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a b s t r a c t
We developed a prediction model for cyanobacterial blooms in the lower Han River, South Korea, 
using decision tree algorithms. Decision tree is a type of machine learning method that can over-
come missing values or outlier problems. Despite its simple application, it can accurately predict 
complex natural phenomena. To improve the robustness of the model, we used ensemble methods 
such as Bagging, AdaBoost, and Random Forest, and the performance of each method was compared 
against that of a single decision tree. The indicators of cyanobacterial blooms, namely chlorophyll-a 
concentration and cyanobacteria cell count, were classified into either the non-exceedance or 
the exceedance class according to administrative guidelines or criteria, and used as the response 
variables. Since the cyanobacteria cell count in the exceedance class was much smaller than that in 
the non-exceedance class, the synthetic minority over-sampling technique (SMOTE) was used to 
mitigate the imbalance between classes. The prediction abilities for chlorophyll-a and cyanobacteria 
were evaluated based on multiple indices, including area under curve (AUC). The result showed that 
the performance of ensemble models improved by 1.7%–11.1% and 1.5%–4.9% compared with that of 
the single model for chlorophyll-a and cyanobacteria, respectively. The implementation of SMOTE to 
mitigate the imbalance cyanobacteria cell count data enhanced AUC by 4.3%–6.7%. The results of the 
variable importance analysis indicated that water temperature, flow, and month were essential factors 
for the prediction of the cyanobacteria classes.
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1. Introduction

An increasing number of cyanobacterial bloom events 
have been reported in freshwater and coastal systems world-
wide. The main causes are believed to be eutrophication of 
water bodies and global warming [1]. Cyanobacterial blooms 
could result in highly turbid water, limiting the use of water 
resources and making water treatment prohibitively expen-
sive. In particular, there is increasing concern over certain 
cyanobacteria species that can produce toxins harmful to 
human health and the ecosystem [2].

Given the enormous impact of cyanobacterial bloom 
events on water quality and the aquatic ecosystem, accurate 

predictions are essential for effective management of water 
resources. Nevertheless, cyanobacterial bloom events are 
difficult to predict since this is a complex natural phenom-
enon affected by numerous variables. Recently, there has 
been an increasing interest in using machine learning com-
bined with observational data to predict complex phenom-
ena [3–5]. Among machine learning methods, the decision 
tree approach can overcome the problems caused by missing 
values and outliers in the data. Owing to its easy and simple 
application, it has been widely used for predicting natural 
phenomena [6–8]. However, when a single decision tree alone 
is used, small variations in training data might cause signif-
icant changes in the model. Ensemble methods are believed 
to act as a countermeasure against this weakness [9]. These 
methods can generate more robust models than the single 
decision tree model by generating and integrating multiple 
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models. In this study, cyanobacterial blooms were predicted 
in the lower Han River, South Korea, using the ensemble 
decision tree algorithms. The performance of each ensemble 
approach was compared with that of the single decision tree.

Since typical machine learning algorithms assume that 
the data sets being used are balanced, data imbalance could 
pose problems in classification. When data are imbalanced, 
the classifier of the decision tree can result in more inaccurate 
predictions for the minority class, which consists of a small 
number of data, than the majority class, during optimization 
of the overall performance [10–12]. In this study, a single 
class consisting of high chlorophyll-a concentration and cya-
nobacteria cell count that exceed the management guidelines 
or environmental standards for water quality is considered 
as the minority class, since cyanobacterial blooms are not 
frequently occurring phenomena [11]. Environmental sci-
entists and managers, including us undertaking this study, 
are generally interested in the occurrences of the minority 
class. Nonetheless, the prediction power of the model for the 
minority class is relatively inaccurate because of data imbal-
ance. Data preprocessing, cost-sensitive learning, and algo-
rithm modifications have been used to overcome this issue. 
Data preprocessing, which is the most widely used method, 
was employed in this study [13].

The Han River is one of the largest rivers in South Korea, 
flowing from east to west of Seoul, the capital of the country. 
The river is 481.7 km long, with a basin area of 260,188 km2. 
It serves as a major drinking water source for citizens of the 
Seoul metropolitan area [14] (Fig. 1). The average annual 
temperature and total annual precipitation during the years 
2007–2015 were 12.8°C and 1,430 mm, respectively. The 
precipitation in summer alone (July–September) accounts 
for 61% of the total precipitation (Korea Meteorological 
Administration, http://www.kma.go.kr). The increase in the 

infrastructure around the Han River, such as bridge piers 
and the underwater bridge, has created stagnant water pools. 
Growing industrialization and urbanization add to the prob-
lem. Hence, the local water pollution is severe and cyanobac-
terial blooms are likely to occur because of eutrophication in 
the downstream area [15]. 

The section of the Han River flowing through Seoul 
is equipped with a cyanobacteria bloom alert system [15]. 
The cyanobacteria bloom alert system issues an “advisory” 
level if the cyanobacteria cell count exceeds 1,000 cell/mL, 
a “warning” level if it exceeds 10,000 cell/mL, and an “out-
break” level for counts higher than 1,000,000 cell/mL in 
two consecutive samplings. The current response for the 
occurrence of cyanobacteria blooms has been designed 
according to the above-mentioned levels. The harms resulting 
from cyanobacteria blooms could be prevented or mitigated 
by accurately predicting the occurrence of cyanobacteria cell 
counts exceeding the guidelines.

The objective of this study was to predict cyanobacteria 
blooms in the lower Han River using decision tree algorithms. 
The performance of single and ensemble decision trees 
was compared, and the effect of using preprocessing for 
addressing data imbalance issues was assessed.

2. Methods

2.1. Data description

Data for water temperature (°C), biochemical oxygen 
demand (mg/L), dissolved oxygen concentration (mg/L), 
chemical oxygen demand (mg/L), suspended solids (mg/L), 
total organic carbon (mg/L), total nitrogen (mg/L), total 
phosphorus (mg/L), chlorophyll-a (mg/m3), and cyanobac-
teria cell count (cells/mL) were obtained from the Water 
Information System managed by the National Institute of 
Environmental Research. The weekly meteorological data 
from April 2007 to December 2015, such as daily precipita-
tion (mm) and irradiance (MJ/m2), were collected from the 
Korea Meteorological Administration, and the flow rate data 
(m3/s) were collected from Water Resources Management 
Information System (WAMIS). In addition, weekly total pre-
cipitation and average weekly irradiance were calculated 
and added to the data set to observe the accumulation effect. 
The observational data for Seoul were used as the meteoro-
logical data.

2.2. Decision tree algorithms

The decision tree approach yields the most homogeneous 
binary splits to explain the variation of the response variable 
by “testing” the attributes of the data in various ways. Using 
the decision tree provides one major advantage: simple 
application. It can deal with both categorical (classification) 
and continuous-(regression-) response variables and can 
overcome missing data and outlier problems [7]. However, 
numerous variables with similar sorting capabilities might 
be present when constructing a single decision tree. Thus, 
small changes in data would cause large variations in the 
constructed model, the prediction performance of which is 
susceptible to instability [9]. Ensemble models can overcome 
problems that may arise when using a single decision tree, 

Fig. 1. Map of the lower Han River, the study site. Ten sam-
pling sites were numbered from upstream to downstream; 
st.1: Gangbuk, st. 2:Amsa, st. 3: Guui, st.4: Pungnap, st. 5: Jayang, 
st. 6: Seongsu Bridge, st. 7: Hannam Bridge, st. 8 Hangang Bridge, 
st. 9 Mapo Bridge, and st. 10 Seongsan Bridge.
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as this involves constructing and integrating multiple models 
to obtain a result. Thus, we developed a single decision tree 
and various ensemble models to compare their performance.

2.2.1. A single decision tree model

For developing a single decision tree, we used the 
Classification and Regression Tree algorithm (CART), a 
method based on the probability theory and sophisticated 
statistics. Using the CART, the decision tree was generated 
from the starting node (root) to the terminal node (leaf). 
The Gini index was used to evaluate the impurity in each 
node, and dichotomy was applied based on the variables 
with the lowest Gini index. The size was optimized to the 
extent possible (the process was stopped only because of 
lack of data). Then, a tree with the optimal size was gener-
ated by pruning [16,17].

If pruning is not applied to the optimum-sized tree, the 
tree would provide poor prediction accuracy for test data or 
other data due to over-fitting to the training data. Therefore, 
pruning based on cost complexity was carried out to prevent 
over-fitting as follows:

Rα(T) = R(T) + α|T|

where Rα(T) refers to the cost complexity of tree T, and R(T) 
refers to the training sample error cost. |T| is the number of 
terminal nodes, and α is the complexity penalty of each node.
Pruned subtrees of different cost complexities were generated 
during the pruning process. The tree with the lowest cost value 
among all subtrees was selected as the optimum tree.

2.2.2. Ensemble decision tree models

An ensemble model is used to develop a prediction model 
with better performance than a single model, as it generates 
and integrates multiple models [18]. Boosting, Bagging, and 
Random Forest, which have been widely used as ensemble 
models, were applied in this study.

2.2.2.1. Boosting[TS: Please check head level 4] The Ada-
Boost algorithm was used for boosting. AdaBoost stands for 
“adaptive boosting algorithm.” It has been applied in various 
fields and has achieved outstanding results owing to its robust 
theoretical foundation, accuracy, and simplicity [16]. Ada-
Boost is an algorithm that generates a number of weak clas-
sifiers and integrates them to improve prediction accuracy. 
For example, a binary classification problem for data set D 
was solved using a weak classifier (h1), generating inaccurate 
results slightly better than arbitrary speculation. AdaBoost 
assigns a weight to the error generated by h1 in the existing D, 
and generates a new data set W1 to improve h1. The process to 
obtain h2, which is the improved classifier, was repeated using 
data set W1. Subsequently, AdaBoost integrated a number of 
weak classifiers, providing a stronger classifier than a single 
classifier.

2.2.2.2. Bagging Bagging is one of the ensemble meth-
ods. It is an algorithm that improves model performance by 

randomly generating a number of predictors to create an 
aggregated predictor. In other words, Bagging consists of 
bootstrap and aggregating. The bootstrap process extracts a 
random subset in the data set, and the aggregating process 
learns each classifier in the extracted subset and combines 
them to generate a strong classifier [17–19].

2.2.2.3. Random Forest Random Forest is one of the most 
powerful machine learning methods. As a variation of Bag-
ging, this algorithm implements Bagging for the decision tree 
[20]. Similar to Bagging, Random Forest generates a number 
of random subsets from the training data set using bootstrap. 
Then, a number of independent decision trees are gener-
ated using each random subset to create aggregated trees. 
Accordingly, a voting process was performed using the value 
selected by numerous trees among the aggregated trees to 
derive a result [21].

2.3. Modeling procedure

2.3.1. Variable selection

We classified response variables, cyanobacteria cell 
count and chlorophyll-a concentration, into the non-exceed-
ance class when they did not exceed the “advisory” level 
(1,000 cells/mL) of the cyanobacteria bloom alert system and 
the lake water quality standard of 14 mg/m3; otherwise, they 
were classified into the exceedance class. Water quality data 
on water temperature, flow rate, sampling month (to account 
for the seasonal factor), sampling station (to account for the 
spatial factor), total precipitation over 7 d, and irradiance, 
which showed a significant correlation with the cyanobacte-
ria cell count and chlorophyll-a concentration, were collected 
through correlation analysis and used as prediction variables.

2.3.2. Data preprocessing

Data imbalance can lead to poor prediction performance 
for the minority class when the number of samples is rela-
tively small; for example, the cyanobacteria cell count and 
chlorophyll-a concentration may exceed the standard. The 
data set used in this study included 1,437 samples corre-
sponding to the non-exceedance class and 1,656 samples 
corresponding to the exceedance class for chlorophyll-a, 
indicating no imbalance in the data set. In the case of the data 
set for cyanobacteria count, 2,893 and 200 samples belonged 
to the non-exceedance class and exceedance class respec-
tively, indicating a high degree of imbalance.

We did not perform preprocessing on the chlorophyll-a 
data (which showed no imbalance), while the representative 
preprocessing method, synthetic minority over-sampling 
technique (SMOTE), was used to mitigate the imbalance 
problem in the cyanobacteria cell count data. The SMOTE is a 
combination of under-sampling and over-sampling methods. 
It has been used to generate random points where the differ-
ence between the points equals the difference between the 
selected minority sample and its neighbor, multiplied by a 
random value between 0 and 1 after selecting the minority 
sample in the feature space (instead of the entire data space), 
and randomly selecting a k value from the nearest neighbors. 
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The synthetic sample generated by this process exists as a 
random point on a straight line connecting the minority 
sample and its nearest neighbor, which makes the applica-
tion of the synthetic sample more logical [22]. SMOTE was 
applied to the training data set for modeling the classes of 
cyanobacteria cell count. The under-sampling parameter 
and over-sampling parameter was set at 200 and 500, respec-
tively. After the SMOTE application, the ratio between the 
non-exceedance and exceedance classes in the training data 
set was 0.62:0.38, indicating relaxed imbalance, compared 
with 0.93:0.07 before the application.

2.3.3. Model training and validation

To compare the performance of the decision tree 
algorithms, the entire data set was randomly divided into 
training data set and test data set in the ratio of 7:3. The training 
data set was used for calibrating the single and ensemble tree 
models and the test data set was used to validate the predic-
tion performance of the models. The prediction performance 
was compared by repeating the above process 10 times to 
improve the reliability of the analysis (Fig. 2). The decision 
tree models were fitted in the R programming language [23] 
Packages rpart, adabag, adaboost, randomForest, and DMwR 
were used for implementing CART, Bagging, AdaBoost, 
Random Forest, and SMOTE, respectively. The parameter 
settings of each method are shown in Table 1.

2.3.4. Model performance evaluation and comparison

The prediction performance was evaluated based on mul-
tiple indices: accuracy, sensitivity, specificity, and area under 
curve (AUC) of receiver operating characteristic. The accuracy 
is the ratio of the number of total samples to the number of 
correctly classified samples. Sensitivity is the proportion of 
exceedance (positive) samples that are correctly predicted 

as the exceedance class, while specificity is the proportion of 
non-exceedance (negative) samples that are correctly predicted 
as the non-exceedance class. AUC evaluates the model perfor-
mance at all possible combinations of sensitivity and specificity.

The relative importance among the predictors in each 
decision tree model was calculated based on the Mean Gini 
Decrease (MGD). The MGD is the average value of the dif-
ference in the Gini index (impurity) of the parent node and 
the child node. The decrease in the Gini value becomes larger 
as the impurity levels of the predictor used as classification 
criteria decrease. In other words, the predictor that results in 
a larger increase in MGD is interpreted as more important in 
predicting the class of response variable.

3. Results

3.1. Chlorophyll-a models

The single decision tree model, CART, showed a prediction 
accuracy of 71.7%, specificity of 63.3%, sensitivity of 78.9%, 
and AUC of 71.1% (Fig. 3(a)). As illustrated in Fig. 4, the valida-
tion results from the single model capture the environmental 

Date set

Chl-a data

Fig. 2. Modeling procedure used in this study. The procedure above was iterated 10 times. S. cyanobacteria model: cyanobacterial 
model after SMOTE.

Table 1
Parameter setting for each algorithms

Algorithm Parameters

CART Method = class
Random Forest Number of trees to grow, ntree = 1,000
Bagging Number of iteration, mfinal = 100

Method = class
AadaBoost Method = class
SMOTE Number of nearest neighbors k = 100

Number that drives under-sampling = 200
Number that drive over-sampling = 500
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conditions under which chlorophyll-a concentration is likely 
to exceed the standard level. As compared with threshold val-
ues denoted in the tree, lower flow, higher temperature (or 
lower temperature in the case of higher flow), and lower pre-
cipitation, in combination, would induce high chlorophyll-a 
concentration that exceeds the standard. The predictors and 
conditions that determine whether the resultant class would 
be exceedance or non-exceedance varied by month (Fig. 4).

Ensemble decision tree models showed higher per-
formance than the single model. Among them, Random 
Forest showed the highest prediction accuracy of 82.5%, fol-
lowed by AdaBoost (79.3%), and Bagging (73.7%; Fig. 3(a)). 
Sensitivity was higher than specificity for all ensemble 
methods. Random Forest showed the most outstanding 
performance, with a specificity of 77.8% and sensitivity of 
86.6%. AdaBoost and Bagging exhibited similar sensitivities. 
Meanwhile, specificity was 76.0% for AdaBoost and 64.4% for 
Bagging. Bagging did not show a significant improvement in 
specificity compared with CART. Similar to other indicators, 
the AUC for Random Forest was the highest, and the AUC 
for Bagging was the lowest (Fig. 3(a)).

For predicting chlorophyll-a classes, flow rate was the 
predictor with the highest importance in all ensemble models, 

while it was the predictor with the second highest importance 
in the single model (Fig. 5). Sampling month was ranked as 
the most or the second most important predictor in all models 
except for Random Forest, where sampling month was ranked 
as the least important predictor for chlorophyll-a classes.

3.2. Cyanobacteria cell count models

Overall, modeling performance of cyanobacteria was bet-
ter than that of chlorophyll-a; the single decision tree model 
showed an accuracy of 96.8%, specificity of 98.5%, sensitiv-
ity of 67.4%, and AUC of 84.0% for predicting the classes of 
cyanobacteria cell count without applying SMOTE (Fig. 3(b)). 
Similarly, as seen in the chlorophyll-a model, the ensemble 
models showed improved performance as compared with 
the single model. Among the ensemble models, Random 
Forest indicated the highest prediction accuracy of 98.0%, 
and the remaining models showed similarly high prediction 
accuracies. In all ensemble methods, sensitivity was approxi-
mately 20% higher than specificity. Random Forest exhibited 
the highest specificity of 99.3%, while AdaBoost showed the 
highest sensitivity of 78.7%. The sensitivity of all ensemble 
methods was higher than that of the single model by at least 

Fig. 3. The results of the performance evaluation for (a) chlorophyll-a concentration and (b) cyanobacteria cell count models. SP, 
specificity; SE, sensitivity; ACC, accuracy; and AUC, area under curve.
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10%. Similar to other evaluation indices, AUC of all ensemble 
methods was higher than that of the single model.

When SMOTE was applied to the cyanobacteria 
models, the specificity slightly decreased in all models 
(Fig. 3(b)). These decreases were more than compensated 
by the increases in sensitivity so that AUC, a combined 

result of specificity and sensitivity, was improved in all 
models. After SMOTE application, as before, all ensem-
ble models exhibited improved performance for all 
evaluation indices than the single model, although the 
sensitivity difference between the single and ensemble 
models decreased.

Fig. 4. Tree representation derived from single CART for chlorophyll-a. The tree was constructed using the entire data set.

Fig. 5. Variable importance for predicting chlorophyll-a, cyanobacteria cell count, and cyanobacteria cell count after applying SMOTE. 
The numbers and colors in the table denote the importance of the variables by rank. For example, Rank 1 and the color black denote 
the variable with the highest importance. C. precipitation: weekly total precipitation.
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Before SMOTE application, water temperature was 
ranked as the most important predictor in all but the Random 
Forest model, in which water temperature was the predictor 
with the second highest importance (Fig. 5). In contrast, after 
SMOTE application, water temperature and flow rate were 
unanimously indicated as the most and second most import-
ant predictors, respectively, by all models. 

Fig. 6 shows the validation results of the single CART 
model after SMOTE application, depicting the environmen-
tal conditions under which cyanobacteria cell count is likely 
to exceed the advisory threshold value. The constructed tree 
structure for cyanobacteria was more complex than that for 
chlorophyll-a. Despite the complexity, the tree can be inter-
preted that the exceedance of advisory level was generally 
associated with high temperature, low flow, low precip-
itation, and high irradiance. In addition, cyanobacteria cell 
count was likely to exceed the advisory level during warm 
months (July–October) at the sampling stations downstream 
of the river (Stations 6–10) when other conditions were met.

4. Discussion and conclusions

We constructed prediction models for classifying 
chlorophyll-a and cyanobacteria into exceedance vs. 
non-exceedance classes using single and ensemble decision 
tree methods. The prediction performance of the single and 
ensemble methods was compared. The effect of using SMOTE, 
whereby the degree of imbalance for cyanobacteria data set 
was mitigated, on prediction performance was assessed. 

Accuracy, the proportion of correctly classified positive 
and negative classes, is commonly used as an index of per-
formance evaluation. The cyanobacteria models in this study 
showed slight decreases in model accuracy after SMOTE 
implementation. However, the use of accuracy might not 
be suitable when the data are imbalanced. Although the 
imbalanced data set leads to low predictability for the pos-
itive (minority) class, it can result in high accuracy [22]. In 
contrast, AUC accounts for both true positive rate and false 
positive error rate, constituting a reliable evaluation index 
especially when the data are imbalanced. The model perfor-
mance is considered “good” if 70% < AUC ≤ 90%, and “excel-
lent” if AUC > 90% [24].

In this study, the AUC of the single decision tree model 
for the chlorophyll-a model without data imbalance was 

71.1%. When ensemble models were implemented, AUC 
improved by 1%–10%, indicating a “good” performance 
(Fig. 3(a)). The AUC of the single model for cyanobacteria 
with data imbalance was 84.0%. AUC was enhanced up to 5% 
by using ensemble models, indicating a “good” performance 
(Fig. 3(b)). The ability of predicting complex phenomena 
using a single decision tree model tends to be unsatisfactory, 
because an increasing number of splits involve larger 
variations and uncertainty of the model. In contrast, since 
the ensemble models are designed to learn subsets of data 
iteratively and perform the classification through majority 
voting, model variance is generally low and prediction 
performance appears to be superior compared with that of a 
single decision tree [9,25].

Ensemble approaches have received growing attention 
since the mid-2000s as they were proved to exhibit enhanced 
prediction performance [13]. Nevertheless, they share a sim-
ilarity with single tree models, in that imbalanced data can 
lower the prediction power of both single and ensemble mod-
els for the minority class even though the overall accuracy is 
high [13,26]. In our study, when the data imbalance was not 
resolved, despite high accuracy of the models, the sensitivity, 
which calculates the proportion of correctly classifying the 
exceedance (minority) class for cyanobacteria cell count, was 
significantly low relative to specificity, the proportion of cor-
rectly classifying the non-exceedance (major) class (Fig. 3(b)). 
When the imbalance in cyanobacteria data was addressed by 
applying SMOTE, the specificity and accuracy of single and 
ensemble models slightly decreased in exchange for increas-
ing sensitivity and AUC (Fig. 3(b)). Noticeably, the AUC 
results indicated that the performance of all models shifted 
from “good” to “excellent” after SMOTE application.

The effects of SMOTE application on changing specificity, 
sensitivity, and AUC are consistent with a previous finding. 
Ramezankhani et al. [27]applied SMOTE for the prediction of 
type 2 diabetes, which constituted only 510 samples among a 
total of 4,652 samples. After SMOTE implementation through 
oversampling of the minority class, they reported the effect 
of using SMOTE before decision tree on increasing sensitivity 
from 0.215 to 0.726, and decreasing specificity from 0.992 to 
0.802 and accuracy from 0.907 to 0.794, while AUC was not 
used as an evaluation index. 

Previous studies reported that cyanobacteria blooms are 
more likely to occur with increasing temperature [28–32]. 

Fig. 6. Tree representation derived from single CART for cyanobacteria cell count. The tree was constructed using the entire data set.
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High temperature directly affects the growth of cyanobac-
teria species positively, while indirectly facilitating cyano-
bacteria blooms by prolonging and strengthening thermal 
stratification [28,33]. In the case of flow rate, a cyanobacte-
ria bloom is likely to occur when the discharge flow of the 
dam reduces because of decreasing flow rates. Hence, main-
taining high flow rates, which cause the flushing effect, is 
considered as a measure to control such blooms [34,35]. A 
report from the Seoul Metropolitan Government informed 
that during the investigated years, 2008, 2012, 2014, and 
2015, cyanobacteria bloom alerts for the lower Han River 
were issued in summer months (August–November) [36]. 
Cyanobacteria blooms occurred most severely in the year 
2015, when the mean annual water temperature was high-
est and the discharge rate of Paldang Dam was lowest. 
In that year, the bloom alert persisted from August to 
November [36].

Based on the variable importance analysis, our results 
confirm that, regardless of the algorithms used, tempera-
ture and flow are the variables with the highest importance 
in predicting the level of cyanobacteria cell count (Fig. 5). 
Moreover, the graphical representation of tree derived from 
CART indicates that temperature and flow, located at the top 
of the tree, interplay with seasonal, spatial, or hydrological 
factors to induce exceedance or non-exceedance classes of 
cyanobacteria cell count (Fig. 6). The variance importance 
for chlorophyll-a was not as clear as that for cyanobacteria 
cell count. 

Similar to cyanobacteria prediction, flow was a unan-
imously important variable in predicting chlorophyll-a 
classes, whereas the importance of temperature was lower 
and varied by model (Fig. 5). The tree for chlorophyll-a 
demonstrates that the exceedance of standard level is likely 
to occur either at high temperature (≥23°C) or low tempera-
ture (<12°C; Fig. 4). It implies that the dominance of other 
algal type than cyanobacteria, possibly diatoms, would 
be an explanation for high chlorophyll-a concentration at 
low temperature. Seasonality, rather than temperature, 
may play a critical role in predicting chlorophyll-a classes 
(Figs. 4 and 5). The tree for chlorophyll-a indicates that the 
predictor variable that determine chlorophyll-a classes may 
vary by month (Fig. 4). 

In this study, we constructed the single and ensem-
ble classification tree models that predict cyanobacteria 
blooms in the lower Han River. Although we used freely 
available data, such as the data provided by the Ministry of 
Environment and the Korea Meteorological Administration, 
the constructed models exhibited good to excellent predic-
tion performance, promising to act as an aid tool for manag-
ing the cyanobacteria bloom alert system. We note that the 
presence of typically occurring issues for observational data, 
such as lack of sample size and imbalance between classes, 
can be resolved by using suitable techniques, in this study, 
ensemble approaches and SMOTE. 
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