; one is only compacted and the other one 
is both compacted and consolidated. Penalized linear regres-
sion and SVR methods are applied in order to model the rela-
tionship between these metal ions and the permeability. The 
Lasso method used as a variable selection method and the 
interpretation accuracy of the SVR model is improved.

2. Material and methods

2.1. Physico-chemical properties of the clay

Soil samples had brownish-gray color. The 
Şile-Komurcuoda landfill site soil samples contain kaolinite 
68%–71%, free quartz 6%–9%, illite 15%–18% and others 
2%–5%. The kaolinite and illite are considered to be true 
clay soil minerals. The soil samples have the permeability 
k = 1 × 10–8 cm/s and a discharge loss of 8.5%–9%, and water 
of 0.2%–0.4% [18–21]. Also, the experiments were made with 
dry unit weight which is 1.485 t/m3.

2.2. Properties of the leachate

The properties of the leachate were determined. The 
results of the characterization studies conducted on the 

leachate from the Şile-Komurcuoda Landfill Site are pre-
sented in Table 1. Leachate has dark brown color and very 
small granules. It also contains large amounts of organic, 
inorganic contaminants and a high concentration of metals.

2.3. Standard proctor compaction, consolidation test and effluent 
analysis 

Compaction is performed using clay from Komurcuoda 
taken with the method ASTM D698 [22]. Consolidation test 
is performed in the lab according to ASTM D2435-04 [22]. In 
order to determine the removal rate of the compacted clay, 
compacted and consolidated clay soils, some metal ions have 
been measured according to Standard APHA Methods [23].

2.4. Experimental setup

Constant head permeability test was carried in this 
study [18]. Reactors which are made of plexiglass materials 
(Fig. 1) were prepared and filled with compacted clay soil 
sample, and compacted and consolidated clay soil sample, 
respectively. Real image and schema of experimental setup 
were given in Fig. 1, and all experiments were conducted at 
room temperature (24°C).

2.5. Lasso and SVR analysis 

For prediction accuracy and interpretation purposes, 
two methods are considered for modelling the data. First 
method is the least absolute shrinkage and selection operator 
(Lasso). This method combines the least-squares loss with an 
L1-constraint. The Lasso is governed by a tuning parameter, 
lambda that controls how much we are favoring sparsity of 
our solutions relative to the fit on our training data. Relative 
to the least-squares solution, this constraint has the effect of 
shrinking the coefficients, and even setting some to zero. In 
this way it provides an automatic way for applying model 
selection in linear regression. Moreover, unlike some other 
criteria for model selection, the resulting optimization prob-
lem is convex, and can be solved efficiently for large prob-
lems. Next, a second method for regression analysis, SVR is 
presented. Hyper-parameter selection is discussed.

3. Results and discussion of modelling analysis 

“Compacted clay contaminated sample” and 
“Compacted-consolidated clay contaminated sample” are 
high-dimensional datasets with many collinear regressors. 
Therefore, to generalize as accurately as possible, a penalized 

Table 1
Properties of leachate

Parameter/averages 2014

pH 7.7
Fe2+ (mg/L) 65.3
Mn2+ (mg/L) 1.33
Zn2+ (mg/L) 2.38
Cu2+ (mg/L) 1.5
Pb2+ (mg/L) 0.54
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linear regression method is preferred which is the Lasso [24]. 
This method penalizes the coefficients by adding their L1 
norm to the cost function, as follows:

RSSLasso = − +
= =
∑ ∑
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i i
j
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jy x
1

2

1

( )τβ λ β  (1)

In Eq. (1) RSSLasso is the cost function (residual sum of 
squares) that needs to be minimized, yi are the actual values, 
xi
τβ  are the predicted values. The model is parameterized 

by the vector of regression weights β β β= … ∈( , , )1 p
pR . λ is 

the tuning parameter that balances the fit of the model and 
sparsity. The Lasso produces sparse parameters; most of the 
coefficients will become zero, and the model will depend 
on a small subset of the features. When explanatory vari-
ables are correlated, the Lasso will shrink the coefficients 
of one variable toward zero. The λ parameter controls the 
degree of sparsity of the coefficients estimated. The fea-
tures are standardized by removing the mean and scaling 
to unit variance. Then the datasets are split into train and 
test sets, and the test set has the ratio of 0.3 of all data. Next, 
the Lasso λ parameter is selected using cross-validation on 
train set [25]. The coefficients for the model are listed in 
Tables 2 and 3.

In Tables 2 and 3, the coefficients are the regression 
weights in Eq. (1). We have a sparse set of features in our 
model. The ones that are equal to zero have dropped from 
the model. The nonzero coefficients are used in SVR method 
to improve the overall accuracy. These coefficients can have 
negative or positive values which mean negative effect and 
positive effect to the model, respectively. The procedure is 
discussed in the next section.

Models are plotted in Figs. 2(A) and 3(A). Regression val-
idation is determined using the coefficient of determination 
(R2) for test set (out-of-sample) and for all data (Table 4).

The Lasso results are fairly well, and the method is fast. 
However, a nonlinear method would have been performed 
well. Thus, another method is implemented in the modelling 

process. This time, a nonlinear method, support vector 
machine regression (SVR) is performed. The formulations of 
SVR generally results in a function estimation equation anal-
ogous to the following form:

f x b( ) = < +w,x>  (2)

where w Rn⊂  and b R⊂  denote the n-dimensional weight 
vector and the offset of the linear regression function, respec-
tively. Solving regression function in Eq. (2) can be expressed 
as a constrained optimization problem (3): 
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Fig. 1. Schema and real image of experimental setup.

Table 2
Lasso model coefficients for compacted contaminated clay 
sample

Time 0.27
Fe2+ –0.08
Mn2+ 1.76
Zn2+ 0
Cu2+ 1.71
Pb2+ –3.26

Table 3
Lasso model feature coefficients for compacted–consolidated 
contaminated clay sample

Time 1.26
Fe2+ 0.94
Mn2+ –0.04
Zn2+ 0
Cu2+ –5.31
Pb2+ 4.69
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where f is a real value function on the field x. Loss function 
y f x− ( )

ε
 describes ε as the fitting precision and if the differ-

ence between predicted value and the actual value is less than 
ε, the loss is equal to 0. The constant c > 0 represents a regu-
larization parameter that allows tuning the trade-off between 
the smoothness of the function f and the value of that allowed 
error is larger than ε. The cost parameter is the main tool for 
adjusting the complexity of the model. In the modelling pro-
cess, the dataset is split into train and test sets; and the test 
set has the ratio of 0.3 for all data. Next, the hyper-parameters 
for SVR, the cost (C), the kernel and scale parameters y and 
ε are selected using grid-search method on train set [23]. The 
results showed that the polynomial kernel fitted well to both 
datasets. Models are plotted in Figs. 2(B) and 3(B). Regression 
validation is determined using the coefficient of determina-
tion (R2) for test set (out of sample) and for all data (Table 5).

After running Lasso, it is observed that Zn has a coeffi-
cient of zero. Hence, unlike other metal ions, it is possible to 
state that Zn does not affect the permeability of the clay so it 

does not affect the structure of the clay. As it is clear that Zn is 
an amphoteric metal, it does not precipitate and adsorb eas-
ily. Thus, in the second SVR run, Zn is excluded and there-
fore the results are slightly improved (Table 6).

As a result of the permeability experiments conducted 
with leachate, various changes in the permeability were 
observed in the samples to which standard compaction 
applied and in the samples to which standard compaction 
and consolidation applied together.

It is observed that the spaces among particles in the com-
pacted and consolidated soil samples were less than those in 
the compacted soil samples due to the effect of compaction 
and, therefore, the permeability of compacted and consoli-
dated clay soil was found lower (Fig. 4). As it is known, leach-
ate have solid particles and microorganisms which cause 

(A)

(B)

Fig. 2. Lasso regression model (A) and SVR model (B) for 
compacted contaminated clay sample.

Table 4
Regression validation for Lasso model

Lasso model Out-of-sample R2 All-data R2

Compacted contaminated 
clay sample

0.70 0.71

Compacted–consolidated 
contaminated clay sample

0.72 0.77

(A)

(B)

Fig. 3. Lasso regression model (A) and SVR model (B) for 
compacted–consolidated clay sample.
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decrease of permeability at the beginning of experiment. 
However, it has been observed that permeability started to 
increase on account of deformations that the leachate causes 
on the clay soil [26].

At the beginning, the permeability decreases, since the 
voids in the clay soil were filled by the suspended solids, 
some metal ions and microorganisms within the leachate. 
The pore clogging caused by the growth of the microorgan-
isms inside the soil pores, suspended solids and precipi-
tated metal ions fill the voids of the clay soil. Then, the per-
meability increases due to deformations in the structure of 
the clay soil. The deformations are caused by the presence 

of very high concentration and variety of pollutants in 
leachate. After filtration of leachate though compacted clay 
and compacted–consolidated clay soils, the removal effi-
ciencies of Fe2+, Mn2+, Zn2+, Cu2+ and Pb2+ are obtained and 
the results are given in Table 7. As can be seen from Table 7, 
compacted–consolidated clay soils are found more effective 
than only compacted clay soil to remove metal ions [26].

In the modelling process, a variable selection method 
in the linear model setting, Lasso, is used to improve the 
accuracy of support vector machine regression model. The 
tuning parameter λ controls the strength of the L1 penalty. 
The Lasso uses a penalty in the L1 norm of the coefficient 
vector, which causes the estimates of some coefficients to be 
exactly zero. The fact that it sets coefficients to zero is a big 
advantage for the sake of the interpretation as seen from the 
improved results of SVR.

4. Conclusions

In this study, high removal efficiencies are obtained in 
the chemical parameters after leachate passes through com-
pacted clay samples and it is observed that the clay has a 
natural purification capacity. In general, when experimen-
tal results of Fe2+, Mn2+, Zn2+, Cu2+ and Pb2+ parameters are 
examined, removal rate of clay soil which are compressed 
with standard methods and consolidated is higher than that 
of clay soil compressed with standard compaction method. It 
has been observed that the suspended solids, some metal ions 
and microorganisms in the leachate filled the spaces between 
the clay particles and the growth of microorganisms inside 
the soil pores caused pore clogging that led the permeability 
to decrease. In the long term, it is observed that this variation 
takes place in the reverse direction, in other words the perme-
ability increases. It is considered that this variation would be 
the result of the certain chemical and physical deteriorations 
produced by the contaminative components in the leachate.

The (regression) results showed that SVR has better 
accuracy, but slower than Lasso. Lasso method is also used 
for selecting important features. First, the Lasso regression 
is performed to get the appropriate number of features, 
and then these features are used in Lasso and SVR imple-
mentation. Thus, after running Lasso regression, results 
showed that Zn has a coefficient of zero in both clay data 
samples, meaning it has less importance compared with 
other materials. As Zn is an amphoteric metal, it does not 
precipitate and adsorb easily. Thus excluding Zn slightly 
improved the accuracy of Lasso and SVR methods and 

Table 5
Regression validation for SVR model

SVR model Out-of-sample R2 All-data R2

Compacted contaminated 
clay sample

0.79 0.80

Compacted–consolidated 
contaminated clay sample

0.79 0.84

Table 6
Regression validation for SVR model, second run excludes Zn

SVR model (Zn excluded) Out-of-sample R2 All-data R2

Compacted contaminated 
clay sample

0.83 0.84

Compacted–consolidated 
contaminated clay sample

0.79 0.85
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Fig. 4. Permeability changes in compacted clay and compacted–
consolidated clay.

Table 7
Removal efficiency of metal ions, %

Time, d Compacted clay Compacted–consolidated clay
Fe2+ Mn2+ Zn2+ Cu2+ Pb2+ Fe2+ Mn2+ Zn2+ Cu2+ Pb2+

0 0 0 0 0 0 0 0 0 0 0
31 68 21 3 29 14 71 24 49 54 53
59 90 43 16 41 38 93 53 58 77 72
87 98 59 38 70 53 99 90 81 81 81

150 96 68 36 59 51 98 86 76 68 78
214 94 31 32 56 48 98 83 75 67 74
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sped up the procedure. Faster implementation is very 
important because the computation time might be a prob-
lem for larger datasets.

Mathematical models can be used to estimate long-term 
data, select features and accurate results. According to this 
study SVR and Lasso model found promising to model envi-
ronmental issues. For next studies, researcher should make 
interdisciplinary studies to advance environmental issues.
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