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ab s t r ac t
In the present study, multivariate techniques and geostatistical cokriging were used to look into the 
groundwater salinization of district Faisalabad. The groundwater condition of district Faisalabad has 
become miserable because of the rapid increase in population, industrial wastes, and agrochemical 
application. As a result, majority of the people do not have access to pure drinking water and, con-
sequently, polluted water is causing many deaths per year. A number of 220 water samples based 
on instructions of World Health Organization (WHO) were taken from four main sources such as 
hand pump, injector pump, tube well, and water supply. All samples were tested for 12 water quality 
parameters and summary statistics were calculated to compare the water quality parameters with 
WHO permissible limits. Initially, correlation matrix was constructed to evaluate the most significant 
parameters and later on used principal component analysis (PCA) to select those parameters causing 
maximum variation. Dendrogram based on cluster analysis conveyed same sort of information as 
delivered by PCA. First, factor of PCA contributed 41.6% of total variation. Six water quality parame-
ters such as sulfate, calcium, total dissolved solids, sodium, chloride, and magnesium were found to 
be most alarming because all of these have factor loadings greater than 75%. Cross-variogram based 
on cokriging showed spatial dependence as well as positive pairwise spatial correlation among all 
parameters. The prediction maps highlighted the most dangerous and health hazard areas; therefore, 
may be very helpful for water management agencies to target those high-risk areas. It was found that 
the area with east latitude 31.0°–31.4° and north longitude 72.8°–73.2° is most alarming zone.
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1. Introduction

Groundwater is a main source of pure water and fresh-
water in arid areas to fulfil the agricultural, industrial, and 
domestic requirements [1]. However, an excessive usage of 
groundwater aquifers shrinks the water quality. Furthermore, 
inappropriate removal of waste materials, industrial waste in 
water bodies, food residue, and excessive usage of agrochem-
icals in agriculture contaminate water. Waterborne diseases 
are considered as a major reason of children’s death in devel-
oping countries [2]. Two billion people round the globe use 

groundwater for drinking purposes [3]. In Pakistan, people 
get drinking water through several resources like tube well, 
hand pump, house water supply, and injector pumps. Since, 
little attention has been given to improve the drinking water 
quality; therefore, water obtained from these resources is 
often contaminated [4]. Water supply is mostly irregular and 
waterborne diseases such as typhoid, hepatitis, diarrhea, and 
stomach inflammation are common in Pakistan [5]. In city 
areas, water sanitary condition is also unsatisfactory [6]. 

In Pakistan, about 30% of diseases and 40% of deaths are 
due to contaminated and impure drinking water [5]. Since, 
every fifth inhabitant of Pakistan is suffering from water-
borne infections; therefore, 0.1 million deaths (with 250,000 



M. Ahmad et al. / Desalination and Water Treatment 84 (2017) 93–10194

children) occur each year [7]. It is need of the hour to iden-
tify the factors which cause this severe groundwater con-
tamination. Ullah et al. [8] investigated the factors which 
are contaminating the groundwater near Kabul river 
Peshawar, Pakistan. They suggested to install wastewater 
treatment industries near Peshawar to cope with the most 
contaminated water. Waseem et al. [9] reviewed various 
factors that cause pollution in water, soil, and vegetables. 
They discussed pollution status in major areas of Pakistan. 
Iqbal and Khera [10] stated that copper and lead are intro-
duced into water due to industrial waste and other human 
activities. Similarly, Iqbal et al. [11] investigated nine water 
quality parameters including pH, sulfate, chloride, and total 
dissolved solids (TDS) after treatment of the contaminated 
wastewater.

Recently, many statistical techniques such as factor anal-
ysis, cluster analysis (CA), principal component analysis 
(PCA), and discriminant analysis have been used to predict 
the distribution of groundwater quality parameters due to an 
increase in physical and chemical variables in groundwater 
[1]. These techniques not only lead to effective learning of 
water quality characteristics but also provide reliable solu-
tions to enhance the quality of water [12–15]. Geostatistics 
suggests various methods to model and predict the spatially 
varying groundwater parameters and pollutant concentra-
tion [16]. Mainly, geostatistical analysis consists of vario-
gram modelling to assess the correlation structure, kriging, 
cross-validation, and spatial mapping.

Kriging has been extensively used to evaluate spatial 
variability of groundwater quality parameters [17,18]. Nas 
[17] used ordinary kriging to assess the spatial variation 
of water quality parameters in Turkey. Ahmad and Chand 
[18] compared ordinary and Bayesian kriging to evaluate 
the spatial distribution of TDS level in groundwater of 
tehsil Jampur, Pakistan. They used Box–Cox transforma-
tion to normalize the positively skewed spatial variable and 
used Matern covariance model to evaluate the correlation 
structure. Ahmad et al. [19] showed the outperformance 
of Bayesian kriging while predicting the sulfate concentra-
tion in groundwater of Jampur, Pakistan. They assessed the 
spatial autocorrelation among sampled observations using 
variogram envelop [20]. 

Pozdnyakova and Zhang [21] remarked that kriging is 
used to assess the spatial distribution of a sampled variable 
while cokriging is a multivariate geostatistical method used 
to improve the estimation procedure of sampled variables 
as it takes into account the cross-correlation with the better 
sampled variable. Triki et al. [1] compared cokriging with 
ordinary kriging to assess the groundwater salinization of 
eastern Tunisia and demonstrated the effectiveness of cokrig-
ing through cross-validation. They evaluated the most signif-
icant water quality parameters by PCA, CA, and multivariate 
correlation matrix and took TDS as auxiliary variable while 
Na+, Cl–, SO4

2−, and sodium absorption ratio (SAR) as primary 
variables and showed the prediction results by contour maps. 
Mehrjardi et al. [22] predicted the groundwater distribution 
of Yazd-Ardakan plain, Iran, using inverse distance weight-
ing, ordinary kriging, and cokriging. They used spherical 
and exponential covariance structures to assess the under-
lying correlation among water quality parameters. Their 
results supported the use of cokriging geostatistical method.

In this paper, our main objective is to illustrate the use 
of geostatistical method combined with multivariate statis-
tical method in order to evaluate the quality of groundwater 
in Faisalabad. First, we used multivariate correlation matrix, 
PCA, and CA to identify the most significant groundwater 
quality parameters. Second, an unbiased and efficient multi-
variate geostatistical cokriging technique along with suitable 
spatial correlation structure is used to improve the estimation 
of groundwater salinization. This also leads to the evaluation 
of the spatial distribution of highly contaminated groundwa-
ter quality parameters. Finally, we draw the prediction maps 
of most significant water quality parameters. 

2. Materials and methods

Since water pollution is mainly caused by the toxic chem-
icals; therefore, 12 water physiochemical parameters such 
as TDS, sulfate SO4

2−), nitrate NO3
− , potassium (K+), sodium 

(Na+), magnesium (Mg2+), calcium (Ca2+), bicarbonate HCO3
− , 

pH, chlorides (Cl–), fluoride (F–), and SAR have been studied. 
Among these parameters, TDS and pH are physical parame-
ters while remaining are chemical parameters. TDS consists 
of organic matters and inorganic salts dissolved in drinking 
water. Most common inorganic salts are Na+, Ca2+, K+, Mg2+, 
Cl–, HCO3

− , SO4
2−, and NO3

−. It is noteworthy that the chemical 
parameter SAR illustrates the water suitability for irrigation 
purpose. As declared by Triki et al. [1], SAR is expressed as: 

SAR Na
(Mg Ca )

2

+

2+ 2+
=

+

 

(1)

where Na+ is sodium concentration, Mg2+ is magnesium con-
centration, and Ca2+ is calcium concentration. According to 
World Health Organization, if level of SAR is ≤13 then water 
is good for irrigation purposes otherwise soil will become 
sodic and result in decreased agricultural yield.

2.1. Study area of the hydrogeochemical data 

The study area, Faisalabad is situated in Punjab province 
in eastern Pakistan at east latitude 31.4292° N and north longi-
tude 73.0789° E. It is the most famous and populated city after 
Karachi and Lahore. According to Pakistan Demographics 
Profile [23], population of Faisalabad has reached 3.567 million. 
It is known as Manchester of Pakistan for its textile industry 
and it contributes about 20% in annual gross domestic prod-
uct of Pakistan. It is well-known industrial city because it lies 
at center of many cities connected through highways, railway 
tracks, and by air transportation. Rapid growth in population 
and increase in number of industries has increased the level of 
wastewater extensively which is consequently contaminating 
the resources of freshwater and surrounding environment [7]. 
To observe the quality of groundwater in Faisalabad, a sur-
vey was conducted by Pakistan Council of Research in Water 
Resources (PCRWR), based on 220 water samples collected 
from tube well, hand pump, house water supply, and injec-
tor pumps (see Fig. 1). Guidelines provided by World Health 
Organization (WHO) [24] were followed during the survey. 
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2.2. Multivariate statistics

Multivariate statistical techniques are effective tools 
and used extensively for analysis of water physicochemical 
parameters [25] and to study the groundwater contamination 
[26]. The sample correlation coefficient between ith and jth 
variables is illustrated as:
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The correlation matrix for a sample data corresponds to 
covariance matrix of same data with correlation as a substi-
tute of covariances.
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PCA is often performed on groundwater parameters to 
learn the interrelations among parameters and to shrink the 
number of water quality parameters. It is a famous multivari-
ate statistical data analysis technique due to its algebraic sim-
plicity and straightforward interpretation. In this method, a 
linear transformation is defined in such a way that it changes 
the correlated variables into uncorrelated orthogonal factors. 
CA is also a multivariate statistical method where dendro-
gram is drawn in order to find the most collinear and associ-
ated clusters. Usually, the results of CA confirm the findings 
of PCA [1].

2.3. Theory of cokriging

Kriging is a technique that enables prediction of a 
spatial process based on a weighted average of the observa-
tions. In case of an intrinsically stationary process with con-
stant unknown mean, we use the ordinary kriging method. 
Cokriging is a geostatistical technique that deals multivariate 
data to estimate the spatial dependence structure of physically 
correlated variables [27]. It is a modification of geostatistical 
ordinary kriging method. In cokriging estimation, an under-
sampled variable is taken as a primary variable while the vari-
ables sampled at low cost are taken as secondary variables. 
Secondary variables are used to establish cross-correlation 
with primary variables. Thus, this technique is suitable for 
prediction of an important variable as a function of other vari-
able. The best linear unbiased estimate of Y at any unobserved 
location x0 can be mathematically expressed as:

Y x Y x Z xi
n

i i k
m

k k
( ) ( )0 1 1= = =Σ Σλ ( ) + ω  (4)

where Y(xi) is the observed values of primary variable Y at 
locations xi; and i = 1, 2, …, n and Z(xk) are the observed values 
of secondary variable Z at locations xk, k = 1, 2, …, m. In Eq. (4), 
λi and ωk are weights of cokriging technique. These weights 
are chosen in such a way that the estimate remain unbiased 
with least variance [1]. Cokriging has also the advantage of 
assessing the pairwise cross-correlation structure among 

regionalized variables. This is possible using cross-variogram 
which is an integral part of cokriging analysis. Let Y(xi) and 
Z(xk) are two random variables, the cross-variogram under 
the second order stationarity is given as:

γ ik i i k kh E Y x h Y x Z x h Z x( ) {[ ( ) ( )][ ( ) ( )]}= + − + −
1
2  

(5)

This is also known as the linear model of regionalization 
using variogram. A detailed description of cokriging system 
has been illustrated by Subyani and Al-Dakheel [27].

3. Results and discussion

3.1. Exploratory data analysis

We used R statistical software [28] to analyze the hydro-
logical data. Initially, basic statistics of all water quality 
parameters along with normality test and permissible lim-
its are given in Table 1. It can be seen that all water quality 
parameters are violating the permissible limits as described 
by WHO [24]. The coefficient of variation (CV) represents the 
extent of variation of each parameter concentration. All sam-
ples yield moderate to high spatial variation among observed 
samples of the water quality parameters. The high CV for 
Cl–, NO3

−, K+, and Ca2+ reflects the high spatial variation in 
groundwater of Faisalabad.

In order to evaluate the most significant and correlated 
water quality parameters, correlation matrix is displayed 
visually (Fig. 2) for all 12 physiochemical parameters. Results 
based on Pearson’s correlation show that TDS have high 
correlation (r ≥ 0.8) with Cl–, Mg2+, and SO4

2− . Similarly, Na+ 
shows pairwise high association with TDS, Cl–, Mg2+, and 
SO4

2−
. Mg2+ shows positive correlation with TDS, Cl–, and Na+. 

It is also noted that SO4
2−  exhibits highly positive association 

with four water quality parameters like Mg2+, Cl–, TDS, and 
Na+. Hence, a significant positive correlation (r ≥ 0.7) between 
TDS, Mg2+, Ca2+, Na+, Cl–, and SO4

2−  is evidenced.

3.2. Principal component analysis 

PCA is used to establish the association between water 
quality parameters and to assess the correlation between 
these parameters. In this study, 12 water quality parame-
ters: TDS, SO4

2− , NO3
−, K+, Na+, Mg2+, Ca2+, HCO3

− , pH, Cl–, F–, 
and SAR have been used for PCA. Results of PCA (Table 2) 
revealed that first three factors are able to show the hydro-
geochemical procedures of the groundwater without any 
significant loss of information. PCA generated three factors 
which collectively account for 76% of total variation. First 
factor account for 41.6% of total variation which is asso-
ciated with high loading of TDS, Mg2+, Ca2+, Na+, Cl–, and 
SO4

2− . These six parameters constitute highly strong loading 
(≥0.7). Further, in Factor 1, all loadings are positive except 
pH (–0.015). Therefore, it is considered as an important fac-
tor which mainly affecting the groundwater quality. Factor 2 
account for 25.5% of total variation. In Factor 2, positive load-
ings are associated only with Mg2+ and Ca2+ while all other 
parameters indicate negative loadings. The Factor 3 explains 
only 8.9% of total variation which is mainly related to NO3

− 
having high negative loading (–0.93).
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Fig. 1. Location map displaying the 220 monitored sites observed for groundwater in district Faisalabad.

Table 1
Descriptive statistics of physiochemical parameters in groundwater of district Faisalabad

Variable Units Minimum Maximum Mean SD CV AD normality test Permissible 
WHO limitA2 p Value

TDS mg/L 104 9,804 1,961.8 1,560.5 79.54 8.68 0.0011 ≤1,000
Ca2+ mg/L 4 1,100 81.27 83.31 102.50 20.09 0.0002 –
Mg2+ mg/L 0 287 62.402 54.134 86.75 11.71 0.0021 ≤150
HCO3

− mg/L 38 1,210 448.81 199.10 44.36 2.08 0.0021 –
pH – 1.4 70 9.2464 5.636 60.96 8.47 0.0013 6.5–8.5
Cl– mg/L 11 4,255 500 593.05 118.61 17.13 0.0019 ≤250
K+ mg/L 0 182 18.630 19.98 107.25 15.30 0.0000 ≤12
Na+ mg/L 3 2,000 607 513.99 84.68 7.48 0.0030 ≤200

SO4
2− mg/L 12 2,416 588.14 518.40 88.14 10.20 0.0000 ≤500

NO3
− mg/L 0 21.20 3.008 3.33 110.98 12.92 0.0002 ≤50

F– mg/L 0.02 4.22 0.984 0.5587 56.78 3.05 0.0001 ≤1.5
SAR – 0.677 260.768 75.573 58.95 78 4.91 0.0032 ≤13

Note: AD, Anderson–Darling.
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3.3. Cluster analysis

CA is also performed on the set of 220 samples over 12 
water quality parameters. The main objective of performing 
the CA is to evaluate association between water parameters. 
Dendrogram (Fig. 3) has grouped all 12 water parameters 
into 3 significant clusters. First cluster consists of TDS, Mg2+, 
Ca2+, Na+, Cl–, SO4

2− , and K+. Since the loading of potassium 
(K+) is <0.75 (weak association). Therefore, we consider only 
six significant factors for prediction purposes. Overall, the 
results of CA confirm the classification of PCA and correla-
tion matrix. It is also noteworthy that nitrate concentration 
is uncorrelated with all remaining water quality parameters 
and hence fall in a separate cluster. 

3.4. Geostatistical estimation

Geostatistics suggests many spatial estimation tech-
niques which are used for interpolation of any observed 

variable at unsampled locations. These procedures are 
known as kriging that provide us the measures of accu-
racy in the form of estimated variance [29]. Many kriging 
techniques like simple kriging, ordinary kriging, universal 
kriging, block kriging, cokriging, lognormal kriging, and 
indicator kriging are famous minimum variance interpola-
tion techniques. 

3.4.1. Coregionalization

An important step in cokriging is to build a proper model 
assessing the dependency among underlying variables [1] 
which is referred as coregionalization and estimated using 
cross-variogram. We draw the cross-variogram using gstat 
and vgm functions of gstat package [30] of R statistical soft-
ware [28]. All these direct semivariograms generally indicate 
some spatial structure and most of them have moderately 
large component of nugget effect. These semivariograms 
show that the ratio, nugget/total variation, of TDS, Ma2+, Ca2+, 
Na+, Cl–, and SO4

2−  was between 15% and 60% which indi-
cates the spatial dependence of these variables.

Furthermore, Fig. 4 shows that many cross-variogram 
models are close to the maximum correlation (≈0.9) except 
the cases TDS–Ca2+, Ca2+–Na+, Ca2+–Cl, and Ca2+–SO4

2− . This 
reduction in the spatial cross-correlation is due to their small 
correlations TDS–Ca2+ (0.5), Ca–Na+ (0.3), Ca2+–Cl– (0.6), and 
Ca2+–SO4

2−  (0.5). In spite of these, no pair shows negative 
spatial cross-correlation.

3.4.2. Ordinary kriging prediction of target variable

In this section, we use ordinary kriging technique for the 
spatial prediction of the target variable, TDS without using 
covariables. Initially, we estimated the three parameters of 
the spherical variogram model (σ2 = 2.35, φ = 10.12, τ2 = 5.12) 
using eyefit command and later confirmed the parameters 
estimation using ordinary least square method. Afterwards, 
we used krige.control function of geoR Package [31] to obtain 
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Fig. 2. Multivariate correlation matrix displayed graphically 
(top panel) and variables having insignificant correlation 
(bottom panel).

Table 2
Pattern of rotated factors using varimax rotation of 12 water 
quality parameters along with cumulative % variance

Variable Factor 1 Factor 2 Factor 3

TDS 0.907 –0.383 0.001
Ca2+ 0.757 0.367 –0.050
Mg2+ 0.913 0.025 –0.125
HCO3

− 0.092 –0.890 –0.188
pH –0.015 –0.738 –0.173
Cl– 0.895 –0.271 0.019
K+ 0.529 –0.142 –0.325
Na+ 0.783 –0.573 0.031
SO4

2− 0.851 –0.263 0.012

NO3
− 0.055 –0.148 –0.932

F– 0.455 –0.441 –0.036
SAR 0.363 –0.859 0.104
% Total variance 41.6 25.5 8.9
Cumulative % variance 41.6 67.1 76
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the predicted values. At the end, we use the leave-one-out 
cross-validation to calculate the prediction errors (Table 4).

3.4.3. Map-based cokriging analysis 

In order to predict the spatial autocorrelation struc-
ture of groundwater quality parameters and to assess the 
groundwater salinization in Faisalabad, the geostatistical 
cokriging is applied. Results based on multivariate correla-
tion matrix, PCA, and CA suggest highly significant vari-
ables. Significant pairwise associations were found among 
TDS, Mg2+, Ca2+, Na+, Cl–, and SO4

2− . Further, all these vari-
ables crossed the permissible limit (Table 1). Therefore, these 
variables have major contribution in contaminating the 
groundwater. To carry out geostatistical cokriging, TDS is 
considered as auxiliary variable while Mg2+, Ca2+, Na+, Cl–, 

and SO4
2− are taken as primary variables. Since, all geosta-

tistical prediction methods are based on the assumption of 
normality of observations; therefore, Anderson–Darling 
normality test (Table 1) revealed that all of these variables 
are positively skewed. Box–Cox transformation [32] used by 
Ahmad and Chand [18] and Ahmad et al. [19] is carried out 
by using CAR package [33] of R statistical software [28] to 
normalize these variables. 

An important step in geostatistical prediction is to assess 
the spatial autocorrelation using spatial anisotropy or isot-
ropy. A spatial structure is isotropic when the pattern of the 
spatial correlation changes due to the change in the direction 
of orientation of pairs of locations [19]. It was found that the 
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Fig. 3. Dendrogram based on cluster analysis showing the 
relations among 12 water quality parameters. 

Table 4
Cross-validation statistics for cokriging and ordinary kriging

Parameter Ordinary kriging Cokriging
MSSE MSE ME R2 MSSE MSE ME R2

TDS 1.09 2,350 –5.78 0.19 1.01 1,504 –2.3 0.91
Magnesium 0.91 6,113 –10.96 0.41 1.1 1,384 2.3 0.89
Calcium 1.2 1,592 –17.59 0.35 1.14 838 0.66 0.84
Sodium 0.96 10.6 0.04 0.11 0.97 0.65 0.03 0.94
Chloride 1.2 4.49 –0.09 0.51 0.97 0.51 0.01 0.93
Sulfate 1.25 3.32 0.05 0.34 0.99 0.49 0.03 0.85
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Fig. 4. Cross-variography of groundwater quality parameters 
of district Faisalabad, Pakistan to assess the cross-correlation 
structure.

Table 3
Parameters of best fitted variogram models of significant physiochemical parameters

Groundwater 
parameters

Variogram 
model 

Estimation 
method

Sill (σ2) Range (φ) Nugget (τ2) τ2/σ2 RMSPE

TDS Spherical REML 2.35 10.25 5.12 2.17 0.6587
Mg2+ Exponential REML 3.14 11.24 3.45 1.13 0.2354
Ca2+ Exponential MLE 4.53 10.00 2.56 0.51 0.4789
Na+ Matern REML 2.22 9.89 3.25 1.03 0.9875
Cl– Exponential REML 2.12 8.65 6.47 3.12 0.8425

SO4
2− Matern MLE 1.99 6.25 8.57 4.39 0.7746

Note: RMSPE: root mean square prediction error.
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structure of spatial autocorrelation of response variable was 
approximately independent from direction. 

As revealed by PCA, concentrations of Mg2+, Cl–, Na+, 
Ca2+, and SO4

2−  were taken as primary variables while TDS is 
taken as auxiliary variable. Geostatistical cokriging basically 
studies the spatial continuity and dependence among vari-
ables of interest. Initially, variogram of all variables are com-
puted and parameters (sill, range, and nugget) are estimated 
by maximum likelihood estimator (MLE) and restricted 
maximum likelihood  (REML) (Table 3). Four water quality 
parameters support the REML estimation technique with 
spherical covariance function. We assess the property of spa-
tial dependence [20] by the ratio nugget/sill. It is found that 
all parameters constitute that ratio approximately 15%–60% 
which suggest that the parameters are spatially dependent 

and are suitable for spatial prediction. Interpolation map of 
TDS (Fig. 5) highlights the risk zone shown in sky blue, yel-
low, and red colors. Since tolerable limit of TDS as settled 
by WHO is 1,000 mg/L; therefore, major part of study area is 
exceeding the acceptable limit. Concentration of magnesium 
has also been plotted in Fig. 5. Here, the areas shown in yel-
low and red colors are at high risk. Calcium concentration is 
alarming in small area where it is violating the permissible 
limit (75 mg/L).

Tolerable limit of chloride concentration is 250 mg/L 
whereas it varies between 11 and 4,255 mg/L in our sample 
data. As shown in Fig. 5, the major part of observed surface 
have tolerable chloride concentrations except a small area 
falling between east latitude 31°–31.2° and north longitude 
72.5°–72.8°. Spatial interpolation map of Na+ is also shown 
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Fig. 5. Spatial prediction maps of water quality parameters: TDS, magnesium, calcium, sodium, chloride, and sulfate, generated using 
cokriging method.
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in Fig. 5. The tolerable limit of Na+ is 200 mg/L where our 
data ranges from 3 to 2,000 mg/L. Map shows that only small 
area represented by blue color has acceptable level of sodium 
while remaining area have high sodium contamination. 
Prediction map of sulfate concentration is also represented 
in Fig. 5. Likewise, sulfate concentration in our data ranges 
from 12 to 2,416 mg/L while WHO described its acceptable 
limit as 250 mg/L. Only small part of studied region shows 
acceptable sulfate concentration level.

3.5. Performance of predicted errors

In this research, we used leave-one-out cross-validation 
method to assess the performance of cokriging and ordinary 
kriging. Every given observation was estimated by the neigh-
boring values except itself [1]. The mean squared standard 
error (MSSE), mean error (ME), and mean squared error 
(MSE) were used to assess the accuracy of predicted errors 
during the cross-validation process for both cokriging and 
ordinary kriging. These measures are defined as follows:

MSSE = 1
1
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2n
Y Y
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
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

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n
i iΣ = −( )*

 
(8)

where Yi and Yi
*  are observed and estimated values, respec-

tively, of given parameters at location i and σ i
2  is the variance 

of prediction error.
The results of cross-validation indicate better perfor-

mance of cokriging as compared with ordinary kriging for 
estimation. Therefore, we recommend estimation of unob-
served location using cokriging when multivariate spatial 
data is under consideration.

Our results showed much consistency with the findings 
of Rafique et al. [34]. Although their research is based only 
on descriptive analysis while we illustrated the multivariate 
spatial aspect of the groundwater parameters as discussed by 
Triki et al. [1].

4. Conclusion

The results of this study indicate that among 12 groundwa-
ter quality parameters, 6 parameters such as TDS, magnesium, 
calcium, sodium, chloride, and sulfate were found most signif-
icant. This significance was initially evaluated by multivariate 
correlation matrix and later on by PCA and CA. Among sig-
nificant parameters, TDS was taken as auxiliary variable while 
remaining five were taken as primary variables. By observing 
high association among water quality parameters, the use of 
geostatistical cokriging method is recommended. To declare 
highly contaminated risk zones in Faisalabad, the resulted 
predicted values of the cokriging have been illustrated by con-
tour plots. We have adopted the methodology of Triki et al. [1] 

and found many similarities with their findings. Our results 
indicate that estimation procedure can be improved to great 
extent using geostatistical cokriging. Furthermore, it has been 
observed that the concentrations of TDS, magnesium, sul-
fate, and sodium are alarming in areas with north longitude 
72.8°–73.2° and east latitude 31.0°–31.4°. This work forms a 
basis for government and other policy makers to improve the 
quality of groundwater for good health care.
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