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a b s t r a c t
The propionate removal was achieved above 94.1% at hydraulic retention time (HRT) of 10–4  h 
in a propionate-fed upflow anaerobic sludge blanket. The microbial community characteristics 
under different HRT conditions were investigated by 454 pyrosequencing. The result showed that 
the microbial diversity showed a decreasing trend as the HRT decreases. When the HRT was low-
ered to 4  h from 10  h by stepwise, the dominant propionate-oxidizing bacteria were rather stable 
in composition and comprised relatives of Syntrophobacter. Their relative abundance was increased 
to 18.5% (HRT 6  h) and 23.0% (HRT 4  h) from 9.2% (HRT 10  h). Simultaneously, low abundance 
(0.1%–1.2%) of Smithella was observed in this system and its portion also was increased with HRT 
decreases. In addition, some syntrophic fatty acid-oxidizing bacteria (Syntrophomonas and Syntrophus) 
and fermentative acidogenic bacteria (Petrimonas, Kosmotoga and Aminiphilus) could be detected in 
three samples. Methanogens from four genera (Methanosaeta, Methanoculleus, Methanospirillum and 
Methanobacterium) were observed in three detected samples. Methanosaeta was the major acetotrophic 
methanogens with the relative abundance of 3.5%–7.1%. The hydrogenotrophic methanogens were 
Methanobacterium (0.4%) and Methanoculleus (0.1%) at HRT 10 h. When the HRT decreased to 6 and 4 h, 
the predominant hydrogenotrophic methanogens were shifted to Methanobacterium/Methanospirillum 
(HRT 6 h) and Methanospirillum (HRT 4 h). 
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1. Introduction

Anaerobic digestion technology is widely used for treat-
ing all kinds of organic wastes including municipal sewage, 
organic wastewater, animal waste and agricultural wastes, and 
simultaneously generates methane as an energy source [1–3]. 
This process involves four steps: hydrolysis, acidogenesis, ace-
togenesis and methanogenesis. When the system is shocked by 
temperature fluctuation, toxic substances or high organic load 

rate (OLR), aforementioned four steps would become unbal-
anced, which in turn leads to the accumulation of volatile fatty 
acids (VFAs) [4,5]. Propionate is a common VFA during the 
degradation of biomass to biogas. It is mainly derived from 
odd-numbered fatty acids, which were generated by degrad-
ing fat, oil and carbohydrate [6]. Propionate is easily accu-
mulated, due to propionate oxidation is highly endergonic 
(ΔG° = +76.1 kJ/mol under standard conditions) [4,7]. Its accu-
mulation would decrease the system pH and then lead to pro-
cess failure and instability [8]. In addition, high concentration 
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of propionate may inhibit the activity of propionate-oxidizing 
bacteria and methanogens, even if pH is maintained near neu-
tral [9]. Therefore, propionate degradation is considered as a 
rate-limiting step during the anaerobic digestion [10].

Under methanogenic conditions, propionate is converted 
by syntrophic cooperation of propionate-oxidizing bacteria 
and methanogens, which rely on each other for maintaining 
energy and growth [11]. The syntrophic association between 
them is completed by interspecies electron (H2 or formate) 
transfer [12]. Syntrophic propionate-degrading consortia are 
extensively present in several anaerobic ecosystems, including 
bioreactors, freshwater sediments, landfills, etc. [13–15]. Their 
metabolic level is influenced by various factors, including tem-
perature, hydraulic retention time (HRT), hydrogen partial 
pressure and micronutrients [8,16–18]. In addition, some stud-
ies have investigated propionate degraders in quantitative and 
qualitative by molecular techniques based on 16S rRNA genes, 
such as denaturing gradient gel electrophoresis, fluorescence 
in situ hybridization, quantitative real-time polymerase chain 
reaction (PCR). For instance, P. schinkii was recognized as 
the dominant propionate-oxidizing bacteria in an upflow 
anaerobic sludge blanket (UASB) reactor when the tempera-
ture was lower than 20°C [19]. Worm et al. [17] reported that 
Syntrophobacter spp. was the dominant propionate-oxidizing 
bacteria in a propionate-fed UASB reactor. Ariesyady et al. [20] 
found high proportions of Smithella spp. and low proportions 
of Syntrophobacter spp. in anaerobic sludge, but they did not 
determine Pelotomaculum spp. Thus, the species distributions 
of propionate-oxidizing bacteria had vary in different systems.

Although some researches about propionate degrad-
ing community have been done, there was still not much 
information about the effects of HRT on the diversity and 
structure of syntrophic propionate-degrading consortia. 
High throughput sequencing can provide an insight for the 
diversity and richness of microbial groups at a fine scale and 
coverage. Therefore, the object of this study is to investigate 
the shift of syntrophic propionate-degrading consortia as 
decreasing HRT in a propionate-fed UASB reactor by 454 
pyrosequencing. The characterization would focus on deter-
mination of propionate-degrading and methanogenic com-
munities in detected samples. 

2. Materials and methods

2.1. Bioreactor operation

A previously described UASB reactor was operated under 
35°C condition [16]. The inoculated sludge was originally col-
lected from a lab-scale anaerobic baffled reactor dealing with 
molasses wastewater [21]. A synthetic propionate wastewater 
(propionate as a sole carbon source) was used as substrate from 
startup. The basic media used in the reactor was described 
previously [16]. The propionate concentration in influent was 
maintained at 2,000 mg/L. The pH of the reactor was remained 
at around 7.5 by NaHCO3. After a stable performance was 
achieved, the HRT decreased in four stages, 10, 8, 6 and 4 h. 

2.2. Analytical methods

VFAs and methane content were determined by two 
gas chromatographs (Shandong Lunan Instrument Factory, 
China) as described in previous study [16]. The biogas 

volume was measured daily by wet gas meters (Changchun 
Filter Company, China). The pH and mixed liquor volatile 
suspended solid (MLVSS) were measured as described in the 
standard methods [22].

2.3. Nucleic acid extraction

Microbial samples were obtained on 56, 96 and 140  d 
with HRT of 10, 6 and 4  h, respectively. Anaerobic sludge 
was collected from the sludge blanket of UASB reactor. 
After gentle rinses with deionized water, 0.15 g sludge was 
weighted to extract DNA by a Powersoil DNA Isolation Kit 
(MO Bio Laboratories, Carlsbad, CA, USA). The DNA con-
centration was determined by a spectrophotometer (Thermo 
Fisher Scientific Inc., USA).

2.4. Pyroquencing analysis

16S rRNA gene libraries based on 454 pyrosequencing 
were constructed using the degenerate primers of bacteria 
and archaea 341F (5′-CCTACGGGRBGCAGCAG-3′) and 
789R (5′-GGACTACMVGGGTATCTA-3′) for the V3–V5 
region of the 16S rRNA gene [23]. There is a 10-nucleotide 
barcode between the Life Sciences primer A and 341F primer. 
The barcode was used for assorting multitudinous samples 
in a single 454 GS-FLX run. Raw pyrosequencing data 
were deposited to the NCBI Sequence Read Archive data-
base with accession numbers SRR3471431, SRR3471435 and 
SRR3471436. In order to minimize the impact caused by 
random sequencing errors, we eliminated the low-quality 
sequences containing any base calls (Ns), eight or more con-
secutive identical bases, length shorter than 200 nucleotides 
or longer than 1,000 nucleotides. Pyrosequencing produced 
5,318 (HRT 10  h), 3,957 (HRT 6  h) and 7,273 (HRT 4  h) 
high-quality V3–V5 tags of the 16S rRNA gene. 

2.5. Microbial diversity and phylogenetic classification

All effective sequences in each sample were clustered 
into operational taxonomic units (OTUs) through setting a 
97% similarity by the Muthur program [24]. The effective 
sequences were designated to taxonomic classifications by 
a ribosomal database project database (http://www.mothur.
org/wiki/Silva_reference_files) [25]. The phylogenetic loca-
tion of the sequences from per sample was performed at 
phylum, class and genus levels. The relative abundance 
represented that the sequences of a specified phylogenetic 
group made up a percentage of all sequences per sample. 
Rarefaction curves, Shannon diversity index, Simpson diver-
sity indices and species richness estimator of Chao1 were 
generated in quantitative insights into microbial ecology 
(QIIME) for each sample. Hierarchical cluster analysis was 
performed using gplots package of R in Linux. Venn diagram 
and principal component analysis (PCA) were conducted by 
QIIME [26].

3. Results and discussion

3.1. Bioreactor performance

UASB process was recognized as one of the most feasi-
ble method for treating various pollutants [27,28]. Therefore, 
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an UASB reactor was used as a carrier for investigating 
the effect of short HRT on propionate removal. The result 
showed that the UASB system achieved high propionate 
removal (96.9%–94.1%) at HRT 10–4  h (Table 1). The spe-
cific COD removal rate of anaerobic sludge increased to 
1.7 kg COD/(kg VSS d) at HRT 4 h from 1.1 kg COD/(kg VSS 
d) at HRT 10  h. The specific methane production rate was 
also improved by 18.1%–69.4% with a maximum of 338.9 L 
CH4/(kg CODremoved d) at HRT 6 h. Therefore, short HRT is not 
a limiting factor for propionate degradation in UASB reactor. 

3.2. Richness and diversity of microbial phylotypes

High-rate methanogenesis is essential for transform-
ing organic pollutions to methane. In this complex process, 
syntrophic propionate degraders and methanogens play an 
indispensable role. Monitoring microbial community dynam-
ics is very helpful for predicting and explaining functional 
changes in treating propionate under different HRT condi-
tions. In current study, three 16S rRNA gene libraries (named 
HRT 10  h, HRT 6  h and HRT 4  h) were generated by 454 
pyrosequencing. HRT 10h, HRT 6 h and HRT 4 h communi-
ties contained 5,318, 3,957 and 7,273 high-quality V3–V5 tags, 
respectively (Table 2). These effective reads had an average 
read length of 328 bp. Bacteria were the dominant microbial 
group in these three samples, accounting for 90.7%–95.3%. 
The relative abundance of archaea in the anaerobic sludge 
was 9.3%, 4.2%, 4.7% for HRT 10 h, HRT 6 h and HRT 4 h, 
respectively. These effective reads were clustered into 226 
(HRT 10 h), 198 (HRT 6 h) and 198 (HRT 4 h) OTUs by setting 
a 97% similarity [24]. It is seemingly suggested from the num-
ber of OTUs that the diversity of microbial communities in 
HRT 10 h is much higher than those in HRT 6 h and HRT 4 h. 

As shown in Table 2, Shannon and Simpson diversity indi-
ces showed a similar result with observed OTUs. The Shannon 
diversity index not only shows species richness, but also 
reveals the abundance of each species in the community [24]. 
HRT 10 h had the highest diversity (Shannon = 6.80) in these 
communities. The Shannon index of HRT 6 h (6.21) was larger 

than 6.08 in HRT 4 h. Pyrosequencing revealed new micro-
bial species continued to appear even after 5,000 reads sam-
pling, although propionate as sole carbon source in this UASB 
reactor (Fig. 1). However, the Good’s sampling coverage was 
reached 98.8%–99.5%, indicating the sequencing depth has 
captured a majority of microbial community (Table 2). 

3.3. Comparative analysis of microbial communities

In order to comprehend in detail the succession of micro-
bial community structure, the top 20 abundance genera were 
selected from each sample for hierarchical cluster analysis 
as suggested previously (Fig. 2) [29]. The result showed that 
each group was clearly different from the other two groups, 
even though these three microbial communities contained 
some same microorganisms. PCA analysis based on OTUs 
further confirmed that each group was separated from the 
other two groups, suggesting there is a significant divergence 
among them (Fig. 3). Principal components 1 and 2 explained 
84.7% and 15.3% of the total community variations, respec-
tively. These results showed that the microbial community 
structure was dramatically influenced by HRT in the range 
of 10–4 h.

Table 2
Sequence reads, diversity/richness indices, coverage and operational taxonomic units (OTUs) at 97% sequence identity

Sample Sequence reads OTUs Diversity/richness indices Good’s sampling 
coverage (%)Raw reads 

number
Effective 
reads number

Shannon 
diversity index

Simpson 
diversity index

Chao1 
estimator

HRT 10 h 9,503 5,318 226 6.80 0.98 387.32 99.2
HRT 6 h 6,772 3,957 198 6.21 0.96 296.12 98.6
HRT 4 h 13,618 7,273 198 6.08 0.96 397.73 99.5

Table 1
Operational performance of the UASB under different HRT conditions

Stage Acetate 
content (mg/L)

Propionate 
removal (%)

Biomass 
(gMLVSS/L)

Specific COD removal rate of 
anaerobic sludge (kg COD/kg VSS·d)

Specific methane production 
rate (LCH4/kg CODremoved/d)

HRT 10 h 66.3 ± 4.9 96.9 ± 2.5 6.1 ± 0.2 1.1 ± 0.04 200.1 ± 31.7
HRT 6 h 66.7 ± 3.9 94.7 ± 3.6 7.7 ± 0.5 1.5 ± 0.05 338.9 ± 17.6
HRT 4 h 58.2 ± 7.5 94.1 ± 1.6 10.5 ± 0.4 1.7 ± 0.06 302.2 ± 36.5
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Fig. 1. Rarefaction curves base on pyrosequencing of all samples. 
The operational taxonomic units (OTUs) were defined by 3% 
distances.
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The total number of clustered OTUs in all three 16S 
rRNA gene libraries was 290, 125 OTUs (accounting for 
43.1% in all detected OTUs) were shared by them (Fig. 4). 
Most of the shared OTUs (50.4%) were the unclassified 
bacteria (28.5%) and the family Syntrophobacteraceae (21.9%). 
The family Syntrophobacteraceae contains some identified 
propionate-oxidizing bacteria (the genus Syntrophobacter), 
indicating carbon source strongly shapes the microbial com-
munity [30]. HRT 10 h and HRT 6 h shared more OTUs (167) 
than any of them with HRT 4  h (HRT 10  h/HRT 4  h, 146; 

HRT 6  h/HRT 4  h, 144). HRT 10  h, HRT 6  h and HRT 4  h 
contained the number of unique OTUs were 38, 12 and 33, 
respectively. The sum of these unique OTUs in three commu-
nities accounted for 28.6% of total OTUs.

3.4. Microbial taxonomy identification

To evaluate the phylogenetic diversity of these three 
microbial communities (HRT 10 h, HRT 6 h and HRT 4 h), 
qualified reads were analysis at phylum, class and genus 
levels (Fig. 5). There were 10 identified bacterial or archeal 
phyla were detected in three communities (Fig. 5(a)). 
Unclassified reads in HRT 10 h, HRT 6 h and HRT 4 h sep-
arately accounted for 17.7%, 18.8% and 14.3% of the total 
reads at the phylum level. Two phyla (Bacteroidetes and 
Proteobacteria) reflected clearest difference in distribution 
between three groups. These two phyla accounted for 34.3% 
(HRT 10 h), 47.2% (HRT 6 h) and 51.3% (HRT 4 h) of the total 
reads. So far, all known propionate-oxidizing bacteria were 
mainly confined to the phyla Proteobacteria and Firmicutes [11]. 
In this study, the relative abundance of Proteobacteria (15.5%) 
and Firmicutes (18.4%) in HRT 10 h was similar. However, 
Proteobacteria represented the dominant bacterial community 
in HRT 6 h (30.9%) and HRT 4 h (40.2%). Synergistetes is major 
in wastewater treatment plants. It includes some species that 
have been identified as sludge degraders in anaerobic digest-
ers [31]. The relative abundance of Synergistetes in HRT 10 h 
was 7.8%, but relatively low in HRT 6 h (4.9%) and HRT 4 h 
(4.6%). Thermotogae is a class of fermentative bacteria and they 
can degrade complex-carbohydrates for producing hydrogen 
gas [32]. Their distribution (3.2%–3.6%) was similar in three 
communities. As a class of universal filamentous bacteria in 
wastewater treatment processes, Chloroflexi are abundant in 
HRT 10  h [33]. The relative abundance of Spirochaetes and 
Chlorobi was less than 1% in each sample. Some Spirochaetes 
populations are involved in syntrophic acetate oxidation 
in anaerobic digesters [34]. Euryarchaeota is the sole archeal 
phylum in this study. Most identified methanogens belong 
to the phylum Euryarchaeota [35]. Euryarchaeota was highest 
in HRT 10 h with a relative abundance of 7.5%, lower in HRT 
6 h (4.2%) and HRT 4 h (4.7%). 

Fig. 5(b) shows that the identification of three commu-
nities (HRT 10 h, HRT 6 h and HRT 4 h) in class level. The 
sum of 12 classes was obtained from three communities by 
pyrosequencing, including nine bacterial classes and three 
archeal classes. Most of sequences were distributed in nine 
classes. HRT 10  h is primarily consisted of δ-Proteobacteria, 
Clostridia, Thermotogae, Synergistia, Anaerolineae, Bacteroidia 
and Methanosarcinales. HRT 6 h and HRT 4 h had a similar 
microbial community composition and highly enriched 
in classes of α, δ-Proteobacteria, Clostridia, Bacteroidia, 
Thermotogae, Synergistia, Anaerolineae and Methanosarcinales. 
The unclassified microbes at the class level increased to 
34.4% (HRT 10 h), 31.5% (HRT 6 h) and 24.7% (HRT 4 h) of 
the total reads.

Depending on the genus enables us to further speculate 
the microbial functions (Fig. 5(c)). The present study revealed 
that Syntrophobacter was the dominant propionate-oxidizing 
bacteria during the whole operational period. Syntrophobacter 
spp. degrade propionate by methylmalonyl-coenzyme 
A pathway in the presence of methanogens [11,36,37]. 
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Fig. 2. Heat map of top 20 genera in each sample. The top 20 
abundant genera in each sample were selected and compared 
with their abundances in other samples. The color intensity 
(log10 transformed) in each panel shows the number of a genus 
in each sample. Those in bold font are the core genera in different 
samples.
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The relative abundance of Syntrophobacter was 9.2% in HRT 
10 h. When the HRT decreased to 6 and 4 h, its relative abun-
dance was significantly raised to 18.5% and 23.0%, respec-
tively. It is related to UASB reactor conditions, which have a 
highly selective for Syntrophobacter spp. [38]. Similarly, some 
previous studies also indicated that the genus Syntrophobacter 
was the dominant propionate-oxidizing bacteria in the UASB 
reactors treating sucrose, butyrate–propionate–acetate and 
propionate process under OLR of 5.0–11.8  kg COD/(m3  d) 
conditions [13,17]. However, Ariesyady et al. [20] found that 
the primary propionate degraders in anaerobic digesters 
were from the genus Smithella. It was found that high dilution 
rates were favorable to Pelotomaculum spp. whereas low dilu-
tion rates stimulate Syntrophobacter spp. in chemostat exper-
iments containing propionate as the sole carbon source [38]. 

Simultaneously, we found low abundance of Smithella 
(propionate-oxidizing bacterium) existed in this system. 
Its proportion was increased to 1.2% (HRT 4  h) from 0.1% 
(HRT 10  h). Smithella contains only an identified species 
S. propionica, which oxidizes propionate to acetate and 
butyrate via an integration of two molecules of propionate, 
followed by syntrophic β-oxidation of butyrate to acetate 
[39]. Butyrate degradation is thermodynamically easier than 
propionate so that product inhibition is easily eliminated, 
leading to the promotion of propionate oxidation by S. propi-
onica [40]. Indeed, some syntrophic fatty acid-oxidizing bac-
teria (Syntrophomonas and Syntrophus) can be observed in this 
system. They can use C4–C8 compounds in co-culture with 
methanogens or Desulfovibrio spp. [40–42]. The dominant 
syntrophic fatty acid-oxidizing bacteria in all HRTs were 
Syntrophomonas spp. with relative abundance of 3.1%–6.8%. 
The richness of Syntrophus was increased to 1% in HRT 4 h 
from 0.2% in HRT 10  h as increasing available substrate 
butyrate, which was produced by Smithella. 

There are other bacterial microbes that could be detected 
in all samples (Fig. 5(c)). The fermentative acidogenic bacte-
ria in three samples were from genera Petrimonas (1.9%–3.9%), 
Kosmotoga (3.0%–3.4%) and Aminiphilus (0.6%–0.9%). Their rich-
ness was not significantly changed with HRT decrease. These 
fermentative acidogenic bacteria can utilize some organic com-
pounds (such as carbohydrates, pyruvate, fumarate and malate) 
as substrates and acetate was the major end product [43–45]. 
Pyruvate, fumarate and malate are the intermediate prod-
ucts of propionate degradation by methylmalonyl-coenzyme 

A pathway, which is possessed by the dominant propionate 
degrader Syntrophobacter spp. in this study [7]. The cellulose/
cellobiose-digesting bacteria Clostridium_III accounted for 
0.7%–1.5% [46]. The relative abundance of Ignavibacterium 
(anaerobic photoautotrophic green sulfur bacteria) was low 
(0.1%–0.5%) in three samples [47]. 

Methanogenesis is important for propionate anaerobic 
oxidation in methanogenic environments [11,48]. The import-
ant role of methanogens is to eliminate acetate and H2/CO2 
from propionate degradation and then promote the reac-
tion process. Methanogens from four genera (Methanosaeta, 
Methanoculleus, Methanospirillum and Methanobacterium) 
were observed in three detected samples. Methanosaeta was 
the major acetotrophic methanogens in all samples and its 
relative abundance was 3.5%–7.1%. Methanosaeta spp. is 
a specialist in utilizing acetate [35]. Methanosaeta species 
were previously identified as the dominant acetotrophic 
methanogens in various anaerobic reactors with low concen-
tration of acetate [49]. They can often promote sludge gran-
ulation, which in turn lead to a stable performance [50,51]. 
The granulation of sludge is favorable for achieving a high 
rate of methanogenesis with propionate. Because granular 
provides a close spatial microbial proximity compared with 
suspended cultures [5,11]. Methanoculleus, Methanospirillum 
and Methanobacterium are considered as hydrogenotrophic 
methanogens and they can use H2/CO2 and formate as sub-
strate for growth [35]. The activity of hydrogenotrophic 
methanogens is essential to maintain low hydrogen partial 
pressure in methane fermentation systems [52]. The syntro-
phic degradation of propionate requires the critical hydrogen 
partial pressure (1 × 10–4 atm) [53,54]. Methanoculleus spp. was 
unique in HRT 10  h and the relative abundance was 0.1%. 
Methanobacterium spp. was dominant hydrogenotrophic 
methanogens in HRT 10  h with the relative abundance of 
0.4%. The dominant hydrogenotrophic methanogens was 
shifted to Methanospirillum spp. (1.0%) with HRT increased 
to 4 h, indicating Methanospirillum spp. has a higher specific 
growth rate. These methanogens allowed the acetate con-
centration to always be less than 70  mg/L in effluent and 
the hydrogen content be lower than detection limit of gas 
chromatograph during the whole operational period. The 
relative abundance of acetotrophic methanogens in each 
sample was much higher than hydrogenotrophic methano-
gens by 1.9–13.2 times, indicating that methane was mainly 
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produced by acetate cleavage in this UASB reactor. In meth-
anogenic environment, approximately 70%–80% of methane 
is produced by acetate oxidation [35]. A previous study also 

showed the amount of acetotrophic methanogens in an UASB 
reactor was obviously higher than that of hydrogenotrophic 
methanogens [19]. 
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Fig. 5. The relative abundance of microbial communities at the (a) phylum, (b) class, and (c) genus levels in all samples (HRT 10 h, 
HRT 6 h and HRT 4 h). Taxa represented occurred at >0.5% abundance for bacteria or >0.1% abundance for methanogens in at least 
one sample. Phyla, classes and genera making up less than 0.5% for bacteria or 0.1% for methanogens of total composition in all three 
libraries were classified as “other”.
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This study suggested that decreased HRT has not changed 
the dominant propionate-degrading groups, and high propi-
onate removal at low HRT (6 h and 4 h) conditions is achieved 
by increasing number of propionate-oxidizing bacteria. Also, 
the proportion of propionate-oxidizing bacteria was signifi-
cantly higher than that of methanogens (4.2%–7.6%) during 
the whole operation. But the hydrogen and acetate were not 
remarkably accumulated in three stages, suggesting the met-
abolic potential of propionate-oxidizing bacteria was lower 
than that of methanogens.

4. Conclusion

In summary, three microbial library (HRT 10 h, HRT 6 h 
and HRT 4 h) based on 16S rRNA gene were constructed by 
pyrosequencing. Syntrophobacter spp. was considered as the 
dominant propionate-oxidizing bacteria in all samples. Also, 
their quantity was significantly increased to 23.0% (HRT 4 h) 
from 9.2% (HRT 10 h). A small amount of Smithella spp. could 
be detected in this system. Its number was increased to 1.2% 
(HRT 4 h) from 0.1% (HRT 10 h). The dominant acetotrophic 
methanogens was Methanosaeta spp. with relative abundance 
of 3.5%–7.1%. The predominant hydrogenotrophic methano-
gens were Methanobacterium (HRT 10  h), Methanobacterium/
Methanospirillum (HRT 6 h) and Methanospirillum (HRT 4 h). 
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