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ab s t r ac t
In this study, peat moss was chemically modified using a hot-alkali treatment technique and subse-
quently used to remove Cu(II) and Pb(II) ions from synthetic solutions. Batch kinetic studies were car-
ried out to elucidate the mechanisms of biosorption. Process operational parameters such as agitation, 
particle size, conductivity and pH were varied. This method of hot-alkali treatment was successful in 
reducing the occlusion of pores and resulted in greater adsorptive performance. The kinetic behaviour 
of the treated peat moss was best simulated by the diffusion–chemisorption model. Film diffusion and 
intraparticle diffusion were the dominant transport mechanisms. An artificial neural network (ANN) 
was used to construct a predictive model built-in with the joint effect of the operating parameters. A 
comparison with the experimental data revealed a significantly high coefficient of determination of 
0.9965. The Garson connection weight method showed reaction time as the most influential param-
eter. Artificial neural network–genetic algorithm (ANN–GA) optimization revealed that maximum 
biosorption could be obtained using pH 5.5, particle size 0.21 mm, agitation 690 rpm, conductivity 
290 mS/cm and contact time 50 min. The ANN–GA prediction was verified through subsequent labo-
ratory experiments which revealed an excellent prediction with 2.8% residual error. The findings of 
this study serve to improve the performance of peat biosorption as well as presents a predictive model 
which can aid in process scale-up.
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1. Introduction

There have been numerous reported episodes of acute 
and chronic impacts on human health caused by heavy 
metal contamination [1,2]. These reports and others have 
been confirmed through current advances in metal detection 
at the nanolevel and have led to increased stringent con-
trols being imposed on those industries responsible for the 
discharge of toxic metals in their effluents [3]. As a result, 

improved technologies are being sought to achieve the low 
effluent metal concentrations demanded by new legislations; 
unfortunately, the greatest impact would be felt by smaller 
downstream industries that are unable to sustain exorbitant 
treatment costs [4]. The ultimate solution lies in low-cost tech-
nologies enabling both removal and recovery of heavy metals 
[5]. Consequently, these needs provide sufficient interest to 
undertake this study.

The most common technique for recovery of metal ions 
from industrial waste is by precipitation, either as hydrox-
ide, carbonate or sulphide. However, there are disadvan-
tages to this method mostly due to unsatisfactory treatment 
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levels at low metal concentrations [6]. Ion-exchange is also a 
well-established process used in tertiary treatment; however, 
the cost of resin and regenerating chemicals renders this 
technique less than ideal [7].

Early researchers in the field of biosorption as McKay 
et al. [8], Tsezos and Volesky [9], and Bhattacharya and 
Venkobachar [10], have shown biological materials to be very 
effective in removing metal ions from solutions, achieving 
low residual metal concentrations and high metal loading. 
Additionally, many low-cost adsorbents come from the abun-
dant biological materials found in nature such as unicellular 
algae [11], plant leaves [12], macro-fungus [13] and bacteria 
[14]. In a review of biosorption technologies and applications, 
Gadd [15], highlighted that future biosorption research direc-
tion should include identification of better and more selective 
biosorbents, more development of biosorption models and 
identification of biosorption mechanisms.

To elucidate the mechanisms of biosorption, an under-
standing of how metal ions are transferred from a liquid phase 
to a solid phase is essential. According to Poots et al. [16], the 
following steps are usually involved: (i) boundary layer mass 
transfer across the liquid film surrounding the particle; (ii) 
internal diffusion/mass transport within the particle boundary 
as pore and/or solid diffusion and (iii) adsorption within the 
particle and on the external surface. Allard et al. [17] explained 
that there are three pathways by which sorption may occur 
onto the surface: (i) physical adsorption which is considered 
rapid and reversible and is due to non-specific forces of attrac-
tion (e.g., Van der Waals forces); (ii) electrostatic adsorption 
due to coulombic forces of attraction between charged solute 
species and the adsorbing phase – this process is usually rapid 
and largely reversible; and (iii) specific adsorption due to the 
action of chemical forces of attraction which leads to surface 
bonding at a specific site on the solid phase.

Peat moss has been reported to comprise a rich array of 
polar functional groups such as alcohol, aldehydes, carboxylic 
acids, ketones and phenolic hydroxides which are suitable 
for sorption or ion-exchange processes [18]. Due to the abun-
dance, there have been numerous reported techniques of peat 
moss pretreatment, all aimed at improving its biosorption per-
formance. Some of these techniques include acid followed by 
cold-alkali treatment [19], pyrolysis [20] and hot-acid followed 
by cold-alkali treatment [21]. All of which have proven to be 
successful depending on the target contaminant. However, 
the application of hot-alkali treatment [13], to peat moss has 
not been reported in the literature. The performance of this 
modified peat is assessed by studying sorption kinetics. Such 
studies evaluate the rate of metal uptake and provide a deeper 
understanding of the reaction pathways and mechanisms [22].

The development of predictive models can save time and 
improve efficiency in experimentation and enable the effectual 
upgrade to full-scale systems [23]. Due to the non-linearity 
and diversity of biosorption systems, it is difficult to develop 
predictive models based on traditional single variable optimi-
zation [24]. Kumar and Sharma [25] explained in their review 
of artificial neural networks (ANNs) that these intelligent sys-
tems are inspired by the neural structure of the human brain. 
The first artificial neuron was produced in 1943 by McCulloch 
and Pits [26]. The technique has seen application in gaming 
development, pattern recognition and complex engineering 
processes [27]. An ANN based on the common multilayer 

perceptron consist of input, output and hidden layers of neu-
rons and is a powerful tool for modelling of data [28]. Shahryari 
et al. [29] explained that the number of neurons in the input 
and output layers are the same as the number of the known 
independent and dependent parameters, respectively. The 
successful application of ANN to predict complex biosorption 
processes have been reported in the literature. Cojocaru et al. 
[30] developed an ANN to predict the removal efficiency of 
oil slick by peat moss and used biosorbent dosage, drainage 
time and initial thickness of the oil slick as inputs to predict 
the removal efficiency. Chowdhury et al. [31] predicted the 
sorption of crystal violet dye onto eggshells by constructing an 
ANN with pH, biosorbent dose, initial dye concentration and 
temperature as inputs to the ANN while sorption efficiency 
was selected as the output. In this study, batch biosorption 
kinetic operational parameters such as agitation speed, pH, 
reaction time, conductivity and biosorbent size (independent 
variables) were instituted as input to the ANN structure to 
predict biosorption removal (dependent variable). A genetic 
algorithm (GA) is a stochastic search algorithm inspired by the 
mechanics of natural evolution including survival of the fittest, 
reproduction, crossover and mutation [32]. The robustness of 
this global optimization method has also gained widespread 
acceptance in the field of engineering [33]. The generation of 
global optimal operating adsorption parameters has been suc-
cessfully attained by the use of GA coupled with output from 
the ANN (ANN–GA) [34,35].

The objectives of this study are: (i) to evaluate the impact 
and performance of this method of hot-alkali pretreatment 
to peat moss and expound its mechanisms of biosorption 
through kinetic study and analysis; (ii) to develop a predic-
tive model based on ANN to simulate batch process kinetics 
which can aid in process scale-up; and (iii) to optimize the 
amount of heavy metals removed from solution by combin-
ing ANN and GA methods.

2. Materials and methods

2.1. Preparation of the biosorbent

Batch biosorption experiments were conducted with 
Canadian sphagnum peat moss manufactured by Acadian 
Limited, Canada. In preparation for biosorption experiments, 
the peat samples were dried at 90°C for 1 h. It was subsequently 
washed with distilled water and sieved into different sizes. 
The average particle size of peat moss retained on a sieve was 
calculated as the geometric mean of the diameter openings 
in two adjacent sieves in the stack. The geometric mean size 
(GMS) is expressed as (diameter of upper sieve × diameter of 
lower sieve)0.5 [36]. Kinetic experiments were conducted using 
particle GMS of 0.11–1.05 mm. Peat moss samples were chem-
ically treated using the hot-alkali pretreatment procedure pre-
viously reported by Muraleedharan and Venkobachar [13]. 
40 g of the biosorbent was treated with 100 mL of 40% NaOH 
at 128°C for 4 h. The residue was then separated, washed with 
distilled water and dried at 40°C for 24 h.

2.2. Determination of metal ions concentration

Metal ions selected for these experiments were Cu(II) and 
Pb(II) ions and were analyzed using an Atomic Absorption 
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Spectrophotometer (PerkinElmer 3030B). Analytical grade 
copper(II) sulphate and lead(II) nitrate were used to prepare 
stock solutions in distilled water (using a Corning Mega Pure 
System MP-1 of pH ~7 and conductivity <5 mS/cm).

2.3. Scanning electron microscopy combined with 
energy-dispersive spectroscopy analysis

The biosorbent was characterized using a scanning 
electronic microscope (SEM; Hitachi S-3000N) and ener-
gy-dispersive spectroscopy (EDS) analyzer (IXRF Systems) 
at a voltage of 20 kV. The SEM was used to investigate the 
changes in the surface microstructures of the peat before and 
after pretreatment as well as following metal ion biosorption. 
The EDS was used to determine the elemental composition 
of the peat before pretreatment, after pretreatment and after 
metal ion biosorption.

2.4. Biosorption kinetics

2.4.1. Kinetic studies

Kinetic studies were conducted using the parallel method 
according to EPA OPPTS method 835.1230 [37]. The studies of 
metal uptake were carried out in duplicate at room tempera-
ture (26°C ± 2°C) in a batch reactor with an adsorbent mass 
1.0 g/L and spiked with 50 mL of 50 mg/L synthetic metal ion 
solution. Sorbent masses were accurate to ±0.001 g and solution 
volumes to ±0.5 mL. Identical reaction mixtures were prepared 
for each time interval, agitated to maintain complete mixed 
conditions on a mechanical shaker and removed at predeter-
mined time intervals [38]. The biosorbent was then separated 
by filtration using Whatman No. 2 qualitative filter paper. The 
filtrate/supernatant was subsequently tested for residual metal 
ions. To monitor and control any interference due to leaching 
during the test period a blank was prepared which comprised 
distilled water and peat moss. Optimum pH was determined 
by adjusting the pH within the range of 2.5–6 and kept constant 
throughout the reaction by a 0.01 M acetate buffer solution and 
measured with a pH meter (Accumet Research-AR10, Fisher 
Scientific, New Hampshire, USA). The conductivity of the reac-
tion solution was adjusted using potassium nitrate solution 
and measured using a conductance bridge (YSI Model 31A).

2.4.2. Adsorption yield

The adsorption yield or the ratio of adsorbed metal ion 
concentration to the initial metal ion concentration was cal-
culated from Eq. (1):

% Adsorption =
−

×
C C
C

t0

0

100  (1)

where C0 (mg/L) is the initial concentration of metal ions in 
solution, Ct (mg/L) is the concentration of metal ions in solu-
tion at any time t.

2.4.3. Concentration of adsorbed ions

The concentration of metal ions on peat moss was deter-
mined using the mass balance equation expressed as follows:

q
C C
m

Vt
t=

−
×

( )0  (2)

where qt (mg/g) is milligram of adsorbate adsorbed per gram 
of sorbent at any time t, C0 (mg/L) is the initial adsorbate con-
centration in solution, Ct (mg/L) is the adsorbate concentra-
tion in solution at any time t, V (L) is the volume of synthetic 
adsorbate solution and m (g) is the mass of the adsorbent.

2.5. Modelling and optimization approach

2.5.1. Kinetic models

2.5.1.1. Lagergren model In 1898, Lagergren as cited 
in [39], developed a first-order rate equation to describe 
the kinetic process of oxalic acid and malonic acid onto 
charcoal. Ho and McKay [39] described the equation as 
pseudo-first-order. Table 1 presents the non-linear and linear 
forms of the pseudo-first-order model represented by Eqs. (3) 
and (4), respectively, where KPFO (min–1) is the rate constant 
of pseudo-first-order adsorption, qt (mg/g) is the mass of 
adsorbate sorbed per gram of adsorbent at any time t (min) 
and qe (mg/g) is the mass of adsorbate sorbed per gram of 
adsorbent at equilibrium.

Table 1
Linear and non-linear kinetic models

Model Non-linear equation Eq. Linear equation Eq.

Pseudo-first-order model q qt e
K tPFO= − −( exp )1 (3) log( ) log
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K
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Diffusion–chemisorption model
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2.5.1.2. Pseudo-second-order model The pseudo-second- 
order equation was developed for the sorption of divalent 
metal ions onto peat moss [40]. According to Ho and McKay 
[41], the model is based on pseudo-second-order chemical 
reaction kinetics. Linear and non-linear forms of the model 
are presented in Table 1, where KPSO (g/mg min) is the 
pseudo-second-order rate, qt (mg/g) is the mass of adsorbate 
adsorbed per gram of adsorbent at any time t (min), qe (mg/g) 
is the mass of adsorbate adsorbed per gram of adsorbent at 
equilibrium and h (mg/g t) is the initial rate of adsorption 
given by KPSO × qe

2.

2.5.1.3. Intraparticle diffusion model Weber and Morris 
[42] proposed that the rate of intraparticle diffusion varies 
proportionally with the half power of time and is expressed 
as Eq. (7). According to Ofomaja [43], the model can be linear-
ized to Eq. (8) where qt (mg/g) is the adsorbate uptake at time 
t (min), Kid (mg/g t0.5) is the rate constant of intraparticle trans-
port and the intercept c (mg/g), is taken to be proportional 
to the extent of the boundary layer thickness. According to 
Weber and Morris [42], if the rate-limiting step is intraparticle 
diffusion, a plot of solute adsorbed against the square root of 
the contact time should yield a straight line passing through 
the origin.

2.5.1.4. Diffusion–chemisorption model The diffusion–
chemisorption kinetic model [44] was developed to simulate 
sorption of heavy metals onto heterogeneous media. To 
obtain the derivatives, a correlation is made where the rate of 
change of concentration of the solid phase qt (mg/g) is equated 
as a function of the rate of mass transfer of ions from the fluid 
phase to the adsorption site KDC (mg/g t0.5); the equilibrium 
sorption capacity qe (mg/g); and time to the power of n – 1, 
tn–1. Linear and non-linear forms of the model are presented in 
Table 1, where KDC (g/mg min) is the diffusion–chemisorption 
constant, qt (mg/g) is the mass of ions adsorbed per gram 
of sorbent at any time t (min), qe (mg/g) is the adsorption at 
equilibrium and ki (mg/g t) is the initial adsorption rate given 
by KDC

2/qe.

2.5.1.5. External mass transfer model The model expresses 
the concentration of the solute in the solution as a function of 
the difference in concentration of the solute in the solution, 
C, and at the particle surface, Ci, according to the following 
equation [45]:

dq
dt

k S C Cf i= − −( )0  (11)

Since Ci approaches zero and C approaches C0, as t → 0, 
Eq. (11) could be simplified to:
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where q (mg/g) is the average solute concentration in the 
solid, C (mg/L) is the uniform concentration of the solute 
in the bulk of the liquid, far from the surface, Ci (mg/L) is 

the concentration of the solute in the liquid at the particle/
liquid interface and kf (cm/min) is the film mass transfer 
coefficient. Assuming the particles are spherical, the surface 
area for mass transfer, S0 (cm–1) can be obtained from the 
following [46]:
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p p
0

6
1
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−( )ρ ε

 (13)

where ms (g/cm3) is the mass of peat particles per unit volume, 
dp (cm) is the average particle diameter, ρ (g/cm3) is the true 
solid phase density and εp is the adsorbent porosity. The 
external mass transfer coefficient kf, can be determined from 
the slope of the curve C/C0 vs. time, t.

2.5.1.6. Particle diffusion model If diffusion of Cu(II) ions 
through the peat is the slowest step then particle diffusion is 
rate limiting and may be described by Boyd et al. [47], using 
the following equation:
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where X(t) is the fractional attainment at time t, given by:

X t
q
q
t

e

( ) =  (15)

where qt and qe are solute loading on the solid phase at time 
t (min), and when equilibrium is attained (mg/g), respectively. 
Assuming spherical shape sorbent, the Vermeulen’s [48], 
approximation of Eq. (14) fits the whole range 0 < X(t) < 1 and 
is given as:
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This equation could be further simplified to cover most of 
the data points for calculating the effective particle diffusivity 
using the following expression:

ln
( )

1
1 2
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2−








 =

X t r
D te

π  (17)

A linear plot of ln[1/1 – X2(t)] vs. t produces a straight 
line and thus the diffusion coefficient, De (cm2/min) can be 
calculated [49].

2.5.1.7. Biot number The dominance of film and particle 
diffusion may further be assessed using the Biot number. 
This represents the ratio of the rate of diffusion across the 
liquid film to the rate of diffusion within the particle and can 
be determined using the following expression [50]:

Bi
k R
D
f=
eff

 (18)
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where kf is the film diffusion coefficient, R (cm) is the particle 
radius and Deff is the particle diffusion coefficient.

2.5.2. Artificial neural networks

ANNs are algorithmic systems consisting of intercon-
nected nodes or neurons which simulate the working prin-
ciple of the human brain. It has been successfully employed 
as predictive models in adsorption studies due to its ability 
to capture non-linear multivariate relationships, predict with 
limited numbers of experiments and its potential to learn 
complex relationships without knowledge of the model 
architecture or a mathematical description of the phenomena 
involved in the process [51].

In this study, a multilayer feed-forward ANN model was 
developed for predicting the adsorption of copper onto peat 
moss. A total of 102 experimental data points were used to 
train and test the performance of ANN for the adsorption pro-
cess. Each set contains five input variables comprising; parti-
cle size (GMS 0.11–1.05 mm), agitation speed (300–900 rpm), 
conductivity (200–4,600 mS/cm), initial pH (2.78–6.5) and con-
tact time (0–60 min), and one output variable, namely, the 
relative adsorption capacity (2.0–30.95 mg/g).

The dataset was divided where 70% of the data were 
applied to training the network, 15% for crossvalidation and 
15% for testing the accuracy of the neural network model and 
its prediction. The impact of network parameters including 
training functions, transfer functions (Logsig, Tansig and 
Purelin) and hidden layer neuron number was then investi-
gated to optimize the ANN structure.

2.5.3. Genetic algorithm

A GA is a type of global optimization technique 
inspired by the mechanics of natural selection and genetic 
evaluation [52]. This technique utilizes random search 
for optimizing a fitness function. Maximization or min-
imization is performed by applying three genetic opera-
tors (selection, crossover and mutation) and selecting the 
best-fitted individuals as measured by a fitness function. 
An initial population was first generated. The selection 
operator was then applied to choose the best-fitted indi-
viduals to be parents of the new generation using dif-
ferent methods including stochastic uniform, remainder, 
uniform, shift linear, roulette and tournament. Crossover 
operator interchanged the genes of two potential parents 
in an attempt to produce offsprings with positive traits of 
both parents and thus limiting the possibility of inherit-
ing negative traits from either parent. This was performed 
using different methods including single point, double 
point or uniform crossover. Finally, the mutation operator 
changed all or some of the genes of the parents to increase 
the exploration of the genome such that the offsprings are 
not limited to the genes of the parents and may have new 
and better traits [53].

In this study, the optimization toolbox of MATLAB® 
R2012a was used to determine the optimum conditions for 
achieving maximum adsorption of copper onto peat moss. 
The resulting weights and biases of the trained ANN are con-
sidered to be the individuals in the colony, and the objective 
function was the equation obtained from the ANN model.

2.6. Error analysis

The goodness of fit by the various kinetic and predic-
tive models to the experimental data were evaluated using 
the linear coefficient of determination, R2, the Marquardt’s 
percent standard deviation (MPSD), hybrid error function 
(HYBRID), mean square error (MSE) and relative percentage 
error (RPE) are presented in Table 2.

3. Results and discussion

3.1. Kinetic studies

3.1.1. Effect of biosorbent pretreatment

Peat moss samples were subjected to hot-alkali treatment 
prior to biosorption. Images of untreated and treated peat 
presented in Figs. 1(a) and (b), respectively, reveal the success 
of pretreatment in removing constituents that may occlude 
the pores of the peat. SEM images at a 1,000× magnification 
of the raw peat (Fig. 1(c)) and the pretreated peat (Fig. 1(d)) 
reveals a porous morphology which remained somewhat 
unchanged after pretreatment, with repetition of plant struc-
ture, vessels orientation and pores of comparable shape and 
size. The influence of Cu(II) binding to the biomass sur-
face caused significant changes in the surface morphology 
resulting in greater irregularity in the microstructure edges 
(Fig. 1(e)). Similar observations have been reported by Mitic-
Stojanovic et al. [54], for the biosorption of metal ions onto 
Lagenaria vulgaris shell. They went on to explain that this may 
imply that metal binding is strongly related to the chemical 
composition of the biomass.

The EDS of untreated peat moss reveal the presence of 
C and O and trace amounts of Al, Si, S and Ca (Fig. 2(a)). 
After hot-alkali pretreatment using NaOH, the C, Al, Si and S 
peaks diminished while the Ca increased (Fig. 2(b)). Further, 
pretreatment revealed the appearance of Mg, Fe, Cu and Pb 
peaks which became significant by following the reduction 
in C, Al, Si and S.

After biosorption by the pretreated peat, the O, Mg, Al, 
Si and Pb peaks diminished whereby the Ca peak revealed a 
significant reduction (Fig. 2(c)). The Cu at 0.9, 8.1 and 8.9 keV 
peaks became increasingly visible confirming the binding of 
Cu(II) ions to the peat surface. Furthermore, the presence of 
Ca2+ and Mg2+, which are known to be involved in the pro-
cess of ion-exchange [55], was indicated in the spectra of pre-
treated peat moss. After the adsorption of the Cu(II), these 
cations diminished in the EDS of Cu(II) – loaded pretreated 
peat. These findings, therefore, indicate the involvement of 
the mechanism of ion-exchange for the removal of Cu(II) ions.

The kinetic effect of hot-alkali treatment on Cu(II) sorp-
tion is presented in Fig. 3. The plot of the primary kinetic 
data shows a significant improvement in performance by the 
hot-alkali treated sample. The treated sample attained equi-
librium ~30 min into the reaction while the untreated reached 
equilibrium after 45 min. Lee et al. [56] reported a maximum 
Cu(II) adsorption by Russian peat of 18.2 mg/g after pyroly-
sis at 800°C. Gardea-Torresday et al. [57] worked with acid 
washed Canadian peat which produced a maximum sorption 
of 16.1 mg/g at pH 4.0. Fig. 3 reveals that for an initial concen-
tration of 50 mg/L and at the present operational conditions 
the relative maximum sorption capacity was 29.9 mg/g, ~19% 
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higher than that of the untreated sample. This improvement 
may be due to greater access to previously unavailable sites 
within the peat created by the chemical pretreatment.

Kinetic simulation of peat moss biosorption was 
attempted using four models: Lagergren model [39]; pseu-
do-second-order model [40]; Weber and Morris intraparticle 
diffusion model [42]; and the diffusion–chemisorption model 
[44]. Table 3 shows the results of linear and non-linear regres-
sion for untreated and treated peat moss, respectively. The 
goodness of fit was assessed using error functions presented 
in Table 2. These error functions were determined by com-
paring primary experimental curves with non-linear curves 
generated using the calculated equation parameters.

Linear regression of both treated and untreated sam-
ples revealed a relatively poor simulation by the pseudo- 
first-order and the intraparticle diffusion model. The 
pseudo-second-order model produced the highest correla-
tion to the untreated sample while the diffusion–chemisorp-
tion model best represented the treated peat sample. 
Kinniburgh as cited in [58], highlighted that the transfor-
mation of a non-linear model to a linear form could implic-
itly alter the error functions as well as the error variance 
and normality assumptions of the least squares methods. 
Consequently, a more robust simulation was performed 
using non-linear regression by the Levenberg–Marquardt 
algorithm [59]. The result verifies the findings of the linear 
regression and is presented in Table 3.

3.1.2. Effect of agitation on biosorption

The kinetic effect of variations in agitation speed on 
the sorption of Cu(II) onto peat moss is presented in Fig. 4. 
These experiments were conducted with particles of GMS 
0.65 mm and pH of 5.5. The plot shows the effect of mixing 
speed on the overall and initial reaction rate obtained from 
the diffusion–chemisorption kinetic model. Increased agita-
tion promotes good contact between the media and liquid. 
Additionally, it reduces the thickness of the solvent film sur-
rounding the particle and thus reduces the resistance by film 
diffusion. At higher agitation speed, a positive effect on intra-
particle diffusion is expected due to the maintenance of a 
high ion concentration gradient between the inner and outer 
regions of the particle. Analysis of the curve supports this 
view as it can be seen that an increase in initial and overall 
adsorption rate occurs as the mixing speed is increased. This 
was further accompanied by a decrease in the time to reach 
equilibrium and as a consequence may have accelerated the 
onset of intraparticle resistance.

3.1.3. Effect of pH on biosorption

The effect of solution pH on the biosorption kinetics of 
Cu(II) and Pb(II) by peat moss was studied. Experiments 
were carried out with solution pH varying from 2.5 to 6.0 and 
using a particle GMS of 0.65 mm and initial concentration of 

Table 2
Error functions

Error functions Expression Eq.
Relative percentage error (RPE)
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where N is the number of experimental points and P is the number of 
parameters in the regression model
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(experimental) data, and y is the predicted value

(23)
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50 mg/L. Solution pH has been identified in the literature as 
a crucial parameter in adsorption processes and is verified 
here as one of the most important variables governing metal 
biosorption onto peat moss. The curves in Fig. 5 show that at 
an initial concentration of 50 mg/L, optimum removal was 
achieved at a pH of 5.5. The minimal observed performance 
at pH 2.5 may be partly due to the fact that hydrogen ions 
themselves are strong competing adsorbates.

Additionally, the solute pH can influence the speciation 
of metal ions and the ionization of surface functional groups. 
Elliot and Huang as cited in [60], explained that at pH 6.0 
there exist three copper species, Cu(II) in very small quantity 
and Cu(OH)+ and Cu(OH)2 in large quantities. The reduction 

in sorption observed at pH 6.0 may indicate a preference by 
peat moss for the Cu(II) ions over that of the other species. A 
similar analysis of Pb(II) sorption by peat moss within the pH 
range of 2.5–6 (results not shown) indicated that optimum 
sorption occurred at pH 4.0. At a pH below 4.0, a decrease in 
sorption was observed possibly due to competition between 
H+ ions and the metal ions for the same functional groups. A 
similar trend was reported by El-Said [61], for the biosorption 
of Pb(II) onto rice husk and its ash. At higher pH, a decrease 
in sorption was observed. Baes and Mesmer [62] reported 
that the hydrolysis and precipitation of the hydroxide form 
which occurs at pH > 6 might account for this reduction in 
sorption.

(a)

(c) (d)

(e)

(b)

Fig. 1. (a) Micrograph image of untreated peat moss (200×). (b) Micrograph image of hot-alkali treated peat moss (200×). (c) Micro-
graph image of untreated peat moss (1,000×). (d) Micrograph image of hot-alkali treated peat moss (1,000×). (e) Micrograph image of 
hot-alkali treated peat moss loaded with Cu(II) ions (1,000×).
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3.1.4. Effect of particle size on biosorption

The influence of the peat moss particle size on biosorp-
tion kinetics was studied in single-component batch reac-
tion using Cu(II) ions and Pb(II) ions. Table 4 presents the 
results of non-linear regression analysis using the diffusion–
chemisorption model. From the table, it is observed that as 
particle size decreased, both the overall rate and the initial 
rate increased. This trend was observed for both Cu(II) and 
Pb(II) biosorption. If the primary kinetic data are linearized 

by a plot of logqt against logt as observed in Figs. 6(a) and 
(b), the plots eventually converge, indicating that the metal 
ion capacity is independent of particle size, and thus, there 
is no occlusion of internal sites within the pore of the sor-
bent. At a particle GMS of 0.21 mm, initial concentration of 
50 mg/L, solution pH of 5.2, agitation of 300 rpm and conduc-
tivity of 1,045 mS/cm, the highest observed Cu(II) uptake was 
28.5 mg/g, while 39.5 mg/g was observed for Pb(II) at a pH of 
4.0. It may then be reasonable to assume that the difference 
in sorption capacity between Cu(II) and Pb(II) may in part be 
influenced by their atomic weights and differences in ionic 
radius. Similar observations were reported by Jiang et al. [63], 
for the adsorption of copper, lead, zinc and cadmium ions 
onto tourmaline as well as Cheng et al. [64], for adsorption of 
heavy metals onto magnetotactic bacteria.

3.1.5. Effect of electrical conductivity on biosorption

Primary data obtained from batch experiments of varying 
solution electrical conductivity (EC) were analyzed using 
the diffusion–chemisorption model, and the parameters are 
presented in Table 5. The results indicate that adsorption 
capacity was unaffected up to an EC of 4,600 mS/cm. This 
was probably due to the strong affinity for divalent ions 
over the monovalent ions at the charged interface [65]. At 
an EC of 15,000 mS/cm, there was a 20% observed reduction 
in sorption capacity and 30% reduction in overall reaction 
rate. As EC increases, the amount of electrolyte present 
in the solution can swamp the surface of adsorbents, thus 
decreasing the access of metal ions to the adsorbent surface. 
This is particularly important when electrostatic attraction is 
a significant mechanism for metal removal.

3.1.6. Interruption test

Intraparticle diffusion within porous particles is based on 
pore and solid diffusion [66]. Tests on the variation in parti-
cle size showed that the rate of adsorption increased with a 
decrease in size and that sorption capacity is independent of 
particle size; this confirms the presence of pore diffusion. The 
interruption test was conducted to determine the presence of 
diffusion in the adsorbed state by surface migration. Fig. 7 
shows an increase in uptake of ~3.5% after 10 min of process 

(a)

(b)

(c)

Fig. 2. (a) Energy dispersive spectrum of untreated peat moss. 
(b) Energy dispersive spectrum of hot-alkali treated peat 
moss. (c) Energy dispersive spectrum of hot-alkali treated peat 
moss loaded with Cu(II) ions.

Fig. 3. Primary kinetic curve depicting the sorption of Cu(II) onto 
untreated and treated peat moss.
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interruption. Further, as a result of process interruption, it 
was also observed that the time to reach equilibrium was 
reduced. It can, therefore, be surmised that solid-state diffu-
sion is an operative mechanism in the adsorption process.

3.2. Elucidation of mechanisms of biosorption

Ho et al. [67], in their review of the kinetics of pollutant 
sorption by biosorbents, explained that external film diffu-
sion is best identified by carrying out a series of agitated batch 
contact time experiments at different agitation speeds. Sağ 
and Aktay [68] successfully explored this effect of agitation on 
film diffusion by the use of the Reynolds number for sorption 
of chromium ions onto chitin and concluded that increased 
turbulence reduces the film boundary layer surrounding the 

Table 3
Analysis of kinetic models using linear and non-linear regression for Cu(II) uptake by untreated peat moss and treated peat moss

Metal ion Regression Model Error functions

RPE MPSD HYBRID R2

Untreated 
peat moss

Linear Pseudo-first-order 39.025 56.850 429.121 0.9420
Pseudo-second-order 4.520 8.383 6.680 0.9990
Intraparticle diffusion 29.212 45.657 283.024 0.8222
Diffusion–chemisorption 9.434 28.420 40.757 0.9551

Non-linear Pseudo-first–order 13.235 30.485 50.477 0.9768
Pseudo-second-order 5.101 11.749 7.962 0.9937
Intraparticle diffusion 30.715 45.529 259.494 0.7049
Diffusion–chemisorption 5.348 13.059 9.651 0.9928

Treated peat 
moss

Linear Pseudo-first-order 45.037 63.000 845.826 0.9537
Pseudo-second-order 17.975 32.241 177.117 0.9985
Intraparticle diffusion 38.640 56.279 653.073 0.7559
Diffusion–chemisorption 15.969 23.273 110.379 0.9900

Non-linear Pseudo-first-order 5.849 10.053 24.830 0.9653
Pseudo-second-order 5.099 9.737 21.504 0.9753
Intraparticle diffusion 34.932 53.189 529.336 0.3952
Diffusion–chemisorption 3.247 6.117 8.069 0.9949

Fig. 4. Effect of agitation on the kinetic parameters for Cu(II) 
uptake by peat moss.

Fig. 5. Effect of solution pH on Cu(II) uptake by peat moss.

Table 4
Diffusion–chemisorption parameters for Cu(II) and Pb(II) uptake 
by varying particle size

Adsorbate Particle size 
GMS (mm)

KDC 

(mg/g t0.5)
ki 

(mg/g t)
R2

Cu(II) 0.11 35.204 36.602 0.9942
0.21 16.158 6.846 0.9927
0.65 9.214 2.191 0.9993
1.05 5.211 0.460 0.9986

Pb(II) 0.21 12.750 10.966 0.9858
0.65 7.128 0.471 0.9754
1.05 5.383 0.142 0.9800
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absorbent. In this study, the observed changes in sorption 
rate due to variation in agitation have confirmed the presence 
of film diffusion on the reaction kinetics. Initial and overall 
reaction rates were found to vary inversely with particle size. 
Since the sorption capacity was shown to be independent of 
particle size, pore diffusion was confirmed as an operative 
mechanism. The other component of intraparticle diffusion, 
that is, solid diffusion was confirmed by the interruption test 
to be influential in process reaction.

The single-resistance intraparticle diffusion model 
described by Weber and Morris, suggest that if the adsorption 
process is influenced by intraparticle diffusion, the adsorbed 
amount, qt should vary linearly with the square root of time. 
Fig. 8 depicts a plot of the Weber and Morris model for two par-
ticle sizes namely GMS 0.21 and 1.05 mm. In both instances, the 
plots did not go through the origin. It was also observed that as 
particle size reduces (which accompanies an increase in surface 
area and reduction in pore length), the plot moves further from 
the origin. Several studies [43,69,70] have reported that this 
increase in intercept reveals the growing effect of the boundary 
layer. The plot of GMS 0.21 mm shows two distinct slopes. The 
first slope, which occurs from 1 to 10 min reveals the impact 
of intraparticle diffusion which may be rate controlling. Some 
researchers have reported that the final slope corresponds to the 
slowing of the reaction, possibly due to a reduction in concen-
tration gradient as the reaction approaches equilibrium [71,72]. 
The plot of GMS 1.05 mm reveals the increased dominance over 
most of the reaction period by intraparticle diffusion as the par-
ticle size was increased. Similar behaviour has been reported 
by Choy et al. [73], for the adsorption of cadmium onto various 
particle sizes of bone char. Based on the preceding analysis it 
is evident that both film and intraparticle diffusion has some 
amount of influence on the rate-determining step. To further 
explicate this phenomenon the external diffusion and particle 
diffusion models were fitted with the experimental data. The 
resulting mass transfer coefficients were used to calculate the 
Biot number and assess the relative importance of external dif-
fusion to intraparticle diffusion with changing particle size. The 
Biot number is a good indicator of which phase controls the rate 
of mass transfer. For values <1.0, external mass transfer con-
trols the biosorption rate. For large Biot numbers (>30), surface 
diffusion controls the biosorption rate. For numbers between 

(a)

(b)

Fig. 6. (a) Log–log plot of Cu(II) uptake by peat moss for various 
particle size. (b) Log–log plot of Pb(II) uptake by peat moss for 
various particle size.

Table 5
Diffusion–chemisorption parameters for Cu(II) uptake by vary-
ing electrical conductivity

EC (mS/cm) qe (mg/g) KDC (mg/g t0.5) ki (mg/g t) R2

1,045 29.905 12.524 5.245 0.9798
4,600 29.880 10.911 3.984 0.9977
15,000 23.693 7.682 2.491 0.9618

Fig. 7. Effect of process interruption on the uptake of Cu(II).
Fig. 8. Kinetic plot of intraparticle diffusion model for various 
particle size.
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1 and 30, both external and intraparticle mass transfer rates 
contribute to the adsorption rate [74]. As particle size increased 
the Biot numbers also increased (Table 6). For particles beyond 
GMS 0.65 mm intraparticle diffusion becomes the dominant 
rate-limiting step. Evaluating the rate-limiting mechanisms can 
present practical options to improve biosorption. When film 
diffusion is limiting, one should improve mixing/turbulence. If 
intraparticle diffusion is rate limiting then smaller biosorbent 
particles should be used [75].

3.3. Development of a predictive model

3.3.1. Optimization of ANN structure

The optimization of a neural network plays an important 
role in the performance of the network [76]. In this study, the 
optimum architecture of the ANN model was determined by 
assessing the impact of parameter variations on the MSE of 
the training and validation set. An optimization protocol was 
developed and is presented herein.

The impact of 13 backpropagation algorithms on the MSE 
was first assessed to select the best algorithm for training the 
network (Table 7). Using the Tansig and Purelin transfer func-
tions at the hidden and output layer, respectively, and 10 neu-
rons at the hidden layer, the Levenberg–Marquardt algorithm 

produced the lowest MSE of 2.0571 and highest R2 of 0.9915. 
The impact of transfer functions at the hidden and outer layer 
was subsequently assessed. This was performed using three 
popular transfer functions (Logsig, Tansig and Purelin) and 
by training the network using the Levenberg–Marquardt algo-
rithm with 10 neurons at the hidden layer. The lowest MSE 
values were obtained using a Tansig transfer function at the 
hidden layer and a Purelin transfer function at the outer layer 
(Table 8). Finally, using the best algorithm and transfer func-
tions, optimization was performed between the number of 
neurons in the hidden layer and the MSE. In this study, over-
fitting of the data was prevented by implementing the early 
stopping technique based on dividing the data into three sub-
sets. According to Yetilmezsoy [77], when the network begins 
to overfit the data, the error on the validation set usually start 
to rise. The training subset was used for calculating the gradi-
ent and updating the network weights and biases. To prevent 
overfitting, the error on the validation subset was monitored, 
and training was terminated at the minimum value [78]. The 
results presented in Fig. 9 indicated that the lowest MSE was 
obtained using 20 neurons in the hidden layer.

The characteristics of the optimized ANN are presented 
in Table 9, and a schematic representation of the architecture 
is shown in Fig. 10. A comparison of the ANN predicted data 
and the experimental data are presented in Fig. 11. The plot 
shows high correlation (R2 = 0.9965) between the predicted 
and the experimental data which highlights the accuracy of 
the ANN model.

3.3.2. Formulation of empirical equation

The weights of the optimized ANN model and the trans-
fer function were used to develop an empirical expression for 
predicting adsorption kinetics without the need to use ANN 
software (Eq. (24)). This empirical equation successfully 
incorporates the non-linear relationship of multiple batch 
operational parameters. Consequently, this ability to predict 
the overall behaviour of the process makes it a valuable tool 
to scale-up batch processes from laboratory data.

Table 7
Comparison of various backpropagation algorithms

Backpropagation (BP) algorithms Function MSE IN R2 

BFGS quasi-Newton backpropagation Trainbfg 17.0961 12 0.7311
Powell–Beale conjugate gradient backpropagation Traincgb 28.8950 15 0.7418
Fletcher–Reeves conjugate gradient backpropagation Traincgf 6.2600 42 0.9361
Polak–Ribiere conjugate gradient BP Traincgp 22.5300 16 0.7442
Gradient descent Traingd 279.4313 6 0.0863
Gradient descent with momentum Traingdm 279.4313 6 0.0863
Gradient descent with adaptive learning rate Traingda 45.4966 21 0.4652
Gradient descent with momentum and adaptive learning Traingdx 42.2333 25 0.3002
Levenberg–Marquardt backpropagation Trainlm 2.0571 52 0.9915
One step secant backpropagation Trainoss 27.7438 12 0.6357
Resilient backpropagation Trainrp 31.2997 16 0.7250
Scaled conjugate gradient backpropagation Trainscg 26.2069 16 0.7306

IN, Iteration Number; BFGS, Broyden–Fletcher–Goldfarb–Shanno.

Table 6
Mass transfer coefficients and Biot numbers for the biosorption 
of Cu(II)

Particle 
GMS 
(mm)

External diffusion 
model

Particle diffusion 
model

Biot 
number

kf 
(cm/min)

R2 De 
(cm2/min)

R2 Bi

0.11 3.33E–04 0.3441 4.85E–07 0.9965 3.7736
0.21 2.31E–05 0.5829 1.02E–06 0.9973 23.7253
0.65 6.02E–03 0.7554 5.24E–06 0.9971 37.2845
1.05 1.07E–02 0.9054 1.10E–05 0.9808 50.6913
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where Fi is the Tansig activation function used at the hidden 
layer and is given by Eq. (25):
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The input data were normalized in the range –1 to 1 using 
Eq. (26):
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where Xi is the input or output variable X, and Xmin and Xmax 
are the minimum and maximum value of variable X.

Ei is the weighted sum of the normalized input calculated 
using values from Table 9 and is defined as follows:

E W W d W W W t bi i i i i i ip= × + × + × + × + × +1 2 3 4 5pH RPM EC  (27)

3.3.3. Sensitivity analysis

The influence of input parameters on the adsorption of 
copper onto peat moss was quantitatively determined using 
the weight method proposed by Garson [79] and is presented 
as Eq. (28):
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 (28)

where Ij is the relative importance of the jth input variable on 
the output variable, Ni and Nh are the numbers of input and 
hidden neurons, respectively. W is connection weight, the 
superscripts i, h and o refer to input, hidden and output lay-
ers, respectively. Subscripts k, m and n refer to input, hidden 
and output neurons, respectively.

Using Eq. (28), reaction time was found to be the most 
influential parameter in the adsorption process with a rela-
tive importance of 30%. This was followed by particle size 
(23%), conductivity (18%), agitation (17%) and finally pH 
(12%). The importance of reaction time was expected, as 
increasing contact time between adsorbate and adsorbent 
enhances the probability of collision of the adsorbate onto a 
sorption site.

3.3.4. Genetic algorithm optimization

After the ANN model was developed, the input space 
was optimized using the GA technique to determine the 

Table 9
Optimum ANN structure

Type Details

Network type Feed-forward 
backpropagation

Transfer function 
(hidden layer)

Tansig

Transfer function 
(output layer)

Purelin

Training function Levenberg–Marquardt 
Performance function Mean square error (MSE)
Neurons in input layer 5
Neurons in hidden layer 20
Neurons in output layer 1
Data used for training 70%
Data for crossvalidation 15%
Data for testing 15%Fig. 9. Effect of the number of neurons in the hidden layer on 

ANN performance.

Table 8
Impact of varying transfer function on ANN structure

Activation 
function layer 1

Activation 
function layer 2

MSE (first 
training)

MSE (second 
training)

Logsig Logsig 38.8626 30.9762
Logsig Purelin 1.9932 0.45684
Logsig Tansig 3.3989 0.54762
Purelin Logsig 22.4315 41.4193
Purelin Purelin 19.6998 14.1929
Purelin Tansig 11.3439 19.4231
Tansig Logsig 36.4061 30.5938
Tansig Purelin 2.0571 0.1361
Tansig Tansig 1.0849 0.30369
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optimum conditions (pH, particle size, agitation, conduc-
tivity and time) necessary for maximizing biosorption. The 
equation obtained from the ANN model was used as the 
objective function [35], and can be represented as follows:

Objective function purelin LW tansig IW
x x x x

= × ×( (
[ ( ); ( ); ( ); (1 2 3 44 5 1 2); ( )] ) )x b b+ +

 (29)

where IW and b1 are the weight and bias of the hidden layer 
and LW and b2 are the weight and bias of output layers from 
Table 10.

A double vector population type was selected, and the 
population size, population generation, crossover fraction and 
mutation rate were set to be 100, 100, 0.7 and 0.01, respectively. 
The selection, crossover and mutation operators were chosen 
as stochastic uniform, two point and uniform, respectively. 
Fig. 12 presents the fitness values vs. generation. After ~40 
generations, the value of fitness reached a minimum and then 
remained constant. The ANN–GA optimization indicated that 

maximum sorption could be obtained using pH 5.5, parti-
cle size 0.21 mm, agitation 690 rpm, conductivity 290 mS/cm 
and contact time 50 min. The model prediction of the rela-
tive sorption capacity under these optimized conditions was 
32.25 mg/g. The accuracy of the ANN–GA was then validated 
by conducting experimental biosorption kinetics using the 
optimized operational parameters. The resulting relative sorp-
tion capacity was 31.37 mg/g producing a residual error of 
2.8%, thus revealing an excellent prediction by the ANN–GA 
model and bolsters its usefulness in engineering applications.

4. Conclusions

Batch biosorption kinetic studies were carried out to 
assess the improved performance of chemically treated 
peat moss. Hot-alkali pretreatment of peat moss resulted 
in a 19% increase in relative sorption capacity over that of 
the untreated sample and compares well to other previously 
reported methods. The positive impact of hot-alkali treat-
ment is attributed to a reduction in the occlusion of pores 
within the peat structure which resulted in an increased rate 
and uptake capacity. Experimentally, operational parameters 
were varied and analyzed using theoretical kinetic models. 
The reaction kinetics was well represented by the diffusion–
chemisorption model.

The rate-limiting steps involved in the process of bio-
sorption included film diffusion followed by intraparticle 
diffusion and was dependent on biosorbent size. At the given 
operational parameters, the solution pH influenced the spe-
ciation of metal ions which in turn affected the biosorption 
process. Competing ions in solution had an insignificant 
effect up to an EC of 4,600 mS/cm. Beyond this value, a sig-
nificant decrease in sorption capacity and reaction rate was 
observed.

A predictive model to simulate the kinetic process was 
successfully developed using an ANN and optimized using 
a GA. The optimum parameters predicted by the GA were 
subsequently validated by additional experimental studies 
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which revealed a minimal residual error of 2.8%. Therefore, 
the non-linear relationships exhibited by the process variables 
were successfully captured by the model. Consequently, the 
high predictive capability of the model can reduce laboratory 
experimentation, as well as predict the performance, and aid 
in the design of scaled-up batch treatment system.
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