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a b s t r a c t

A comparative analysis of the application of the standard, hybrid serial gray-box, and hybrid par-
allel gray-box artificial neural networks was carried out to predict Cr(VI) adsorption by activated 
carbon. The dataset was developed through batch kinetic experiments with varying operational 
parameters. The major reaction transport mechanism was found to be intraparticle diffusion while 
the major attachment mechanism was chemical bonding. Adsorption kinetics was well represented 
by the diffusion-chemisorption (DC) model while desorption kinetics followed the pseudo-second 
order model. It was discovered that the overall DC kinetic rate, KDC was inversely proportional to 
both the effective diffusion coefficient as well as the diffusivity and proves useful to indirectly 
assess diffusional effects created by changing operational parameters. The DC kinetic model was 
subsequently instituted into the hybrid models. The development of the hybrid neural networks 
was built-in with the joint effect of operating parameters of time and particle size for the standard 
(SANN) and parallel neural network (PANN), together with the kinetic parameters of the DC model 
such as overall rate, initial rate and sorption capacity for the serial neural network (DC-ANN). 
The comparative performance of the networks was subsequently evaluated using error functions 
and the Bland-Altman plot. The hybrid neural networks produced the best prediction to the target 
data. Sensitivity analysis revealed a substantial positive influence on the DC-ANN model due to the 
inclusion of the kinetic equation parameters. Consequently, the DC-ANN model required signifi-
cantly less computational effort. 
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1. Introduction

The use of heavy metals particularly chromium con-
tinues to be an indispensable component in industrial 
applications such as electroplating, textile dying and metal 
finishing [1]. The most common valency states of chro-
mium on the earth’s surface and near-surface environments 
are trivalent [Cr+3 and Cr(OH)2+] and hexavalent [HCrO4

–, 
CrO4

2– or Cr2O7
2–] [2]. According to Patterson as cited in [3], 

the concentration of Cr(VI) in industrial wastewaters can 
vary from 0.5 mg/L to 270,000 mg/L. As a result of the high 
toxicity of Cr(VI), it has been made a priority metal of pub-
lic health significance. World Health Organization (WHO) 
recommends that the level of Cr(VI) in wastewater be reg-
ulated below 0.05 mg/L [2]. Some of the primary treatment 
methods adopted for industrial-scaled remediation of 
such metal ions are ion exchange, chemical precipitation, 
and adsorption [4].  Adsorption remains one of the most 
 effective and promising techniques for chromium removal 
[5]. This can be attributed to the low attainable concentra-
tion levels [6]. 
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The adsorption potential of a commercial activated car-
bon derived from bituminous coal was examined in this 
study. The material possesses a high surface area and pore 
distribution as well as the presence of functional groups such 
as the carboxylic groups [7]. Batch adsorption and desorption 
kinetic studies were used to elucidate and model the sorption 
process. The fitting of the experimental data to kinetic mod-
els gives valuable insights into the mechanisms of adsorption 
[8]. Thus, kinetic operational parameters were varied to eval-
uate the optimal adsorption conditions. The development of 
predictive models can not only save cost and time required 
for experimental studies but also improve the efficiency in 
up-scaling and the application of full-scale adsorption sys-
tems [9]. However, according to Saraf and Vaidya [10], it is 
difficult to predict and simulate adsorption processes using 
the classical single variable optimization method. This is 
mainly due to the interaction of multiple sorption process 
variables, and highly non-linear relationships. 

Artificial neural networks (ANN) are computational 
models developed following the functionality of the bio-
logical neural system [11]. The first artificial neuron was 
produced in 1943 by McCulloch and Pits [12]. The first 
practical application of backpropagation was for estimating 
a dynamic model to predict nationalism and social commu-
nications in 1974 [13]. In recent years, the back propagation 
artificial neural network (ANN-BP) has gained wide popu-
larity in the application of complex engineering simulations 
[14]. This is largely because the ANN has the capability 
of learning highly non-linear and complex relationships, 
which provides an advantage over traditional methods of 
optimization [15]. Unfortunately, they (black-box ANNs) 
often suffer from drawbacks such as inconsistency of the 
output and the need for a reasonable set of experimental 
data, which is not always available [16].  Psichogios and 
Ungar [17] also iterated that standard neural network per-
forms arbitrarily well in approximating a dynamic system if 
a large data set is available. The authors went on to explain 
that when the training dataset size is small, then the state 
space is not sampled sufficiently densely, and a traditional 
neural network relies heavily on interpolation to approxi-
mate the dynamic system. Hussain and Rahman [18] fur-
ther described a typical neural network as having many 
internal parameters (the weights and biases), and these 
could lead to over-fitting of noise as well as the underly-
ing function. This results in poor generalization. In order 
to achieve a good prediction where training data are sparse 
or absent, prior information on the behavior of the function 
should be introduced [19]. These weaknesses have encour-
aged recent research to focus on combining ANN with other 
components, such as first principle model, fuzzy logic, and 
Kalman filtering [17]. 

In this study, a standard (“black-box”) artificial neural 
network (SANN) was developed and compared to a paral-
lel hybrid neural network (PANN) modeling method (gray-
box) and a series hybrid neural network modeling method 
(gray-box). Numerous authors have successfully demon-
strated the use of the SANN to predict the adsorption of 
Cr(VI) onto various types of activated carbon (Table 1). 
Consequently, to assess the performance of all competing 
ANN methods, a batch adsorption system designed for the 
removal of Cr (VI) from aqueous solution using commercial 
activated carbon was selected. 

In the parallel hybrid model structure, the neural net-
work is used to estimate the difference between mechanis-
tic model predictions (adsorption performance) and the 
corresponding experimental performance (i.e., the residu-
als) [24]. The neural network is then built-in with the joint 
effect of operating parameters viz. time and particle size 
as input and the residuals as the target. The PANN predic-
tion of residuals are subsequently applied as corrections 
to the mechanistic model predicted performance. A serial 
approach was developed which involved instituting the 
mechanistic model parameters along with the experimental 
data as input to the ANN structure and adsorption perfor-
mance was set as the target. This approach for the predic-
tion of batch kinetic systems has not been reported in the 
literature. However, a similar technique was reported by 
Faur-Brasquet and Cloirec [25], whereby parameters related 
to the adsorbate-adsorbent affinity in a batch reactor were 
introduced in the input layer of the neural network (intra-
particular coefficient and Freundlich parameters) together 
with experimental data to improve the prediction of column 
breakthrough curves. Consequently, the success of such a 
serial hybrid approach crux on the selection of a suitable 
mechanistic model which adequately represents the entire 
adsorption reaction. 

The objectives of this work are: 1) to describe the process 
of adsorption through batch kinetic and desorption stud-
ies; 2) determine and verify the most appropriate kinetic 
model through mathematical analysis and elucidation of 
rate-limiting steps in the adsorption process; and 3) through 
comparative analysis of black and gray-box ANN models 
develop an efficient neural network for the prediction of 
batch kinetics under conditions of limited data.

2. Materials and methods

2.1. Preparation of adsorbent

The granular activated carbon used in these experiments 
was Calgon Filtrasorb 300. According to the manufacturer 

Table 1 
Application of Artificial Neural Network for the prediction of Cr(VI) adsorption

Adsorbent ANN Type Algorithm Neurons R2 Reference

Commercial PAC FFANN-BP quasi-Newton backpropagation 10 0.968 [20]
GAC from Coconut Shell FFANN-BP – 20 0.982 [21]
Commercial GAC FFANN-BP-GA – 10 0.980 [22]
Rice Husk Carbon FFANN-BP Levenberg–Marquardt backpropagation 5 0.987 [23]



C. Sutherland et al. / Desalination and Water Treatment 103 (2018) 182–198184

Calgon Corp. Canada, this carbon has an iodine number 
of 900 mg/g, an intrinsic pore volume of 0.85 and a BET 
surface area of 950–1050 m2/g. The carbon was crushed, 
sieved, repeatedly washed with distilled water, dried and 
stored in a desiccator. The average particle size of activated 
carbon retained on a sieve was calculated as the geomet-
ric mean of the diameter openings in two adjacent sieves in 
the stack.  The Geometric Mean Size, (GMS) is expressed as 
(diameter of upper sieve × diameter of lower sieve)0.5 [26].

2.2. Preparation and testing of adsorbate

The chemical stock solution was prepared using potas-
sium chromate. Reaction solutions were prepared using 
distilled water (prepared by a Corning Mega Pure System 
MP–1) of pH approximately 7 and conductivity < 5 μm hos/
cm. Solution pH was adjusted using appropriate solutions 
of HCl and NaOH and kept constant throughout the reac-
tion by a 0.01 M acetate buffer for pH 4–5.5 and phosphate 
buffer for pH 8. Solution pH was measured by a pH meter 
(Accumet Research-AR10, Fisher Scientific). Chromium (VI) 
concentrations were determined by the Atomic Adsorption 
Spectrophotometer (Perkin-Elmer 3030B). 

2.3. Experimental procedure

2.3.1. Adsorption kinetic studies

Kinetic studies were conducted using the parallel method 
according to EPA OPPTS method 835.1230 [27]. The study of 
metal uptake was carried out in duplicate at room tempera-
ture (26 ± 2°C) in a batch reactor with an adsorbent mass 
1.0 g/L and spiked with 50 ml of 50 mg/L synthetic metal 
ion solution. Sorbent masses were accurate to ±0.001 g and 
solution volumes to ±0.5 ml. Identical reaction mixtures were 
prepared for each time interval, agitated to maintain com-
plete mixed conditions on a mechanical shaker and removed 
at predetermined time intervals [28]. The adsorbent was then 
separated by using Whatman No. 2 qualitative filter paper. 

2.3.2. Desorption kinetic studies

Batch desorption studies were carried out after adsorp-
tion in a 50 mL reaction mixture which comprised 1.0 
g/L absorbent and 50 mg/L  adsorbate. The media was 
separated and added to an equivalent volume (50 mL) of 
desorbing solution (0.1 M HCl and Distilled water) and agi-
tated until equilibrium was established. The supernatant 
was subsequently tested for residual Cr(VI) ions.

2.3.3. Adsorption yield and concentration

The adsorption yield or the ratio of adsorbed metal ion 
concentration to the initial metal ion concentration was cal-
culated from Eq. (1):

% *Adsorption
C C

C
t

=
−0

0

100  (1)

where Co (mg/L) is the initial concentration of metal ions 
in solution, Ct  (mg/L) is the concentration of metal ions in 
solution at any time t.

The concentration of metal ions on activated carbon was 
determined using the mass balance equation expressed as 
follows:

q
C C

m
Vt

o t=
−( )

*  (2)

where qt (mg/g) is mg of adsorbate adsorbed per g of 
sorbent at any time t, Co (mg/L) is the initial adsorbate 
concentration in solution, Ct  (mg/L) is the  adsorbate con-
centration in solution at any time t, V (L) is the volume of 
synthetic adsorbate solution, and m (g) is the mass of the 
adsorbent.

2.4. Modelling approach

2.4.1. Lagergren model 

In 1898, Lagergren as cited in [28], developed a first-or-
der rate equation to describe the kinetic process of oxalic 
acid and malonic acid onto charcoal. Ho and McKay [29] 
described the equation as pseudo-first order. The Lagergren 
equation is given by the derivatives:

q qt e
K tPFO= − −( exp )1  (3)

where KPFO (min–1) is the rate constant of pseudo-first-or-
der adsorption, qt  (mg/g) is mg of adsorbate absorbed per 
gram of sorbent at any time t, and qe (mg/g) is the amount 
of adsorption at equilibrium, 

2.4.2. Pseudo-second order model

The pseudo-second order equation was developed for 
the sorption of divalent metal ions onto peat moss [30]. 
According to Ho and McKay [31], the model is based on 
pseudo-second order chemical reaction kinetics. The pseu-
do-second order equation is as follows:

q
K q t

K q tt
PSO e

e

=
+

2

21
 (4)

where qt is mg adsorbate per gram of sorbent at any time, qe 
(mg/g) is the amount of adsorption at equilibrium, and KPSO 
is the pseudo-second-order rate, (g/mg-min).

The initial sorption rate, h, as t → 0 is expressed as:

h K qPSO e= ( ) 2  (5)

2.4.3. Weber and Morris intraparticle diffusion model

Weber and Morris [32] proposed that the rate of intra-
particle diffusion varies proportionally with the half power 
of time and is expressed as Eq. (6). According to Ofomaja 
[33], when the model is linearised, qt (mg/g) is the adsor-
bate uptake at time, t (min), Kid  (mg/g-t1/2) is the rate con-
stant of intraparticle transport and the intercept c (mg/g), is 
taken to be proportional to the extent of the boundary layer 
thickness. If the rate limiting step is intraparticle diffusion, 
a plot of solute adsorbed against the square root of the con-
tact time should yield a straight line passing through the 
origin [32].
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q K t ct id= ( ) +1 2/
 (6)

The constant Kid is related to the intraparticle diffusivity, 
D by the following equation [34]:
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3
π

 (7)

where dp (cm) is the diameter of the particle, and qe (mg/g) 
is the solid phase concentration at equilibrium. 

2.4.4. Boyd model 

The Boyd’s model also known as Boyd’s film-diffusion 
model was proposed for intraparticle diffusion in a spher-
ical particle. It is frequently used to gain insight related to 
the mechanisms of adsorption [35]. The general solution of 
the model is given by Eq. (8):

F
n

n Bt
n

= − −
=

∞

∑1
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2 2
1

2

π
exp( )  (8)  

where F = q/qe, the fractional approach to equilibrium, B is 
the rate coefficient related to the effective diffusion coef-
ficient, (Deff) and the particle radius, as  B = π2Deff/R

2. By 
applying Fourier transform, the relation between the frac-
tional approach to equilibrium F and the rate coefficient B 
is written as:

Bt F= − − ( )( )π π π2
2

3/  for F < 0.85 (9a)

and Bt = –0.498 – ln (1 – F) for F > 0.85 (9b)

A plot of Bt vs. time is used to distinguish the film and 
particle diffusion controlled rates of adsorption. If a straight 
line passing through the origin is obtained, then particle dif-
fusion mechanism governs the rate of adsorption otherwise 
it is governed by film diffusion.

2.4.5. Diffusion-chemisorption model 

The diffusion-chemisorption kinetic model was devel-
oped to simulate biosorption of heavy metals onto hetero-
geneous media [36].  It is based on the assumption that both 
diffusion and chemisorption control the adsorption process. 
To obtain the derivatives a correlation was made where the 
rate of change of concentration of the solid phase, (qt, mg/g) 
is equated as a function of rate of mass transfer of adsorbate 
from the fluid phase to the adsorption site (KDC, mg/g-t0.5 ); 
the equilibrium sorption capacity (qe, mg/g); and time to the 
power of n–1, where n = 0.5. The model is presented as Eq. (10):

q

q
t
K

t

e DC

=
+

−

1
1 0 5 1.  (10)

where KDC (mg/g-t0.5) is the diffusion-chemisorption con-
stant, qt (mg/g) is the mass of ions adsorbed per gram of 
sorbent at any time and qe (mg/g) is the adsorption at equi-

librium. The initial slope of the kinetic curve was found to 
be a function of the diffusion-chemisorption constants KDC 
and qe. The following relationship is obtained by assuming 
a linear region, as t → 0. The initial rate ki (mg/g-t) is pre-
sented as follows: 

k K qi DC e  = 2 /  (11)

2.4.6. Theory of artificial neural network

In this study, multi layer feed-forward neural net-
works trained by backpropagation was adopted using 
the neural network toolbox from MATLAB (R2012a). 
The backpropagation training algorithm is one of the 
most widely used algorithms in multilayer neural net-
works [2,37]. It has been successfully applied in mod-
eling adsorption systems such as phenol adsorption by 
activated carbon [38], and cadmium adsorption by inor-
ganic sorbents [39]. The ANN architecture is formed by 
the number of layers, number of neurons in different lay-
ers, transfer function and initial weights which intercon-
nect each layer. Lek and Guegan [40] explained that the 
non-linear elements (neurons) are arranged in successive 
layers, and the information flows unidirectional, from 
input layer to output layer, through the hidden layers. 
The input values are weighted before entering the hidden 
layer while the bias units improve convergence by adding 
a constant term to the weighted sum. The output is based 
on the sum of the weighted values from the input layer 
and modified by a transfer function. Table 2 presents the 
transfer functions at both the hidden and output layer 
used in this study to optimise the ANN models. After 
the network’s output is compared with the target vector, 
error values for the hidden units are calculated, and the 
weights are changed. The backward propagation starts at 
the output layer and moves backward through the hidden 
 layers until it reaches the input layer [41]. The flow chart 
of the backpropagation learning algorithm is illustrated 
in Fig. 1 [42].

Duarte and Saraiva [43] iterated that the modelling 
of multiple input/output systems with pure black-box 
tools (Fig. 2a.) permit only limited extrapolation beyond 
the domain of the data from which they were derived 
thereby potentially resulting in unreasonable results. Con-
sequently, large amounts of data are required in order to 

Table 2
Transfer function

Name of transfer 
function

Algorithm

Logsig f n exp n( ) ( )( )= + −    1 1/

Tansig
f n exp n( ) ( )( ) = + − −   2 1 2 1/ *

Purelin f n n( ) =  
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lead to reliable predictions. An approach that combines the 
kinetic properties of the reaction with that of the black-box 
techniques serves to integrate the best of both paradigms. 
Such combining can be pursued through serial or paral-
lel strategies [44]. Nascimento et al. [45] explained that 
although the neural network absorbs most of the nonlin-
earity of the process, it is highly dependent on the quality 
and the range of the input data. The authors presented a 
promising alternative by applying the neural network to 
the parts of the problem where it is not possible to use phe-
nomenological models. Thus, a hybrid model in the form 
of a serial gray-box model and referred here as DC-ANN 
model is employed as presented in Fig. 2b. Su et al. [46] 
proposed a parallel structure to model a chemical reactor 
system. The parallel approach was also successfully used 
by Hussain and Rahman [18], to predict the pore formation 
in foods during drying. In this study, the parallel artificial 
neural network structure outlined in Fig. 2c. was used to 
develop a predictive model. 

2.5. Error analysis

The goodness of fit of the various kinetic models to 
the experimental data was evaluated using the linear 
coefficient of determination (R2), as well as the chi-square 
test, root mean square error (RMSE), relative percent 
error (RPE), normalized mean bias error (NMBE %)  
and mean square error (MSE) which are presented in 
Table 3. 

3. Results and discussion

3.1. Selection of the most appropriate kinetic model 

The analysis of the experimental kinetic data was car-
ried out using four (4) kinetic models: the pseudo-first 
order model [29];  pseudo-second order model [30]; Weber 
and Morris intraparticle diffusion model [32]; and the 
diffusion-chemisorption model [36]. The applicability of 
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Fig. 1.  Structure of backpropagation ANN model.
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these kinetic models to simulate the experimental data was 
assessed by non-linear regression using the Levenberg–
Marquardt algorithm. The resulting theoretical prediction 
curves were compared to the primary kinetic curves using 
the RPE, chi-squared test, and RMSE error functions, and 
are presented in Table 4. The RPE is a matrix which shows 
how large the error is in relation to the experimental value.  
The chi-square test is used to determine whether there is 
a significant difference between the experimental and pre-
dicted values. The lower the error value, the greater the 
conformity. RMSE statistics computes the error by compar-
ing the target  or experimental values with the predicted 
outputs. A lower RMSE indicates good prediction, but this 
statistic is biased towards high error values [47]. The pseu-
do-first order model produced the highest error values and 
as such implies that the reaction is more complex than pseu-

do-first order kinetics. The intraparticle diffusion model 
also did not produce a good simulation of the data. How-
ever, it is noted that as particle size increased, the confor-
mity of the model also increased. This infers that diffusion 
may be an operative mechanism as operational parameters 
vary. The kinetic data was found to conform best to the dif-
fusion-chemisorption model which produced the lowest 
error values for all particle size studied. 

3.2. Verification of the applicability of the diffusion- 
chemisorption model

3.2.1. Effect of pH on Cr(VI) adsorption

Hexavalent chromium exists in different forms in aque-
ous solution, and the stability of these forms is mainly 

Fig. 2. (a) Schematic diagram of the standard artificial neural network (SANN) (b) Schematic diagram of the gray-box serial artificial 
neural network (DC-ANN), (c) Schematic diagram of the gray-box parallel artificial neural network (PANN).



C. Sutherland et al. / Desalination and Water Treatment 103 (2018) 182–198188

dependent on the solution pH. The predominant Cr(VI) 
species are the acid chromate ion HCrO4

– and the chromate 
ion CrO4

2–. Below pH 4.0, the HCrO4
– complex is the major 

form while at pH above 9.0 the most abundant species is 
CrO4

2– [3]. The removal efficiency vs. pH is presented in 

Fig. 3. Adsorption of Cr(VI) was not observed at pH above 
6.5, indicating that Cr(VI) was adsorbed as HCrO4

–, the pre-
dominant species between pH 1.5 and 4.0. 

The surface of activated carbon contains functional 
groups which can be protonated or deprotonated, depend-

Table 3 
Error functions

Error functions Expression Equation number

Relative percent error 

RPE
N

q q
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Mean square error (MSE)
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where, N is the number of experimental points.

(16)

Normalized mean bias error 
(NMBE %)

NMBE
N
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e
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e
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N i i

mean
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exp

exp,

=
( ) − ( )





=∑1
100

1

where, N is the number of experimental points.

(17)

Table 4
Performance comparison of kinetic models using error functions of non-linear regression for chromium uptake by activated carbon

Particle size Model RPE Chi RMSE

0.21 mm Pseudo-first order 12.8673 18.0596 2.9059
Pseudo-second order 10.5336 4.4949 2.1708
Intraparticle diffusion 23.6147 17.1236 5.1765
Diffusion-chemisorption 3.2686 0.2130 0.7818

0.65 mm Pseudo-first order 12.3622 9.6768 1.4542
Pseudo-second order 11.8954 5.8241 1.3698
Intraparticle Diffusion 14.1763 2.6454 2.3151
Diffusion-chemisorption 5.6776 0.4653 1.1257

1.05 mm Pseudo-first order 12.0908 3.8481 0.8244
Pseudo-second order 9.7836 2.4902 0.6637
Intraparticle diffusion 4.3946 0.3158 0.9336

Diffusion-chemisorption 5.1087 0.2308 0.6573
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ing on the pH of the aqueous media [48]. As the pH of 
functional groups is reduced below its pKa value, the sur-
face groups become protonated, and the surface charge 
approaches zero. Consequently, any further reduction in 
pH results in surface charge reversal [49]. Fig. 3 shows that 
as the pH is reduced below 4.5, the removal efficiency of 
Cr(VI) anions increases significantly. This increase may be 
accounted for by surface charge reversal causing increased 
electrostatic interactions between the surface and the Cr(VI) 
complex. The maximum removal was observed at pH 2.5. A 
similar observation was reported by Singh and Tiwari [50], 
for the uptake of Cr(VI) by carbon slurry. As such, it may be 
surmised that the variation in Cr(VI) adsorption is due in 
large part to the influence of pH on the surface chemistry of 
the activated carbon.

3.2.2. Chemical desorption studies

Chromium desorption efficiencies were examined using 
distilled water and 1.0 M HCl [51] as the desorbing eluents. 
Complete desorption of Cr(VI) was not attained by any 
of the eluents. Kinetic analysis of the desorption data was 
performed using non-linear regression. A comparison of 
the goodness of fit by each model was assessed using error 

functions and is presented in Table 5. The data representing 
desorption by both HCl and distilled water conformed best 
to the pseudo-second order model. The overall and initial 
rate of desorption was determined using Eqs. (4) and (5) 
respectively, and is also presented in Table 5. HCl was the 
most effective eluent producing a significantly higher rate of 
Cr(VI) release. The initial release of Cr (VI) ions by HCl was 
approximately 40 times greater than that of distilled water.   
The distilled water wash achieved a maximum release of 
35% while the HCl wash attained 70% release after 165 min 
of agitation. The time taken to reach desorption equilib-
rium was approximately twice that required for adsorption. 
These results imply that the mechanism of adsorption, for 
at least 35% of the sorbed anions, is the result of physical 
adsorption, while sorption of the remaining ions may be 
attributed to ion exchange or chemical bonding. Similar 
results were reported by Anandan and Janakiram [51], for 
the desorption of Cr(VI) from activated carbon made from 
Albizia lebbeck stem. It is postulated that a higher concen-
tration of HCl, beyond 1.0M, may increase the desorption 
efficiency. 

3.2.3.   Effect of particle size

The influence of activated carbon particle size on sorp-
tion kinetics was studied and analysed by non-linear regres-
sion using the diffusion-chemisorption model. The overall 
rate of adsorption, KDC, shown in Table 6, increased as par-
ticle size decreased. This phenomenon was expected since a 
greater surface area of the adsorbent was available for sorp-
tion. It was also observed that the time taken to reach equi-

Fig. 3. Effect of pH on Cr(VI) removal efficiency by activated 
carbon.

Table 5 
Desorption kinetic modeling for different eluents

Eluent Model Error functions Pseudo-second order model

RPE Chi RMSE Overall rate,  
KPSO (g/mg-min)

Initial rate, h 
(mg/g-min)

HCl Pseudo-first order 6.9136 0.3198 0.6474 0.0865 5.7947
Pseudo-second order 1.6234 0.1722 0.4551
Intraparticle diffusion 37.1867 15.0453 2.4255
Diffusion-chemisorption 3.4778 0.0021 0.0464

H2O Pseudo-first order 162.1643 4.0849 1.6024 0.004 0.1271

Pseudo-second order 3.4959 0.0163 0.0756

Intraparticle diffusion 37.6794 0.3071 0.2869

Diffusion-chemisorption 46.3148 0.3273 0.2395

Table 6 
Diffusion-chemisorption rate parameters for varying particle 
sizes

Particle Size,  
dp (cm)

ki  
(mg/g-s)

KDC  
(mg/g-s0.5)

D 
(cm2/s)

Deff  
(cm2/s)

0.021 0.0525 0.6504 9.882E-08 9.636E-09
0.065 0.0066 1.5278 2.964E-07 2.852E-08
0.105 0.0013 2.4907 4.953E-07 4.790E-08
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librium increased as particle size increased. As such, the 
internal surface area associated with adsorption could have 
been at least partially occluded. This may be attributed to 
the difference in diameter of the large HCrO4

– ion and that 
of the micro and mesopores or the impact of intraparticle 
diffusion. To expound this phenomenon a log-log plot of the 
kinetic data for different particle size is shown in Fig. 4. The 
plot shows the curves to eventually converge when time is 
increased, indicating that each particle size will eventually 
attain the same sorption capacity. Consequently, the varia-
tion in equilibrium time with varying particle size verifies 
the presence and effect of intraparticle diffusion. 

3.2.4. Elucidating the mechanisms of adsorption

The phenomenon whereby ions are transferred from a 
liquid phase to a solid phase usually involves the follow-
ing steps: (i) boundary layer mass transfer across the liquid 
film surrounding the particle; (ii) internal diffusion/mass 
transport within the particle boundary as pore and/or solid 
diffusion; and (iii) adsorption within the particle and on the 
external surface [52]. 

3.2.4.1. Transport mechanisms

A plot of qt vs. t0.5 in accordance with the Weber and 
Morris model for two sorbent sizes viz. GMS 0.21 mm 
and 1.05 mm is shown in Fig. 5. It is observed that the plot 
depicting the largest particle size passed through the origin, 
indicating the dominance of intraparticle diffusion. Similar 
observations for the adsorption of cadmium onto various 
particle sizes of bone char have been reported by Choy et al. 
[53]. As the particle size decreased (which accompanies an 
increase in surface area and a reduction in pore length), the 
plots move further from the origin. Such deviation from the 
origin infers that intraparticle transport is not the only rate 
limiting step [54]. Previous studies [33,55,56], have reported 
that this increase in intercept reveals the growing effect of 
the boundary layer. The plot of 0.21 GMS (curve 1) shows 
two distinct slopes. The first slope depicted as 1(a), occurs 
from 1–40 min and reveals the influence of intraparticle dif-
fusion which may be rate limiting. Some researchers have 
reported that the final slope depicted as 1(b), corresponds 
to the slowing of the reaction, possibly due to a reduction 

in concentration gradient as the reaction approaches equi-
librium [57,58]. It is therefore evident that both film and 
intraparticle diffusion has some measured influence on the 
reaction rate-limiting step and the magnitude of their influ-
ent varies with reaction time.

The corresponding intraparticle diffusivity, D, was cal-
culated using Eq. (7), and is shown in Table 6. An increase 
in diffusivity is observed as particle size increased. A sim-
ilar trend was also reported by Shanthi et al. [59], for the 
adsorption of dye on activated carbon. Due to the larger 
particle size, there is less removal by surface adsorption. 
Consequently, this increased number of Cr(VI) ions in solu-
tion may have created a concentration gradient between the 
outer regions of the particle and the inner pores and thus a 
greater driving force was created.

The contribution of boundary layer or film diffusion 
was further investigated using the Boyd model given by Eq. 
(9). A plot of Bt vs. t was carried out (plot not shown) which 
revealed that the curve representing the largest particle 
size, GMS 1.05, passed through the origin. As particle size 
reduced the plots deviated further from the origin confirm-
ing the dominance of film diffusion. This observation not 
only validates the findings of the Weber and Morris model 
but also underscores the presence of both film and intrapar-
ticle diffusion even though they cannot be sharply demar-
cated. The corresponding effective diffusion coefficient, Deff 
was also calculated and is presented in Table 6.

3.2.4.2. Attachment mechanism

Walker and Weatherley [60] conveyed that the rate of 
adsorption and the magnitude of the effective diffusion 
coefficient are dependent upon the nature of the adsorption 
process. The authors stated that for physisorption processes, 
the magnitude of the diffusion coefficient ranges from 10–2 
to 10–5 (cm2 /s). Diffusion coefficient for chemisorption sys-
tems ranges from 10–5 to 10–13 (cm2 /s) due to the stronger 
bonds holding the molecules tighter to the adsorbent pore 
walls thus lowering the rate of molecular migration. It was 
found that Deff lies between 10–5 to 10–13 (cm2/s) which infers 
that chemisorption was an influential attachment mecha-
nism in the sorption process. This finding is in agreement 
with the DC model and the findings from the preceding 
desorption studies. 

Fig. 5. Plot of intraparticle diffusion model for various particle size.
Fig. 4. log-log plot of Cr(VI) uptake by activated carbon for various 
particle sizes.
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3.2.4.3. Mass transfer

The overall rate of adsorption relies on the slowest stage 
or stages in the adsorption process. Table 6 reveals that the 
overall rate of adsorption KDC is inversely proportional to 
particle size. A plot of 1/KDC vs. diffusivity (D) and effec-
tive diffusion coefficient (Deff) is presented in Fig. 6. The plot 
reveals a linear relationship in both instances that passes 
through the origin. This finding shows that the overall dif-
fusion-chemisorption rate, KDC may be used indirectly to 
identify the influence of changes in process variables on 
the diffusivity or effective diffusion coefficient. This further 
verifies the applicability of the DC model. 

3.2.4.4. Rate-limiting steps

The preceding discussion revealed the sorption of 
Cr(VI) to be a complex reaction. The attachments of Cr(VI) 
as revealed by desorption studies may be attributed to 
physical forces for at least 35% of the sorbed ions and 65% 
chemically bonded. The presence of chemical sorption 
was further verified through mass transfer analysis using 
the Boyd model. The limiting transport mechanism was 
found to involve film diffusion as well as intraparticle 
diffusion. It was evident from mass transfer analysis that 
the mechanisms that govern the rate-limiting steps as the 
reaction proceeds changes with time. Consequently, both 
transport and attachment mechanisms play a significant 
role in the adsorption process and thus may account for 
the superior simulation by the diffusion–chemisorption 
model. 

3.3. Development of ANN to simulate the process kinetics 

3.3.1. Neural network optimization

The neural network models were developed and opti-
mized to simulate and predict the kinetic manner of chro-
mium (VI) adsorption by activated carbon. A three layer 
feed-forward backpropagation network was adopted with 
input and output layer comprising neurons as shown in 
Table 7. The impact of training function on the networks 
was first examined (Table 8). Using the tansig and purelin 
transfer functions at the hidden and output layer respec-
tively and 10 neurons at the hidden layer, the BFGS qua-
si-Newton backpropagation algorithm produced the lowest 
MSE for the SANN and DC-ANN models while the Lev-
enberg–Marquardt algorithm best suited the PANN model. 
Using the optimum algorithms, transfer functions from 
Table 2 were then varied to determine the impact on the net-
works. The performance of these transfer functions at the 
hidden and output layers was assessed using the MSE and 
coefficient of determination. Using the first two training, 
the optimum functions for all three networks were found to 
be a tangent sigmoid transfer function (tansig) at the hidden 
layer and a linear transfer function (purelin) at the output 
layer (Table 9). 

The number of neurons in the hidden layer is critical to 
the performance of an ANN model. Too few neurons can 
lead to under-fitting while too many neurons may result in 
over-fitting [61]. In this protocol, the number of neurons was 
varied from 2 to 20 and its impact on performance assessed 
using the MSE as shown in Fig. 7. The figure also reveals 
fluctuations in MSE as the number of neurons increased. 
This may have resulted from the network being trapped 
into the local minima [38].  The least MSE within 10 training 
runs for the SANN, DC-ANN, and PANN were found to be 
0.0013 at neuron 7, 0.0001 at neuron 17 and 5.3 × 10–19 at 15 
neurons respectively. The optimized SANN, DC-ANN and 
PANN networks are presented in Table 10. 

3.3.2. Evaluation criteria

According to Dawson et al. [62], there is no univer-
sally accepted measure of ANN skill, and therefore the 
combined use of the performance measures allows com-
parison and an unbiased estimate of prediction ability. 
Using these optimised neural networks, the output value 
was compared to the target value using the coefficient of 
determination, NMBE, RMSE and the Bland-Atman plot. 
The experimental dataset was divided into three parts: 

Fig. 6. Plot showing relationship between DC overall kinetic rate 
(KDC), diffusivity (D) and effective diffusion coefficient (Deff).

Table 7 
Range of data for SANN, DC-ANN and PANN models 

Layer Variable SANN DC-ANN PANN

Input Layer Time of contact, t (min) 0–90 0–90 0–90
Particle size (GMS), dp (mm) 0.21–1.05 0.21–1.05 0.21–1.05
Initial kinetic rate, ki (mg/g-t) – 0.078 – 3.15 –
Overall kinetic rate, KDC (mg/g-t0.5) – 3.11 – 11.91 –
Relative sorption capacity, qm (mg/g) – 45.02 – 123.63 –

Output Layer Adsorbed concentration qt (mg/g) 2.7–31.3 2.7–31.3 2.7–31.3
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70% training data; 15% validation data and 15% testing 
data. The training dataset is used to build several predic-
tive algorithms. The validation dataset is used to compare 
and select the most optimal algorithm. The testing dataset 
presents an opportunity to test and assess the best per-
forming algorithm on un-seen data. Table 11 reveals a com-
parison of the experimental data and the training dataset, 

validation dataset, testing dataset and the entire dataset. 
A positive NMBE would indicate over-prediction while a 
negative NMBE would indicate under-prediction from a 
model. The NMBE statistics for PANN produced negative 
values for validation and testing which reveals under-pre-
diction of the adsorptive performance. However, consis-
tency and an improvement in performance were observed. 

Table 8 
Performance of varying training algorithms of ANN models

 SANN DC-ANN PANN

Backpropagation (BP) algorithms MSE  R2 MSE  R2 MSE  R2 

BFGS quasi-Newton backpropagation 0.9008 0.9682 0.1332 0.9933 0.2221 0.3533
Powell–Beale conjugate gradient BP 2.6524 0.9103 1.8535 0.9631 0.2906 0.4808
Fletcher–Reeves conjugate gradient BP 1.6587 0.9308 1.8588 0.9651 0.2716 0.4717
Polak-Ribiere conjugate gradient BP 1.9381 0.9370 4.0071 0.8995 0.2907 0.4808
Gradient descent 270.83 0.0650 96.2580 0.8191 4.4884 0.1244
Gradient descent with momentum  69.6986 0.5288 96.2580 0.8191 4.4884 0.1244
Gradient descent with adaptive learning rate 20.7431 0.6925 2.2059 0.7745 4.4884 0.1244
Gradient descent with momentum & AL 43.6512 0.2664 10.1557 0.7488 4.4884 0.1244
Levenberg–Marquardt backpropagation 1.0754 0.1664 4.8134 0.9564 0.1264 0.8373
One step secant backpropagation 1.2842 0.9674 0.4888 0.8515 0.2118 0.4776
Random weight/Bias 270.83 0.9777 96.2580 0.4647 4.4884 0.5541

Resilient backpropagation 5.8969 0.8627 3.7096 0.7744 0.3027 0.6452

Scaled conjugate gradient backpropagation 1.1567 0.9434 1.6737 0.9693 0.2792 0.4753

Table 9 
Performance of varying transfer functions on SANN, DC-ANN, and PANN models

Neural network Activation 
function Layer 1

Activation 
function Layer 2

MSE (first 
iteration)

MSE (second 
iteration)

R2 (first  
iteration)

R2 (second 
iteration)

SANN Tansig Purelin 0.9008 0.8633 0.9682 0.9682
DC-ANN Tansig Purelin 0.1332 0.0096 0.9933 0.9969
PANN Tansig Purelin 0.1264 0.0269 0.8373 0.8373

Table 10 
Optimized structure of SANN, DC-ANN and PANN models

Network characteristics SANN 
Feed-forward BP

DC-ANN 
Feed-forward BP

PANN 
Feed-forward BP

Transfer function (hidden layer) Tansig Tansig Tansig
Transfer function (output layer) Purelin Purelin Purelin
Training function BFGS quasi-Newton BFGS quasi-Newton Levenberg–Marquardt 
Performance function  MSE  MSE  MSE
Neurons in input layer 2 5 2
Neurons in hidden layer 7 17 15
Neurons in output layer 1 1 1
Data used for training 70% 70% 70%
Data for cross-validation 15% 15% 15%
Data for testing 15% 15% 15%
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The DC-ANN showed positive values of NMBE training, 
validation and testing and thus an overestimation of the 
adsorptive performance, but also reveals consistency and 
improved performance by the model. Both models reveal 
a near optimal prediction accuracy of the adsorption data. 
The RMSE gives a relatively high weight to large errors 
[47]. The DC-ANN produced the lowest training RMSE 
while the PANN had the lowest for validation and test-
ing.  When the entire dataset was analysed by this matrix, 
the PANN produced the lowest RMSE followed by the 
DC-ANN and the finally the SANN which implies that the 
SANN is most prone to large errors which are undesirable 
in adsorption processes. 

Correlation is a statistical technique that can show 
whether and how strong pairs of variables are linearly 
related [63]. Further, linear regression finds the best line 
that predicts one variable from the other one then quan-
tifies the goodness of fit using the coefficient of deter-
mination. The plots in Figs. 8a to 8d describes the linear 
relationship (blue lines) between the experimental and 
predicted values. In all instances, a high correlation of 
determination is observed (>0.95). However, deviations 
are observed between the line of equality (red line) which 
signifies the y = x and the line representing the coefficient 
of determination, R2.  The R2 tells us the proportion of 
variance that the experimental and predicted values have 
in common, however, Giavarina [63] explained that this 
does not imply good agreement. In all the plots the data 
points were clustered close to the regression line which 
makes it difficult to assess the agreement or differences 
between the data. 

The Bland-Altman method involves plotting the dif-
ference in experimental and predicted values against the 
mean. In this study, the technique was employed to pro-

vide a comparative analysis of each neural network’s per-
formance in predicting the experimental data. These plots 
are shown in Figs. 9a–9d for the DC kinetic model, SANN, 
PANN and the DC-ANN respectively. The plot allows us to 
assess the relationship between the predicted error and the 
so called true value [64]. The lack of agreement between the 
experimental data and the predictions are summerised by 
calculating the bias. For the prediction of experimental val-
ues by the neural networks, the limits of agreement (LOA) 
are set at mean +/– 1.96 SD [64]. 

From Fig. 9b. the predictions by the SANN were on 
average 0.276 mg/g higher than the experimental values. 
The DC-ANN model (Fig. 9d) was also higher by 0.153 
mg/g while the PANN (Fig. 9c) predicts on average 0.0623 
mg/g lower than the experimental values. A significant 
trend was observed by the DC kinetic model (Fig. 9a), 
which reveals a prediction of an average of 0.023 mg/g 
higher than the experimental values and thus a low bias.  
Consequently, adjusting the reading of the prediction by 
adding or reducing the values by the bias would make 
it agree more to the experimental value. Despite the low 
bias, the LOA estimates the DC kinetic model may pro-
duce qt values within an interval of 1.739 mg/g above or 
1.785 mg/g below the experimental value. Further, the 
LOA estimates an interval for the SANN of 1.725 to –2.277; 
the DC-ANN of 0.813 mg/g to –1.119 mg/l; and the PANN 
of 0.781 mg/g to –0.656 mg/g. 

The prediction made by the DC kinetic model and the 
SANN to the experimental data was the least precise among 
the models tested. The DC-ANN and the PANN both gen-
erated a superior prediction with a lower LOA interval. The 
SANN (black-box model) has the advantage that the model 
may be applied to predict adsorption removal outside the 
range of operational parameters. The PANN and ANN-DC 
are limited to only produce predictions within the range of 
operational parameters since they rely on input from the 
DC kinetic model. The PANN requires the error to be first 
generated followed by analysis using the DC kinetic model 
to determine the adsorption removal. Although the PANN 
produced the smallest error, the comparison revealed the 
DC-ANN produced a sufficiently close simulation and 
required less computational effort and is thus more practi-
cal for up-scale applications.

Table 11 
Statistical performance of SANN, DC-ANN, and PANN models 
using NMBE and RMSE error functions

Models NMBE RMSE

Training
SANN 0.1167 0.4686
DC-ANN 0.3523 0.2539
PANN –0.3242 0.4186

Validation
SANN 0.0248 0.0365
DC-ANN 0.0616 0.0102
PANN 0.0000 0.0000

Testing
SANN 13.2751 2.3485
DC-ANN 3.212 1.2089
PANN –0.9997 0.2186

Entire Dataset
SANN 1.0840 0.9129
DC-ANN 0.7754 0.5046
PANN –0.3159 0.3287

Fig. 7. Relationship between MSE and number of neurons at hid-
den layer for SANN, DC-ANN, and PANN models.
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Fig. 8. (a) Plot of DC kinetic model outputs vs. the corresponding experimental targets, (b) Plot of SANN network outputs vs. the 
corresponding experimental targets, (c) Plot of PANN network outputs vs. the corresponding experimental targets, (d) Plot of DC-
ANN network outputs vs. the corresponding experimental targets.

 

 

Fig. 9. (a) Bland–Altman plot showing the difference against the average of DC-ANN prediction and experimental data with LOA 
(broken lines), (b) SANN prediction, (c) PANN prediction, (d) DC kinetic model prediction.
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3.3.3. Formulation of empirical equation 

An empirical expression was developed to predict the 
kinetic adsorption process without the need to run the 
DC-ANN. Using the optimized DC-ANN and Eq. (19) 
which exhibits the fitness function that correlates the input 
with the output, the following empirical expression is 
developed: 

qt,pred  = –0.2375F1 + 0.4387F2 + 0.4285F3 – 0.5440F4  
+ 0.1897F5 – 0.4676F6  – 0.7580F7  – 0.0410F8 + 0.1234F9  
+ 0.3883F10 – 0.2581F11 + 0.1364F12 + 0.1115F13  
– 0.6453F14 – 0.4122F15 – 0.9162F16 + 0.7232F17 – 0.5957  (18)

where Fi is the tansig activation function used at the hidden 
layer and is given as Eq. (19):
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The input data is normalized in the range –1 to 1 using 
Eq. (20):
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where Xi is the input or output variable X, and Xmin and Xmax 
are the minimum and maximum value of variable X. Ei is 
the weighted sum of the normalized input calculated using 
values from Table 12 and is defined as follows: 

E W t W k W K W q W d bi i i i i i m i p i= + + + + +1 2 3 4 5* * * * *  (21)

3.3.4. Sensitivity analysis

Based on the analysis of Figs. 8a–8d, it is significant to 
note that the R2 for the entire SANN dataset was 0.9892. 
 However, the R2 increased to 0.9969 upon the inclusion of the 
DC kinetic model parameters to create the DC-ANN model. 
A sensitivity analysis was carried out to determine the effect 
of each variable, particularly the DC kinetic parameters on 
the performance of the DC-ANN model. To conduct this 
analysis, performance evaluation of various possible com-
binations of variables were investigated [65]. The variables 
were combined to form five groups as presented in Table 13. 
The input variables were defined as follows: p1 is time, p2 is 
initial rate, p3 is overall rate, p4 is relative sorption capacity, 
and p5 is particle size. The combinations were examined by 
the optimum DC-ANN model using the BFGS quasi-Newton 
backpropagation algorithm with 17 neurons in the hidden 
layer. The table shows p1 to be the most effective parame-
ter in the group of one variable with an MSE of 8.1159 and 
R2 of 0.7447. The minimum value of MSE and highest R2 in 
the group of two variables was determined to be 0.0641 and 
0.9877 respectively with the interaction of p1 (time) and p3 
(overall rate). When the interaction of p1 + p3 was used with 
p5 (particle size), the minimum MSE was observed among 
the group of three variables. The lowest value of MSE and 
best R2 was found to be 0.0321 and 0.9909 respectively.  The 
values of MSE decreased significantly from 0.0321 to 0.0092 
when p2 (initial rate) was added to the interaction. The 
lowest MSE (0.0001) and highest R2 (0.9969) were observed 
when all variables were combined. Based on the preceding, 
it is evident that the greatest improvement in performance 
occurred with the inclusion of the diffusion-chemisorption 
kinetic parameters. Consequently, the relative impact of each 
parameter allows the designer to make a more informed 
decision regarding process efficiency.

Table 12 
Optimized weights and biases for DC-ANN model

Input 1 (t) Input 2 (ki) Input 3 (KDC) Input 4 (qm) Input 5 (dp) Bias 1 Output

Node 1 1.0475 1.3636 –1.2657 0.5431 –1.1586 –2.4177 –0.2375
Node 2 1.4876 1.1445 1.2604 0.5271 –0.9572 –2.1103 0.4387
Node 3 –1.0822 1.3822 0.5269 –0.8653 1.2065 1.8860 0.4285
Node 4 1.5389 0.4871 –0.7545 –1.4736 –0.9069 –1.4148 –0.5440
Node 5 0.3620 –1.5491 1.5334 –0.0038 1.0541 –1.2595 0.1897
Node 6 –0.6512 1.0027 –1.2887 1.3257 –0.7055 0.9434 –0.4676
Node 7 –0.6793 1.8681 0.0098 –0.6515 1.4246 0.5667 –0.7580
Node 8 0.4296 1.5543 –1.0696 0.7659 –1.3079 –0.3065 –0.0410
Node 9 1.5248 0.9147 0.9335 –0.9352 –1.0469 –0.0383 0.1234
Node 10 1.3821 0.9950 1.1434 0.9441 –0.9042 0.0038 0.3883
Node 11 –1.5764 –0.3833 –1.2850 –1.3278 0.3490 –0.5106 –0.2581
Node 12 2.2965 0.8613 0.0265 0.0017 –0.1862 0.9855 0.1364
Node 13 1.8416 –1.2765 –0.1842 0.7775 –0.6179 1.2128 0.1115
Node 14 0.0965 0.9994 0.7415 1.5787 1.3193 –1.6459 –0.6453
Node 15 0.9248 –1.5495 0.6831 1.4067 0.2337 1.9876 –0.4122
Node 16 –2.0297 –1.1318 1.2755 0.0535 0.1526 –2.3325 –0.9162
Node 17 –0.2471 –1.4986 –0.7433 –1.1841 1.3720 –2.4540 0.7232
Bias 2       –0.5957
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4. Conclusion

In this paper, the performance of a standard artificial 
neural network (SANN) was compared to that of a serial 
gray-box (DC-ANN) and parallel gray-box (PANN) for the 
prediction of Cr(VI) adsorption by activated carbon. The 
constructed predictive hybrid models were built-in with the 
joint effect of operating parameters such as time and parti-
cle size (PANN) together with the kinetic parameters of the 
diffusion-chemisorption (DC) model such as overall rate, 

initial rate, and sorption capacity (DC-ANN). A fraction of 
the experimental dataset (70%) was used to train the net-
work. The other data points, not employed in the network 
training, were used to validate and test the network. The 
hybrid models produced a significantly higher correlation 
to the experimental data over that of the DC kinetic model 
and the SANN. The DC-ANN produced significantly high 
correlation to the experimental data and required less com-
putational effort when compared to the PANN. 

The removal efficiency of Cr(VI) was found to be pH 
dependent. The optimum pH was determined to be 2.5 
whereby the Cr(VI) was adsorbed as HCrO4

–. The major 
transport mechanism of the reaction was found to be intra-
particle diffusion while the major attachment mechanism 
was chemical bonding.  It was also discovered that the DC 
overall kinetic rate, KDC was inversely proportional to both 
the effective diffusion coefficient and the diffusivity. This 
parameter opportunely allows the assessment of diffu-
sional effects.
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