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a b s t r a c t

Accurate stream flow (SF) prediction is considered among the basic requirements in dealing with 
several problems associated with the planning, designing and management of water resources and 
river systems. Multi-layer perceptron network (MLP), was employed to develop artificial intelli-
gence-based models to predict the hourly SF in downstream areas from upstream water level and 
rainfall records in the Selangor River basin which is a paradigm of humid tropical rivers. Hourly 
SF, rainfall and water level records of a one-year period (2011) were applied to train and test the 
MLP-based models which comprise six different combinations of input variables. The developed 
models’ performance was evaluated via the training, testing data set and overall data. The results of 
the performance evaluation criteria, i.e. correlation co-efficient (R) and mean absolute error (MAE)
indicates that high prediction accuracy was attained. The best fit MLP model is M6-MLP with the 
highest R and lowest MAE. The R between the observed and predicted hourly SF by the M6-MLP 
model is 0.898 and 0.904, while the MAE is 10.922 and 10.83 for the training and testing data sets, 
respectively. The results demonstrate that the MLP technique is successfully applied with high accu-
racy for hourly SF prediction. 

Keywords:  Stream flow; Surface water hydrology; Prediction; Hydrological modeling;  Artificial  
neural networks

1. Introduction

Different types of models have been applied to predict 
stream flow, and these can generally be classified into two 
main groups: knowledge-driven and data-driven based 
models. Each type has its specific set of advantages and dis-
advantages based on data availability and modeling condi-
tions [1,2]. Several modeling approaches can be classified as 
data-driven based models, for instance statistical methods 
including linear and nonlinear regression models, artificial 
neural networks (ANNs), genetic algorithms (GAs), sup-
port vector machines (SVM) and fuzzy rule-based systems 
(FRBSs) [3–5].

In stream flow prediction and modeling, simple data-
driven based models such as statistical models are not suf-
ficient in modeling surface water hydrological systems like 

stream flow, since they are completely non-linear dynamic 
systems. In view of the mentioned complexity, there is a 
need to investigate more advanced models and approaches 
that can analyze and solve the complexity of stream flow 
systems even without fully reorganizing the system’s phys-
ical and hydrological specifications [1]. For the aforemen-
tioned reasons, advanced data-driven based models such 
as ANNs are commonly reported in literature on hydrology, 
including stream flow prediction and modeling.

ANNs have been extensively applied in stream flow 
modeling and prediction for a multiplicity of objectives. 
For instance, Turan and Yurdusev [6] for river flow esti-
mation from upstream flow records; Kentel [2] for esti-
mation of monthly river flow and identification of input 
vectors susceptible to producing unreliable flow estimates; 
Bhadra, Bandyopadhyay [7] for rainfall-runoff modeling; 
Rakhshanehroo, Vaghefi [8] for flood forecasting in similar 
catchments; Besaw, Rizzo [9] for un-gagged stream flow 
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prediction; Triana, Labadie [10] for stream-aquifer model-
ing; Edossa and Babel [11] for long-term stream flow fore-
casting in the Awash River Basin; Ethiopia, Sahu, Khatua 
[12] for prediction of discharge in straight compound open 
channel flow; Machado, Mine [13] for monthly rainfall–run-
off modeling; Kisi, Ozkan [14] for modeling discharge-sed-
iment relationships; Kisi, Ozkan [14] for forecasting river 
flow rate from the Melen Watershed, Turkey; and Wei, Yang 
[15] estimated and predicted river monthly flows.

In small river basins where the concentration time is less 
than one day, such as the Selangor River basin, the predic-
tion of hourly stream flow is more practical than predicting 
daily or monthly stream flow. This is because the stream 
flow in small river basins may change dramatically within a 
few hours. Therefore, daily or monthly stream flow cannot 
adequately represent the real-time changes in hourly stream 
flow, something that is required in planning, designing and 
managing river systems and water resources.

The main objective of this paper is to develop a group 
of ANNs based models to predict the hourly stream flow in 
downstream areas from upstream water level and rainfall 
records in a humid tropical region. The Multi-Layer Percep-
tron network (MLP) are selected to be the modelling tool of 
this study.

Hourly records of stream flow, rainfall and water level 
for one year (2011) were used to develop the AI-based mod-
els. The hourly water level and rainfall data of upstream sta-
tions served as input variables while the hourly stream flow 
data of the downstream station acted as the output variable 
of the models. The models’ performance was assessed on 
the basis of two performance evaluation criteria, including 
Correlation coefficient (R) and mean absolute error (MAE).

2. Multi-layer perceptron networks (MLP) 

In this study, multi-layer perceptron networks (MLP) 
which is one the ANNs techniques, is applied in hourly 
stream flow modeling. ANNs is an advanced data-driven 
modeling technique with a flexible mathematical struc-
ture making it proficient in modeling the non-linear and 
complex relations among the observed data sets without 
the need to fully physically recognize the natural systems 
[16]. The fundamental premise of ANNs is derived from 
the analogy of extremely simplified mathematical models 
of biological neural networks and is inspired by the brain’s 
learning systems. ANNs has the capability to learn and gen-
eralize from historical data and previous examples to create 
meaningful explanations to problems [17,18]. 

MLP are the widely employed, feed-forward networks 
with unlimited numbers of hidden layers. The back propa-
gation learning algorithm is the common learning rule for 
MLP. In MLP, the neurons are arranged in layers as illus-
trated in Fig. 1. The Fig. 1 presents a random sample of MLP 
containing three layers: an input layer with 4 input vari-
ables (4 neurons), one hidden layer with 7 neurons and an 
output layer with 1 output variable (1 neuron). Each neuron 
in the hidden, output layers, receives weighted inputs from 
all neurons in the previous layer. The active incoming vec-
tor is then forwarded through an activation function such 
as the sigmoid, linear, or cubic polynomial function, to the 
next layer. This means that each single neuron performs 
two actions. Initially, data from an external source is assimi-

lated for the input layer, or from neurons in a previous layer 
for the hidden and output layers. Then, it creates an out-
put dependent upon a prearranged activation function and 
sends it to the neuron in the next layer. This process in one 
neuron is comparatively non-complex; complications with 
MLP are eventually reached through contact and combina-
tions between neurons in networks layers [16].

As an example of a training process, consider a neuron 
in the hidden layer that receives signals from neurons in 
the input layer. The net input to the hidden neuron is the 
summation of the weighted inputs from the neurons in the 
input layer and is denoted by O(in).

I w x w x w x w xin n n( ) = + + + …1 1 2 1 3 3  (1)

xi is the input vector, and N is the total number of data 
patterns. Then I(in) is proceeded by an activation function 
to produce the output V, V = f (I(in)). For instance, the most 
common activation function is a sigmoid function, which is 
denoted as follows:

f x
x

( ) =
+ −( )

1
1 exp  (2)

This process is reiterated for all input vectors. At the end 
of a pass, via the whole training data set all the neurons 
modify their weights depending on the accumulated results 
of the difference between the observed and simulated data 
regarding each weight. These variations then change weight 
in order to make errors decay rapidly.

Considering wm represents the value after iteration m of 
a weight w,then:

W w wm m m= +−1 Δ  (3)

where Δwm is the variation in weight w at the end of itera-
tion m and is computed as follows:

Δw dm m= −ε  (4)
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Fig. 1. Schematic diagram of MLP architecture.
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where ε is the factor guiding the rate of change in weights. 
dm is given by:

d
e

wm
n

N

m
n=

∂
∂=

∑
1

( )  (5)

where N is the total number of data patterns, and e is the 
training output error [19].

3. Case study

The study area is the Selangor River basin, which is 
one of the main rivers in Malaysia. It is located in Selan-
gor state, and covers an approximate area of 1960 km2. The 
Selangor River streams about 110 km from the northeast to 
the southwest [20–22]. It is the main water resource for the 
states of Selangor and Kuala Lumpur whereabout 50% of 
water consumption is sourced from the Selangor River [23]. 
Fig. 2 presents a location map of the Selangor River basin in 
peninsular Malaysia as well as basin topographical maps. 

The study area is regarded as a paradigm of rivers 
located in the tropical humid region of Southeast Asia. The 
Selangor River basin has a humid, tropical climate. The 
characteristic climate features are uniform temperatures 
with little variation year-round. On average, temperatures 
rise during daytime up to 32°C and drop to 23°C at night. 
The average annual rainfall varies between 2000 and 3000 
mm annually throughout the basin. Evaporation ranges 
from 1600 mm to 1800 mm annually and the annual average 
of relative humidity is about 80% [24,25]. The average dis-
charge of the Selangor River is 57 m3/s, but seasonal rainfall 
variations cause flow to exceed 122 m3/s or fall below 23 
m3/s about 10% of the time [26]. 

4. Methodology

The main issues that should be considered in devel-
oping ANNs-based models for stream flow prediction are 
data collection and analyses followed by selecting adequate 
model input and output variables. The variables of ANNs-

based models for stream flow prediction depend on the 
estimation of lag time between upstream and downstream 
stations. Subsequently, the models’ structure and training 
mechanism should be identified, and finally the developed 
models are assessed using performance evaluation criteria 
to select the best fit model that predicts hourly stream flow. 

4.1. Data collection and analyses

The hydrological data were sourced from hydrologi-
cal stations located along the Selangor River basin. There 
are two stations gauging stream flow (SF), seven stations 
gauging water level and more than thirty stations gauging 
rainfall.

Downstream stream flow data were extracted from the 
RantauPanjang gauging station, which is located down-
stream of the Selangor River. All major tributaries of the 
Selangor River join it before this particular station. Records 
of RantauPanjang station are considered the best stream 
flow indicator for the study area. The water level data were 
extracted from four upstream stations while rainfall data 
were extracted from other four upstream stations. The rain-
fall and water level gauging stations are located very close 
to each other, and the stations were selected based on data 
availability and modeling requirements. Fig. 3 presents 
the locations of the hydrological stations and flow paths 
between them in the Selangor River basin. 

About 8753 patterns of hourly stream flow, water level 
and rainfall records representing a one-year period (2011) 
were used for modeling. The basic statistical characteristics 
of the data, such as minimum, maximum, mean, standard 
deviation and Skewness of hourly records of all stations 
employed are shown in Table 1. For each ANNs model, 
the modeling data was divided into three datasets: 50% for 
training (4387 patterns), 25% for validation (2193 patterns) 
and 25% for testing the models (2193 patterns). 

The training dataset is utilized to train the models while 
the validation dataset is used in the early stopping of train-
ing process to prevent over-fitting and over training during 
the training step. The testing dataset serves to assess the 
performances of the AI-based models [27].

Fig. 2. Location and topography maps of the Selangor River basin.
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4.2. Models development

4.2.1. Determination of models variables 

Determining adequate input and output variables, is 
considered one of the most important issues in the devel-
opment of AI-based models. In stream flow prediction 
models, model variable selection is commonly based on 
prior knowledge of the river basin’s hydrology, which 
provides initial indication of potential inputs and out-
puts [28]. Stream flow in tropical rivers can be character-
ized as the function of several influential variables, such 
as rainfall, water level and the river’s physical charac-
teristics [29]. In this paper, the main objective is to pre-
dict the hourly stream flow in the downstream area of 
a tropical river from upstream water level and rainfall 
records. Thus, hourly records of water level and rainfall 
from upstream stations are used as input variables, while 
hourly records of stream flow data from a downstream 
station serve as the output variable. Eq. (6) presents the 
relationship between stream flow and the influential 
variables:

Sf f X et t= ( ) +( )  (6)

where Sf(t) represents the stream flow, X(t) is the input vec-
tor, which includes the input variables, i.e. rainfall and/or 
water level, and e is the random error.

There are three scenarios in selecting the model input 
and output variables. The first scenario is to use the rain-
fall data from upstream stations as input variables; the sec-
ond scenario is to use the water level data from upstream 
stations as input variables; and the third scenario is to use 
both water level and rainfall data from upstream stations 
as input variables. Two input vectors were applied for the 
three scenarios. One is with the single antecedent record of 
upstream stations, and the second is with the average of the 
antecedent records from the upstream stations. For the six 
input vectors, the antecedent single record of stream flow 
from the downstream station is used as another input vari-
able to predict stream flow at the downstream station for 
ahead period equal to the lag time between the upstream 
stations and downstream station. The final selection of input 
variables for the six input vectors depends on the lag time 
estimation between the upstream and downstream stations.

4.2.2. Lags between the model variables

Determining the input variables for the hourly stream 
flow prediction with ANNs-based models includes find-
ing the antecedent water level and rainfall records that 
have a major effect on predicted stream flow [30]. In this 
study, it was estimated by calculating the correlation co-co-
efficient corresponding to 24 different time lags between 
the antecedent hourly water level and rainfall records of 
upstream stations which represent the input variables and 
hourly stream flow data records from the downstream sta-
tion which represents the output variable. 

The correlation analysis was conducted based on hourly 
antecedent records from 0 to 24 h. The correlation co-effi-
cient results for the water level and rainfall stations are 
presented in Fig. 4. This figure indicates that the highest 
correlation for the water level stations is at 12 h and for the 
rainfall stations at 17 h. The correlation co-efficient is gen-
erally weak and can be explained by the highly complex 
relation between water level and rainfall, and stream flow, 
as well as by the influence of other hydrological parame-
ters on stream flow. Although the correlation co-efficient is 
generally weak, it is very useful to select the input variables 
from the stream flow ANNs-based models.

Fig. 3. Location of hydrological stations in the Selangor River 
basin.

Table 1
The hydrological stations and statistical characteristics of the data used

Station Function Latitude Longitude Mean Min. Max. Std. Dev. Skewness

RantauPanjang SF (m3/s) 03 24 10.0 101 26 35.0 60.35 23.94 294.64 39.00 2.04
Ulu Yam RF (mm/h) 03 27 38.4 101 38 14.4 32.24 30.56 35.49 0.49 –0.78
Batang Kali RF (mm/h) 03 28 11.7 101 38 23.3 32.42 27.03 34.71 0.78 –4.55
Kerling RF (mm/h) 03 35 18.1 101 36 22.8 44.18 43.93 45.61 0.12 2.64
AmpangPecah RF (mm/h) 03 32 25.4 101 39 48.3 50.16 49.61 50.89 0.15 0.97
Ulu Yam WL (m) 03 27 38.4 101 38 14.4 0.16 0.00 19.33 0.73 11.85
Batang Kali WL (m) 03 28 11.7 101 38 23.3 0.24 0.00 22.67 0.91 10.90
Kerling WL (m) 03 35 18.1 101 36 22.8 0.25 0.00 25.33 1.06 11.70
AmpangPecah WL (m) 03 32 29.1 101 39 44.4 0.24 0.00 28.00 1.08 12.85
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Depending on lag time estimation and based on the 
three scenarios for selecting the models’ input and out-
put variables, six variable combinations of variables were 
selected to model and predict hourly stream flow. The input 
and output variables of the ANNs models are shown in 
Table 2. 

Sf(t+12) represents 12 h ahead of stream flow at Ran-
tauPanjang station, Rfu(t) represents single records of hourly 
rainfall at Ulu Yam, Rfu(ŧ) represents the average of three 
antecedent records of hourly rainfall at Ulu Yam, Wlu(t) rep-
resents a single record of water level at Ulu Yam, and Wlu(t) 
represents the average of three antecedent records of hourly 
rainfall at Ulu Yam.

4.2.3. Models structure identification

After selecting the appropriate combinations of input 
and output variables for the six models, the structure of 
the three modeling techniques should be determined to 
begin the modeling processes. To develop the ANN-based 
model, the neural network specifications including network 
structure, connection scheme and weight range should be 
selected. The number of layers and number of neurons per 
layer often specify the network framework. Next, the neu-
ron specifications, meaning the activation function and its 
range, should be determined followed by system dynamics 
and training algorithm selection.

Each neural network should include three layers: input, 
hidden and output layers. The input layer is composed of 
input data and the output layer comprises the model out-
put. The hidden layer includes the activation function to 
provide nonlinearities for the network and it can be one or 
more layers with an unlimited number of neurons. 

So far, there is no scientific approach to selecting the 
ideal number of hidden layers and neurons. The optimal 
number of neurons is identified using a trial and error 
process by developing many ANNs-based models and 
evaluating them. The optimum number of hidden layers 
in ANNs-based models is influenced by several elements, 
such as the numbers of input variables, the number of data 
cases, the complexity of the process to be modeled, the 
amount of noise in the training data, the type of ANNs-
based model and the type of training algorithm and acti-
vation function.

4.3. Models training 

Once the structure of the ANNs-based model has been 
established, the conditions to stop the training processes 
should be fixed prior to beginning training. Some of the 
conditions that control training are: maximum number of 
iterations, maximum time of training, target performance 
which specifies the tolerance between observed and pre-
dicted stream flow, and minimum learning rate.

Generally, ANNs-based model training includes the 
following steps. Input variable records are inserted into 
the input layer, then weighted and passed on to the hidden 
layer. The neurons in the hidden layer create outputs by 
applying an activation function to the sum of the weighted 
input values. Next, the outputs of the hidden layer are 
weighted by the connections between the hidden and out-
put layers. The desired results are finally produced in the 
output layer.

Fig. 4. Correlation co-efficient between hourly stream flow re-
cords of downstream station and hourly records of upstream 
station: (a) Water level station, and (b) Rainfall station.

Table 2
The input and output variables of the AI models

Model Inputs Output No. input variables

M1 Rfu(t), Rfb(t), Rfk(t), Rfa(t), Sf(t) Sf(t+17) 5
M2 Rfu(ŧ), Rfb(ŧ), Rfk(ŧ), Rfa(ŧ), Sf(t) Sf(t+17) 5
M3 Wlu(t), Wlb(t), Wlk(t), Wla(t), Sf (t) Sf(t+12) 5
M4 Wlu(ŧ), Wlb(ŧ), Wlk(ŧ), Wla(ŧ), Sf (t) Sf(t+12) 5
M5 Wlu(t), Wlb(t), Wlk(t), Wla(t), Rfu(t-5), Rfb(t-5), Rfk(t-5), Rfa(t-5), Sf(t) Sf(t+12) 9
M6 Wlu(ŧ), Wlb(ŧ), Wlk(ŧ), Wla(ŧ), Rfu(ŧ-5), Rfb(ŧ-5), Rfk(ŧ-5), Rfa(ŧ-5), Sf(t) Sf(t+12) 9
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The ANNs-based models reach optimum learning by 
having the interconnected weights continuously modified 
until there is good accord between the model output and 
observed output. The residuals between observed and pre-
dicted stream flow represent the ANNs-based model error.

4.4. Performance evaluation criteria

Model performance was assessed on the basis of two 
performance criteria: correlation co-efficient (R) and mean 
absolute error (MAE). R is a statistical technique that indi-
cates the strength and direction of a linear relationship 
between two variables [31]. R was used to check the level 
of agreement between the observed and predicted hourly 
stream flow. R2 describes how much of the variance between 
the two variables is described by the linear fit. There are 
different modes of calculating the correlation co-efficient, 
but the most widely used is the Pearson correlation co-ef-
ficient (R). It is obtained by dividing the covariance of the 
two variables by the product of their standard deviations, 
as described in the following equation. 

R
x x y y

x x y y

i

n

i i

i

n

i i

n

i

=
−( ) −( )

−( ) −( )
=

= =

∑
∑ ∑

1

1

2

1

2
 (7)

where n is the number of pairs of data, and x and y are the 
variables. 

In a perfectly increasing linear relationship circum-
stance, R is +1; however, r is –1 in a perfectly decreasing 
linear relationship instance. R values between +1 and 
–1 indicate the strength degree of the linear relationship 
between the variables and r = 0 signifies no linear relation-
ship between the variables.

MAE was applied to evaluate the residual or the differ-
ences between observed and predicted stream flow. Theo-
retically, the minimum value of MAE is zero, meaning that 
the model represents a perfect fit something not easy to 
achieve. There is no maximum MAE value. The following 
equation describes MAE.

MAE
X X

n
i

n

o i m i=
−

=∑ 1 , ,  (8)

Where Xm is predicted by a model and Xo is observed data.

5. Results and discussion

Six ANNs-based models with different input variable 
combinations were selected to predict hourly stream flow 
at Rantau Panjang station. Three of the models used sin-
gle, prior record of the upstream stations while the other 
three models used the average of three previous records of 
upstream stations with the highest correlation co-efficient. 
The model structures are presented in Table 2. 

Six models with various input variable combinations 
were trained and developed using MLP. The developed 
models’ performance was evaluated via the training data 
set, testing data set and overall data performance. The 
results of the performance evaluation criteria, i.e. R and 
MAE of the MLP models, are presented in Table 3. 

A comparison of the performance evaluation for the 
six MLP models can be seen in Fig. 5. Clearly, the best fit 
MLP model is M6-MLP with the highest R value and low-
est MAE value for the training and testing data sets. The 
R between the observed and predicted hourly stream flow 
by the M6-MLP model is 0.898 and 0.904, while the MAE 
is 10.922 and 10.83 for the training and testing data sets, 
respectively. 

Fig. 6 shows the correlation between the observed and 
predicted hourly stream flow by the M6-MLP model, (a) 
training data set, and (b) testing data set. The observed and 
predicted hourly stream flow of the training and testing 
data sets seem to be in good accord with R2 0.806 and 0.917, 
respectively. In Fig. 7, a comparison between the observed 
and predicted hourly stream flow by M6-MLP for Septem-
ber 2013 can be seen. Acceptable agreement between the 
observed and predicted hourly stream flow is apparent.

6. Conclusions

In this paper, the ability of MLP to predict hourly stream 
flow in downstream are as using upstream water level and 
rainfall records in a humid tropical area was explored.

The hourly records of stream flow, rainfall and water 
level for one year (2011) were applied to train and test the 
ANNs-based models. Hourly water level and rainfall data 
from upstream stations were used as input variables, while 
the hourly stream flow data from the downstream station 
served as the output variable of the models. The models’ 
performance was assessed on the basis of two performance 
evaluation criteria, including Correlation coefficient (R) and 
mean absolute error (MAE). The best fit model for predict-
ing hourly stream flow was determined based on the testing 
data sets’ performance evaluation.

The performance evaluation of the ANN-based models 
suggests that M6 with 9 input variables achieved the best 
performance out of all models. The correlation between 
the observed and predicted hourly stream flow using the 
MLP-M6 for both training and testing data sets seemed to 
be in good accord. A comparison between the observed 
and predicted hourly stream flow by MLP-M6 for Septem-
ber 2013 shows good accord between the observed and 
predicted hourly stream flow. The results of performance 
evaluation criteria R and MAE of the MLP-M6 suggest that 
the MLP technique performs very well in hourly stream 
flow prediction. 

Table 3
The performance values of MLP models

Model Training data set Testing data set Overall data

 R MAE R MAE R MAE

MLP-M1 0.869 11.550 0.874 12.039 0.873 11.823 
MLP-M2 0.880 11.771 0.882 12.163 0.877 11.741 
MLP-M3 0.886 12.088 0.882 11.640 0.881 11.991 
MLP-M4 0.881 11.897 0.893 11.578 0.883 11.913 
MLP-M5 0.889 11.052 0.894 11.586 0.890 11.352 
MLP-M6 0.898 10.922 0.904 10.839 0.895 11.025 
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