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a b s t r a c t

Groundwater is one of the major sources of water supply in arid and semi-arid regions. Thus, in 
order to protect groundwater quality, data on spatial and temporal distribution of groundwater are 
important. One way to protect groundwater quality is through the investigation of spatial distribu-
tion data. Geostatistical methods are one of the most advanced techniques for the interpolation of 
groundwater quality. Therefore, in this study by geographic information system ArcGIS and GS+, 
deterministic interpolation methods such as Inverse Distance Weighting (IDW), Global Polynomial 
Interpolation (GPI), and Local Polynomial Interpolation (LPI), with power ranging from 1 to 5, as 
well as geostatistical interpolation methods such as OK, SK, and UK, with exponential and rational 
Quadratic models, were used for studying the spatial distribution of quality parameters such as Cl, 
EC, TDS, and anion. The data were related to 44 exploitation wells in the Gonabad Plain in the Razavi 
Khorasan Province in the year 2013–14; after normalization, the best model parameters of the fitness 
semivariogram were selected based on the nugget effect to Sill. Then, based on cross-validation cri-
teria such as MRE, RMSE, and R, the best interpolation method was selected. The results showed that 
the IDW method, with the powers of 3 and 4, had the lowest error and the most correlation compared 
to the GPI, LPI, OK, SK, and UK methods. Finally, the zoning maps and spatial distribution for the 
studied parameters were prepared based on the best interpolation method.
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1. Introduction

Groundwater is one of the most important natural sup-
plies in arid and semi-arid regions where access to surface 
water is difficult. On the other hand, the rapid population 
growth in these areas and the improper use of ground-
water supply can cause salinity, and a reduction of water 
quality [1,2]. By increasing the water crisis,the quality of all 
water supplies is as significantly important as its quantity, 
especially in groundwater. Therefore, groundwater qual-

ity assessment for its sustainable use is considerable, alike 
other water resources [3–5]. Many factors influence ground-
water quality,including precipitation, soil characteristics, 
zone topography, basin geological structure, geological 
processes, groundwater recharge, and human activities on 
land [6]. Thus, Total dissolved solids (TDS) concentrations 
and the main anions of groundwater are the parameters that 
assist in the investigation of groundwater quality in terms 
of drinking water sources. In addition, the main anions of 
groundwater can be used for water supply management [7]. 
Tisero and Voudourisk studied the chemical composition 
of groundwater in shallow aquifers in the Western and the 
semi-arid area of Iran, and indicated that salinity was the 
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most important factor behind the reduction of the quality of 
groundwater in that area [8]. The evaluation of groundwater 
quality in a region needs many water samples in the stud-
ied area; this is both time-consuming and has high costs (in 
terms of field and laboratory operations). One of the ways 
to deal with this problem involves sampling from a limited 
number of locations that indicate the entire region, and then, 
the application of these results on the entire region by geo-
statistical methods [9]. Geostatistical interpolation methods 
create a continuous surface with the help of measured points 
and the polygon method, which can predict the desired val-
ues in places lacking data [10]. Many studies used geosta-
tistical interpolation methods to estimate the groundwater 
level, the temperature data, and the soil and mineral con-
centration [11–13]. A number of these studies have shown 
that the kriging method has a better performance than IDW 
[14]. Certain other studies, however, revealed that kriging 
has a lower accuracy than other interpolation methods such 
as IDW [15,16]. Shamsudduha conducted a study to assess 
the most appropriate prediction method for estimating arse-
nic concentrations in shallow aquifers in Bangladesh by 
using several spatial interpolation methods and indicated 
that Ordinary Kriging (OK) has a better performance for 
estimating arsenic concentrations based on unbiased anal-
ysis, validation, and mean prediction error [17]. Taghizadeh 
et al. used cokriging and IDW methods to predict the spatial 
distribution of water quality parameters such as TDS, TH, 
EC, SAR, CL-, and SO4

2– in the Yazd–Ardakan Plain, and has 
concluded that the IDW method has a lower performance 
than kriging and cokriging owing to low value root mean 
square error (RMSE) [18]. Ahmadi and Sedghamiz carried 
out a study in the Darab Plain in the south of Iran to spa-
tially and temporally analyze groundwater level fluctua-
tions by using Ordinary Kriging (OK) and UK methods. The 
results showed that the temporal and spatial variations of 
the groundwater level are very impalpable: three and six 
percent, respectively [19]. Sunet al. conducted a study to 
interpolate the spatial and temporal distribution of deep 
groundwater in the north of China by using several spa-
tial interpolation methods such asIDW, RBF, OK, SK, and 
UK. The performance of these methods was evaluated by 
validation test methods such as correlation coefficient (R) 
and root-mean-square error (RMSE). They concluded that 
SK,with the lowest RMSE and the highest R2, is the best 
method for the spatial distribution of groundwater [20]. In 
another study, Xie et al. used three different interpolation 
methods, IDW, OK, and RBF, for the spatial distribution of 
heavy metals on soil and evaluated the performance of these 
methods based on RMSE. The results showed that the OK 
and the RBF methods were more efficient in the estimation 
of unsampled points on heavy metals [12]. Hooshm and et 
al. applied kriging and cokriging methods for estimating 
SAR and Cl on agricultural land and revealed that cokriging 
has a better performance than kriging [21].

Moghaddam et al. carried out a study in the Mashhad-
Plain to evaluate the temporal and spatial variations of 
water quality parameters by using the methods of Bool-
ean Logic, IDW, and kriging. Based on RMSE, the results 
showed that kriging and IDW are the best methods for TDS, 
SAR, Na, EC and SO4

−2 , TH, and Cl, respectively [22]. Noori 
et al. used four interpolation methods for the spatial analy-
sis of groundwater levels at different climatic periods. The 

performance of these interpolation methods were evaluated 
by using validation test methods (RMSE, MAE, and R2). The 
results of this study revealed that cokriging methods have a 
better performance than other methods [23].

Geostatistics assume that there is a spatial correlation 
(Interval-Directional) between measured samples and the 
samples are not independent from each other [24]. Finally, 
it can be concluded that the spatial correlation assessment 
of groundwater quality parameters is one of the most 
important tools for the analysis of groundwater in arid and 
semi-arid areas. The kriging method, as one of the most 
prestigious geostatistical methods, is able to survey and 
estimate the spatial distribution of the groundwater quality 
parameters and the aquifer level [25]. The aim of this study 
is the evaluation of spatial correlation and the estimation of 
the spatial distribution of the parameters, Cl, EC, TDS, and 
anions, in the Gonabad Plain using GIS and geostatistical 
interpolation methods in the year 2013–14.

2. Materials and methods

2.1. Study area

The city of Gonabad is located in the Razavi Khorasan 
Province. This area lies between the latitudes 37°6’and 
38°50’ N and the longitudes 61°8’ and 72°5’ E, covering an 
area of approximately 5,902 m2 (Fig. 1). The elevation of 
this area is 1,105 m above sea level. The climate is generally 
cool and dry, with warm summers. The minimum and max-
imum temperatures are −8.4 and 38.7°C, respectively. In 
addition, the average temperature of the Province is 17.6°C.

This study used data from 44 exploitation wells in the 
Gonabad Plain in the Razavi Khorasan Province in the 
year 2013–14. The reason to select this year for this study 
included increasing the accuracy and the validity of the 
existing data in order to promote feelers and technology 
progress in recent years, which reduce the error of collected 
data and restore them. The position of the study area and 
the wells is shown in Figs. 1 and 2.

2.2. Interpolation methods

Interpolation methods are classified into two main 
groups: deterministic and geostatistical. Deterministic 
methods apply based on the level of measured points and 
the greatest similarity (such as IDW) or smoothing degree 
(such as RBF). Geostatistical methods use the statistical 
properties of measured points and random processes with 
spatial correlation to estimate the unmeasured value [10].

2.3. Deterministic interpolation methods

2.3.1. Inverse distance weighting (IDW)

IDW uses a simple algorithm based on distance: by 
increasing distance, the effect of parameters should be 
reduced to level. In addition, this method uses from sur-
rounding measured value to predict values at unmeasured 
locations. The closest measured values have the greatest 
influence. In IDW, the prediction of the values for unmea-
sured location are determined using Eq. (1):
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where z is the estimated value, zi is the measured value at 
the point, di is the distance between z and zi, and m refers to 
the power weights. Them value ranges from 1–5 and N is 
the total number of such points that are used in the inter-
polation [10].

2.4. Global polynomial interpolation (GPI)

GPI is a fitter of the flat surface by mathematical for-
mula eat input points. In this method, in contrast to IDW, 
surrounding measured values to predict values at unmea-
sured locations are not used and surface variations are 
gradually employed. In this method, only a polynomial is 
fitted for all the data [26].

2.5. Local polynomial interpolation (LPI)

This method uses polynomial formulae for interpolat-
ing like IDW. In this method, however, in contrast to IDW, 
many polynomials are fitted for limited data at a known 
location, a neighborhood [26].

2.6. Geostatistical interpolation methods

2.6.1. Kriging

Kriging is a geostatistical method like IDW interpola-
tion; it uses a linear combination of weights at known points 
to estimate the value at unknown points. Kriging uses a 
semivariogram, a measure of spatial correlation between 
two points in such a way that weights change according to 
the spatial arrangement of samples. In contrast to other esti-
mation procedures, kriging provides a measure of the error 
or uncertainty in the estimated surface [27]. Several forms 
of kriging interpolation exist, including OK, SK, and UK.

2.7. Ordinary kriging (OK)

OK has a greater application among different kriging 
methods. Ordinary kriging provides optimal estimations 
of known values in unsampled locations by using structure 
semivariogram characteristics and primary value. OK is 
calculated using Eq. (2):

Z x Z xi ii

n*
0 1

( ) = ( )−∑ λ  (2)

where Z*(x0) is the estimated value at x0, λi is the known 
weight Z at xi, and n is the number of points of nearby esti-
mated points [28].

Fig. 1. Location of the study area.
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2.8. Simple kriging (SK)

This method assumes that the trend component is a con-
stant and known mean. Owing to the constant and known 
mean, SK is more efficient than the OK method; in most 
cases, however, the selection of the mean is difficult [28].

2.9. Universal kriging (UK)

This method is much like ordinary kriging, except that 
instead of fitting just a local mean in the neighborhood of 
the estimation point, it fits a linear or higher-order trend in 
the coordinates of the data points [10]. 

2.10. Semivariogram analysis

The semivariogram is the most common tool to investi-
gate spatial correlation in geostatistics. The semivariogram 
shows dissimilarity between properties when the distance 
increases between samples. Experimental semivariograms 
are calculated using Eq. (3):

γ h
N h

z x z x hi ii

N h( ) = ( ) ( ) − +( ) =

( )∑1
2

2

1
 (3)

where γ(h) is the experimental semivariogram, N(h) is the 
number of observation pairs for xi, zxi is the value of vari-
able at location xi, and z(xi + h) is the value of the variable 
at (xi + h).

The value of the semivariogram at h = 0 is called the 
Nugget effect. The semivariogram value increases to a sig-
nificant distance with an increase in h, and then, reaches a 
constant value, which is called sill (C + C0).

The range of influence (A0) is the distance between 
samples which, after the distance, ensure that the variable 
values do not affect each other [28]. This range determines 
a confine that can be used to estimate the unknown value 
by using the existing data. Certainly, the greater range of 
influence indicates wider spatial correlation [29]. The ratio 
of (C0/C+C0) is used in spatial correlation classification of 
groundwater quality parameters. It is an indicator of spatial 
structure power in variables. If the ratio is less than 0.25, the 
variable has a strong spatial correlation (dependence); if the 
ratio is between 0.25 and 0.75, the variables show moderate 
spatial correlation; otherwise, the variables represent poor 
(weak) spatial correlation [19,30].

2.11. Cross validation 

To select the best interpolation method the mean rela-
tive error (MRE), the root mean square error (RMSE), and 
correlation (R) based on Eqs. (4)–(6) were used. 
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In this equations, z(xi) is the observed value at xi, z*(xi) 
is the estimated value at xi, z xl( )  is the mean observed value 
at xi, z xl( )  is the mean estimated value at xi, and n is the 
number of observed variables. The best values of RMSE 
and MRE are 0 and for R, it is 1 [12].

3. Results and discussion

The best results of geostatistical and definitive inter-
polation methods are obtained if the data is normally dis-
tributed [31]. The statistical analysis results of the quality 
groundwater parameters in studied wells are provided 
in Table 1. As observable, the skewness coefficient of all 
parameters before normalization is out of range (1 and −1); 
indicating the data is not normal. For this purpose, the data 
should first be checked for normality distribution by using 
the runs-test and SPSS in terms of accuracy and homogene-
ity. The data were log-transformed prior to the calculation 
of semi variance and normalization.

Normal Q-Q plots of the quality parameters of 
Cl,EC,TDS, and anions after applying log-transformation 

Fig. 2. Location of the wells.
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is provided in Fig. 3. In a normal Q-Q plot, if the spots are 
around a straight line, it indicates that the data are normal 
[31]. The result of this plot shows that the logarithmic con-
version causes the normalization of all groundwater quality 
parameters.

Table 2 shows the best-fitted semivariogram model of 
groundwater quality parameters. According to the table, 
the nugget–sill ratio (C0/C + C0) for the parameters Cl, EC, 
and TDS range from 0.25 to 0.75, which shows moderate 
spatial correlation in the fitted model. This ratio is, how-
ever, lower than 0.25 for the anion and indicates a strong 
spatial correlation in the desired model.

In this study, after the validation and homogeneity of 
data, and the selection of the best fitting semivariogram 
model, ArcGIS, GS+, and deterministic interpolation 
methods (IDW, LPI, GPI) with powers ranging from 1 to 
5, geostatistical interpolation models (OK, SK, UK),with 
exponential and rational quadratic models, were used to 
identify the most suitable interpolation method, the spatial 

distribution of groundwater quality parameters, and zon-
ing maps (Table 3).

According to the results of Table 3, the IDW method 
with 3 power weight has the lowest error and the highest 
correlation for Cl. In addition, the GPI and the LPI meth-
ods are located in the second and third places, respectively. 
When these methods were compared together, it was 
observed that all the geostatistical interpolation methods 
yielded relatively close results due to the equality of RMSE 
and R measures. The SK method and the rational quadratic 
equation, however, yielded poorer results due to a higher 
MRE value. The value of RMSE for EC is very high in all the 
interpolation methods, but the value of this parameter in 
IDW is lower than the other methods.

The IDW method, in terms of the MRE error measure, 
is located in second place after OK and UK, with exponen-
tial and rational quadratic models,but based on R = 0.82, it 
has a better performance than other methods. Results show 
a strong correlation between the measured (observed) and 

Fig. 3. Normal Q-Q plots of groundwater quality parameters.

Table 1
Descriptive statistics of groundwater quality parameters measured in the study area

Parameters Minimum Maximum Mean Median Variance Kurtosis Skewness

Cl 0.44 133 29.82 20.58 31.37 5.43 71.9
Cl* –0.82 4.89 2.83 3.02 1.26 4.45 –1.03
EC 341.6 19600 5443.3 4512.5 4775.5 4.83 1.57
EC* 5.83 9.88 8.22 8.41 0.96 3.35 –0.60
TDS 215.21 12348 3429.3 2842.9 3008.6 4.83 1.57
TDS* 5.37 9.42 7.76 7.95 0.96 3.35 –0.60
Anion 3.76 196 55.74 46.83 47.55 4.77 1.54
Anion* 1.32 5.28 3.66 3.85 0.94 0.30 –0.61

*Logarithm transformation
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(predicted) estimated values of this parameter. The results 
of the TDS and the EC interpolation methods were quite 
similar to each other. In IDW, the value of MRE with 3 pow-
ers was higher than the OK and the UK methods with expo-
nential and rational quadratic models, with the rate of 0.6. 
The correlation coefficient R and RMSE error rate was high 
and low, respectively, indicating that the IDW method had 
a better performance based on these measures.

The best results for anions, unlike previous parameters, 
were obtained by the IDW method with 4 power weight, 
RMSE = 28.48. The OK and the UK methods, with exponen-
tial and rational quadratic models, were located in second 
place. 

Finally, it can be concluded that for all the ground-
water quality parameters of the Gonabad Plain, the IDW 
method with 3 power weight and 4, in terms of RMSE 
and R measures, has a better performance than other 

deterministic interpolation methods such as GPI, LPI, 
and geostatistical methods (OK, UK, and SK). In terms 
of the MRE error measure, however, the OK and the UK 
methods were more successful than the deterministic 
interpolation methods.

For IDW, GPI, and LPI with 1 to 5 power weights, it 
should be noted that just powers with the best results are 
provided in Table 3. Zoning maps and the spatial distribu-
tion of studied parameters based on the best selective inter-
polation method of Table 3 are presented in Fig. 3.

The permissible limit of Cl in terms of agriculture is 
4–10 meq/l according to Fig. 4(a). The Cl concentration is 
higher than the guideline values in the north and the north-
east of the plain. As a result, this area is not suitable for agri-
culture [32].

The EC concentration increases by moving from the 
south to the north of the Plain (Fig. 4(b)). The EC value in 

Table 2
Summary of the best-fitted semivariograms models for groundwater quality parameters

Parameters Best-fitted model (C0) Nugget (L·meq) (C + C0) Sill (L·meq) C0/C + C0 Spatial correlations

Cl IDW 0.236 0.400 0.590 Moderate
EC IDW 0.085 0.303 0.282 Moderate
TDS IDW 0.083 0.300 0.278 Moderate
Anion IDW 0.032 0.351 0.090 Strong

Table 3
The results of interpolation methods for groundwater quality parameters in the Gonabad Plain

Parameters Methods Model-Power RMSE MRE R

Cl IDW Exponential-power = 3 19.80 0.35 0.77
GPI Exponential-power = 2 21.51 8.20 0.73
LPI Exponential-power = 1 22.55 0.51 0.71
OK Exponential 24.70 0.27 0.72
SK Rational quadratic 24.40 0.57 0.71
UK Exponential 24.70 0.27 0.72

EC IDW Exponential-power = 3 2708.49 0.28 0.82
GPI Exponential-power = 2 3177.93 0.58 0.74
LPI Exponential-power = 1 3227.40 0.47 0.75
OK Exponential 2949.18 0.22 0.80
SK Rational quadratic 3588.08 0.45 0.77
UK Exponential 2949.18 0.22 0.80

TDS IDW Exponential-power = 3 1706.35 0.28 0.82
GPI Exponential-power = 2 2002.09 0.58 0.74
LPI Exponential-power = 1 2033.26 0.47 0.75
OK Exponential 1857.98 0.22 0.80
SK Rational quadratic 2260.49 0.45 0.77
UK Exponential 1857.98 0.22 0.80

Anion IDW Exponential-power = 3 28.48 0.30 0.80
GPI Exponential-power = 2 31.89 1.68 0.74
LPI Exponential-power = 1 32.30 0.41 0.75
OK Exponential 30.43 0.25 0.79
SK Rational quadratic 36.07 0.44 0.74
UK Exponential 30.43 0.25 0.79
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Fig. 4. The zoning map of groundwater quality parameters in the Gonabad Plain a) Cl, b) EC, c) TDS, and d) Anion.
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the north and the central parts of the Plain are higher than 
the guideline values (3000 mg/l); in the southeast parts, it 
is lower than the permissible limit (1000 mg/l) [32]. Increas-
ing the value of EC in the northern parts of the Plain could 
be due to the presence of salt and gypsum.

Fig. 4(c) shows the increasing trend of TDS concentra-
tion from the south to the north of the Plain. TDS is one of 
the quality drinking water indicators and its high concen-
tration in the plain may be due to natural runoff, sewage 
effluent discharge, hazardous waste disposal, soil charac-
teristics, livestock waste, and industrial wastewater. The 
maximum permissible and desirable limit of TDS in drink-
ing water is 1000 mg/l [33]; only small parts of the southern 
portion of the plain were in a desirable condition in terms 
of this parameter. The variations of anion concentration in 
the plain are seen as increasing from the south to the north, 
similar to other parameters.

4. Conclusion

This study explored the spatial variation of groundwa-
ter quality parameters in the Gonabad Plain using deter-
ministic and geostatistical models in the year 2013–14. For 
this purpose, after the data of the statistical analysis of the 
studied wells was determined, log transformation was 
used for normalizing the data. Then, in order to select the 
best the fitting semivariogram model, the model’s spatial 
correlation, based on analysis the nugget–sill ratio, was 
investigated. The results showed that there is a moder-
ate spatial correlation between all the parameters,except 
anions. Thereafter, in order to select the best interpolation 
method and zoning map of the of groundwater quality 
parameters, deterministic interpolation and geostatistical 
methods were used based on the correlation coefficient 
and error measures. 

The results showed that the IDW method, with powers 
of 3 and 4, has a lower error and a higher correlation than 
the five following methods: LPO,OK,SK, and UK. In addi-
tion, among the different types of kriging methods, OK and 
UK provided similar results and were more successful than 
the SK method.

Finally, zoning maps and the spatial distribution of Cl, 
EC, TDS, and anions were prepared;in all cases, this rep-
resented increases of concentrations from the south to the 
north of the Plain. By providing spatial distribution maps 
of water quality parameters, it is possible for operators 
and decision-makers in the field of water resources man-
agement to select the best points for the extraction healthy 
water in terms of drinking and agricultural standards with 
the knowledge of the aquifer quality in all parts of plain that 
are not measurable in terms of their technical and econom-
ical aspects. Also, they can identify human and natural pol-
lutant sources of aquifers and proceed relevant approaches 
to control them.

References 

[1] A. El-Hames, A. Hannachi, M. Al-Ahmadi, N Al-Amri, 
Groundwater quality zonation assessment using GIS, EOFs 
and hierarchical clustering, Water Resour. Manage., 27 (2013) 
2465–2481.

[2] R. Khosravi, H. Eslami, S.A. Almodaresi, M. Heidari, RA. Fal-
lahzadeh, M. Taghavi, et al., Use of geographic information 
system and water quality index to assess groundwater quality 
for drinking purpose in Birjand City, Iran. Desal. Water Treat., 
67 (2017) 74–83.

[3] N. Ağca, Spatial variability of groundwater quality and its suit-
ability for drinking and irrigation in the Amik Plain (South 
Turkey), Environ. Earth Sci., 72 (2014) 4115–4130.

[4] K. Ebrahimi, S .Feiznia, Assessing temporal and spatial varia-
tions of groundwater quality (a case study: Kohpayeh-Segzi), 
J. Rangeland Sci., 1 (2011) 193–202.

[5] R. Peiravi, H. Alidadi, AA. Dehghan, M. Vahedian, Heavy 
metals concentrations in Mashhad drinking water network, 
Zahedan. J. Res. Med. Sci., 15 (2013) 74–76.

[6] Y. Zhou,Y. Wang, Y. Li, F. Zwahlen, J. Boillat, Hydrogeochem-
ical characteristics of central Jianghan Plain, China. Environ.
Earth Sci., 68 (2013) 765–778.

[7] N.S. Rao, Groundwater quality as a factor for identification of 
recharge zones, Environ. Geosci., 14 (2007) 79–90.

[8] A.T. Tizro, K.S. Voudouris, Groundwater quality in the semi-
arid region of the Chahardouly basin, West Iran. Hydrol. Pro-
cesses., 22 (2008) 3066–3078.

[9] M. Delbari, P. Afrasiab, M. Salari, Mapping water salinity and 
sodicity using selected geostatistical methods, case study: Ker-
man plain, Water Eng., 6 (2013) 11–23.

[10] H. Arslan, Spatial and temporal distribution of areas with 
drainage problems as estimated by different interpolation 
techniques, Water Environ. J., 28 (2014) 203–211.

[11] J. Wang, J. Sun, J .Zhang, J. Xiao, Crop water requirement iso-
line based on GIS and geostatistics, Nongye Gongcheng Xue-
bao. CSAE., 20 (2004) 51–54.

[12] Y. Xie, T-.b. Chen, M. Lei, J. Yang, Q-j. Guo, B. Song, et al., Spa-
tial distribution of soil heavy metal pollution estimated by 
different interpolation methods: accuracy and uncertainty 
analysis, Chemosphere, 82 (2011) 468–476.

[13] A. Irmak, P.K. Ranade, D. Marx, S. Irmak, K.G. Hubbard, 
G. Meyer, et al., Spatial interpolation of climate variables in 
Nebraska, Trans ASABE., 53 (2010) 1759–1771.

[14] J. Yasrebi, M. Saffari, H. Fathi, N. Karimian, M .Moazallahi, 
R. Gazni, Evaluation and comparison of ordinary kriging and 
inverse distance weighting methods for prediction of spatial 
variability of some soil chemical parameters, Res. J. Biol. Sci., 4 
(2009) 93–102.

[15] I. Salih, H. Pettersson, Å. Sivertun, E. Lund, Spatial correlation 
between radon (222Rn) in groundwater and bedrock uranium 
(238U): GIS and geostatistical analyses, JOSH, 2 (2002).

[16] C.A. Gotway, R.B. Ferguson, G.W. Hergert, T.A. Peterson, Com-
parison of kriging and inverse-distance methods for mapping 
soil parameters, Soil Sci. Soc. Am. J., 60 (1996) 1237–1247.

[17] M. Shamsudduha, Spatial variability and prediction modeling 
of groundwater arsenic distributions in the shallowest alluvial 
aquifers in Bangladesh, JOSH., 7 (2008).

[18] R.T. Mehrjardi, M.Z. Jahromi, S. Mahmodi, A. Heidari, Spatial 
distribution of groundwater quality with geostatistics (case 
study: Yazd-Ardakan plain), WASJ., 4 (2008) 9–17.

[19] S.H. Ahmadi, A .Sedghamiz, Geostatistical analysis of spatial 
and temporal variations of groundwater level, Environ. Monit. 
Assess., 129 (2007) 277–294.

[20] Y. Sun, S. Kang, F. Li, L. Zhang, Comparison of interpolation 
methods for depth to groundwater and its temporal and spa-
tial variations in the Minqin oasis of northwest China, Envi-
ron. Model. Softw., 24 (2009) 1163–1170.

[21] A. Hooshmand, M. Delghandi, A. IzadiK, A. Aali, Application 
of kriging and cokriging in spatial estimation of groundwater 
quality parameters, Afr. J. Agric. Res., 6 (2011) 3402–3408.

[22] A. Moghaddam, M.G. Tekmedash, K. Esmaili, Investigation of 
temporal and spatial trend of water quality parameters in view 
of weather fluctuations using GIS; Mashhad Plain, JWSC., 20 
(2013) 211–225.

[23] S.M. Sadat Noori, K. Ebrahimi, A.M. Liaghat, A.H. Hoorfar, 
Comparison of different geostatistical methods to estimate 
groundwater level at different climatic periods, Water Envi-
ron. J., 27 (2013) 10–19.



A. Moghaddam et al. / Desalination and Water Treatment 103 (2018) 261–269 269

[24] A.G. Journel, C.J. Huijbregts, Mining geostatistics, New York: 
Academic press; 1978.

[25] K. Marko, N.S. Al-Amri, A.M. Elfeki, Geostatistical analysis 
using GIS for mapping groundwater quality: case study in the 
recharge area of Wadi Usfan, western Saudi Arabia, Arabian J. 
Geosci., 7 (2014) 5239–5252.

[26] M. Eivazi, A. Mosaedi, An Investigation on spatial pattern of 
annual precipitation in golestan province by using determin-
istic and geostatistics models, J. Water Soil., 26 (2012) 53–64.

[27] E .Varouchakis, D. Hristopulos, Comparison of stochastic and 
deterministic methods for mapping groundwater level spa-
tial variability in sparsely monitored basins, Environ. Monit. 
Assess., 185 (2013) 1–19.

[28] E. Isaaks, R. Srivastava, An introduction to applied geostatis-
tics: Oxford University Press, 561. (1989).

[29] C.S. Wallace, J.M. Watts, S.R. Yool, Characterizing the spatial 
structure of vegetation communities in the Mojave Desert 
using geostatistical techniques, Comput. Geosci., 26 (2000) 
397–410.

[30] C. Singaraja, GIS-Based Suitability Measurement of Ground-
water Resources for Irrigation in Thoothukudi District, Tamil 
Nadu, India. Water Qual. Exposure Health., 7 (2015) 389–405.

[31] M. Uyan, T. Cay, Spatial analyses of groundwater level differ-
ences using geostatistical modeling, Environ. Ecol. Stat., 20 
(2013) 633–646.

[32] J. Shalhevet, Using water of marginal quality for crop produc-
tion: major issues, Agric. Water Manage., 25 (1994) 233–269.

[33] WHO. Guidelines for Drinking Water Quality. Geneva, World 
Health Organization; 2011.


