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a b s t r a c t
The current mechanism analysis method of algae bloom fails to take into consideration multi-factor 
nonlinear time-series characteristics of the ecological dynamics system in water, which leads to the 
low accuracy of algae bloom forecasting. In this paper, based on monitoring data of algae biomass 
(chlorophyll a concentration) and nutrient concentration, the nonlinear ecological dynamics model of 
algae bloom is constructed, which contains algae feeding and nutrient circulation, and model param-
eter optimization method is put forward by the combination of intelligent evolutionary algorithm and 
numerical algorithm. On this foundation, the effects of multiple factors time series such as illumination 
and temperature, which are the main influence factors of algae bloom, are considered into the algae 
bloom ecological system modelling. By using multi-factor time-series model to describe the variation 
of multiple influence factors, the algae multi-factor nonlinear time-series ecological dynamics model 
is constructed. A new method for algae bloom forecasting is put forward by multi-factor nonlinear 
time-series dynamic analysis. The example of Taihu Lake monitoring data shows that, compared with 
the current mechanism analysis method of algae bloom, multi-factor nonlinear time-series ecological 
dynamics model can better reflect dynamic characteristics of the algae bloom influence factors variation 
with time, and compared with the current forecasting methods, the forecasting results of algae bloom 
by the new method in this paper are more accurate.
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1. Introduction

With the rapid development of industrialization and 
urbanization, rivers and lakes eutrophication is becoming 
more and more serious and the outbreak of algae bloom has 
become a prominent problem [1]. Large-scale algae bloom 
reduces the utilization efficiency of water resources, which 

causes serious ecological damage and huge economic losses. 
At the same time, the production of algae toxin brings great 
hidden danger to public health [2–4]. Algae bloom has 
become one of the main problems of water pollution in the 
world. 

Algae bloom forecasting has been a difficult problem in 
the work of algae bloom pollution prevention and control. 
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The forecasting model of algae bloom in the current research 
is mainly divided into data-driven model and mecha-
nism-driven model.

Data-driven model includes artificial intelligence model 
[5–8] and mathematical statistical model [9–12], which digs 
the inherent law that hides in the system from a large amount 
of data information. However, the model is limited by the 
monitoring of the data and it cannot reflect the essence of 
algae growth. Mechanism-driven model is the ecological 
dynamics simulation of algae growth process. With the 
development of water study, mechanism-driven model has 
been developed from single TP concentration to the whole 
phosphorus system circulation in water [13–15], from simple 
nutrient circulation to the exchanging process of nutrients 
between sediment and water interface [16–18], from the linear 
dynamics process of algae growth to the nonlinear dynamics 
process [19–23]. However, algae growth dynamics system is 
regarded as the time invariant system by most of the current 
mechanism-driven models, and the model parameters are set 
to be constant, which neglects the influence of some factors 
changing with time, such as water temperature, illumination 
and other factors, on the growth rate and death rate of algae in 
the actual water. Hence, it is difficult to effectively describe the 
dynamic characteristics of the time-varying system of algae 
growth, and to realize the accurate forecasting of algae bloom.

In this article, based on the monitoring data of algae 
biomass (chlorophyll a concentration), nutrient concentration, 
water temperature and illumination, the mechanism-driven 
modelling and data-driven modelling method are combined 
to construct the nonlinear ecological dynamics model of algae 
growth, and genetic algorithm and numerical algorithm are 
used for parameter optimization. A nonlinear time-varying 
ecological dynamic model for algae growth with multi-factor 
time-varying parameters is proposed. By multi-variate 
time-series modelling of these parameters and time-varying 
nonlinear dynamics systems analysis, the problem of algae 
blooms forecasting is resolved.

2. Algae growth dynamics modelling and analysis

2.1. Algae growth nonlinear ecological dynamics modelling

Considering the algae feeding behaviour and nutrient 
circulation characteristics of algae growth, the algae feeding 
model and nutrient circulation model are expressed by the 
Lotka–Volterra equation. The feeding of zooplankton to 
algae is ignored for the toxicity in most species of algae. The 
biomass of algae is expressed by chlorophyll a concentration 
and the algae growth dynamics model is established as 
follows:

d
d
d
d

c
t

GNc Dc

N
t

N g GNc d N

a
a a

N a N

= −

= − −








 0

 (1)

Here, ca denotes the concentration of chlorophyll a and 
G denotes the growth rate of algae. N denotes the nutrient 
concentration and D denotes the death rate of algae. N0 
denotes the initial value of nutrient concentration, and 

gN denotes the rate of absorption of nutrients by algae. dN 
denotes the loss rate of nutrients.

In the actual water body, the growth rate (G) and death 
rate (D) of algae are determined by the factors such as water 
temperature (T), illumination (I) and so on. Their relationship 
is as follows:
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Here, GT (T) and GI (I) denotes the influence function 
of water temperature and illumination on the growth rate 
of algae. gmax denotes the maximum growth rate of algae. 
kI denotes the half-saturation concentration of illumination. 
dmax denotes the maximum death rate of algae.

2.2. Model parameter optimization and calibration

The algae growth dynamics model involves many param-
eters and the determination of parameters has a great influ-
ence on the results of model analysis. Parameters of most 
current algae growth dynamics model are determined by 
experience, and their applicability is influenced. Moreover, 
the conventional model parameter optimization method is 
limited to the monitoring information of the data and fails 
to provide the global optimal solution. Genetic algorithm 
is a kind of artificial intelligence algorithm based on natu-
ral selection and genetic theory, which is widely used in 
parameter optimization. However, at present, the parameter 
calibration of genetic algorithm is mainly based on single 
variable differential equation, and Eq. (1) is a multi-variate 
differential equation with two variables, which cannot be 
directly applied. Hence, this paper optimizes and calibrates 
the parameters (N0, gN, dN, gmax, kI, dmax) in Eq. (1) based on sen-
sor monitoring data of the actual water and combining with 
genetic algorithm and numerical algorithm. The parameter 
optimization and calibration process is shown in Fig. 1 and 
specific steps are as follows:

(1) Initialization conditions setting. The number of individuals, 
the maximum genetic algebra, the number of parameters 
to be optimized, the generation gap and the threshold of 
fitness are determined.

(2) Population initialization. Multi-parameter cascade floating 
point coding is adopted. A number of different parameter 
combinations are randomly generated as the initial pop-
ulation, which constitute the space of the parameter to be 
chosen.

(3) Fitness evaluation. Set up the fitness function
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 Here, F denotes the fitness value. cat denotes the true 
value of chlorophyll a at time t and ca (t) denotes a func-
tion value of chlorophyll a at time t. Nt denotes the true 
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value of nutrients in time t and N (t) denotes a function of 
nutrient at time t.

  Due to the complex structure of multiple differen-
tial equations, analytic solutions of ca (t) and N (t) are dif-
ficult to be obtained. Hence, it is necessary to use numer-
ical algorithm. The fourth-order Runge-Kutta numerical 
algorithm is used in this paper. Its numerical integral 
expression is as follows:
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The specific expression of the parameter ki is as follows:
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The specific expression of the parameter mi is as follows:
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  The fitness of each individual is calculated by the 
fitness function equation (3).

(4) Selection, crossover, mutation, and reinsertion operation.
(5) Genetic algorithm termination. Eqs. (3) and (4) step in the 

formation of the new individual is repeated constantly 
based on individual fitness value, and the termination 
condition is that repeated times reach maximum genetic 
algebra or the fitness function value of parameters combi-
nation is less than or equal to threshold. When the termi-
nation condition is reached, the minimum fitness function 
value of the parameter combination is taken as the fitness 
value of the model and the parameters combination is the 
optimal parameter combination of the model.

2.3. Nonlinear dynamics analysis of algae growth 
based on bifurcation theory

Algae bloom is caused by the explosive growth of algae, 
which is analyzed and explained by the intrinsic nonlinear 
dynamics of algae growth system based on Eq. (1).

The equilibrium point of algae growth system is solved 
by Eq. (1).
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The stability of the two equilibriums is analyzed. First of 
all, Eq. (1) is transformed by the coordinate transformation. 
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of the matrix is obtained as follows:
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When the first equilibrium point (ca1*, N1*) is put into the 
Jacobin matrix, the characteristic value of the Jacobin matrix 

is λ1,2 = − − +

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D
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0 < ,  the equilibrium 

point is a stable node and when GN
d

D
N

0 > ,  the equilibrium 

point is a saddle point by the theory of stability. Hence, small 
fluctuations cause changes in the state of the system.

When the second equilibrium point (ca2*, N2*) is put 
into the Jacobin matrix, the c eigenvalue of the Jacobin 

matrix is λ1,2 =
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N0G – dND > 0, the equilibrium point is a stable node; when 
N0G – dND = 0, the system occurs critical bifurcation and when 
N0G – dND < 0, the equilibrium point is not stable. The real 
part of the eigenvalue cannot be zero by analytic equation 
of Jacobin eigenvalue. Hence, pure imaginary roots cannot 
appear. In other words, the system does not undergo Hopf 
bifurcation. When
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The best parameter combination

Achieve termination conditions ?
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Initial conditions setting 

Population initialization

Numerical solution of differential equation

Generation of a new generation of groups

Fig. 1. Parameter optimization and calibration process by genetic 
algorithm and numerical algorithm.
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there is imaginary part in the eigenvalue and the system 
oscillates. After a period of oscillation, the system approaches 
to second equilibrium point.

By the above nonlinear dynamic analysis, there is an inter-
section of the two equilibrium points when N0G – dND = 0. 
When N0G – dND < 0, the first equilibrium point is a stable node 
and when N0G – dND > 0, the second equilibrium point is the 
stable node. Since the chlorophyll a concentration of the first 
equilibrium point is zero, it is meaningless to study. Hence, it is 
important to study the second equilibrium points. By the defi-
nition of second equilibrium points, it is known that when it is 
a stable node, the concentration of chlorophyll a is greater than 
zero, which has physical meaning. When the eigenvalue of the 
matrix appears imaginary part, the system oscillates. Its physi-
cal meaning is that the peak of chlorophyll a concentration and 
nutrient concentration is alternated with time, which is the 
behaviour of algae bloom. Hence, when all the parameters of 
Eq. (1) meet the conditions that the second equilibrium point 
is stable and the system oscillates, the algae bloom outbreaks.

3. Nonlinear time-varying dynamic analysis of algae 
growth system and bloom forecasting

3.1. Nonlinear time-varying dynamics modelling of algae 
growth system

Algae growth dynamics system is defined as the time 
invariant system in Eq. (1) and the parameters of growth rate (G) 
and death rate (D) are not changed with time. However, water 
temperature and illumination factors change with time in the 
actual water, which lead to algae growth rate (G) and death rate 
(D) changing with time. They are not constants as defined in 
Eq. (1). Hence, algae growth dynamics system is a time-varying 
system and growth rate (G (t)) and death rate (D (t)) of algae are 
time-varying parameters in Eq. (1). The algae growth dynamics 
model of time-varying parameters is constructed as follows:
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Here, the equation of the time-varying growth rate and 
death rate is as follows.
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Here, T (t) and I (t) are the time-varying water temperature 
and illumination.

3.2. Influence factors time-series modelling

For the water temperature and illumination changing 
with time and considering the correlation between the two 
factors, sensor monitor data of the two influencing factors are 
bivariate time series.

Time cumulative trend, seasonal variation and 
environmental random disturbance of the two influencing 
factors are considered in water. Hence, the bivariate time 
series is decomposed into trend term, periodic term and 
random term. They are as follows:
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Here, FT (t) and FI (t) denotes the trend term. ST (t) and SI (t) 
denotes periodic term. RT (t) and RI (t) denotes random term.

Trend term is modelled by bivariate regression model:
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Here, fT (t,I) and fI (t,T) denotes binary regression function, 
which can be a linear function, logarithmic function, 
exponential function or power function, etc.

Periodic term is modelled by binary hidden periodicity 
model:
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Here, aTi, aIi, bTi and bIi denote amplitude of periodic term. 
ωTi and ωIi denotes angular frequency.

Random term is modelled by binary autoregressive 
model:
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Here, φ(T,T)j, φ(T,I)j, φ(I,T)j, and φ(I,I)j denote autoregressive coeffi-
cient and εT (t) and εI (t) denote white noise of random term.

For considering the correlation between the two influ-
encing factors, parameters in the three models are solved 
simultaneously. The bivariate time-series model of the two 
influencing factors is constructed as follows:
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Water temperature T (t) and illumination I (t) is predicted 
based on Eq. (16). Time-varying algae growth rate and 
death rate are predicted by putting water temperature and 
illumination forecasting into Eq. (11).

3.3. Nonlinear time-varying dynamic analysis based on 
bifurcation theory and bloom forecasting

The equilibrium points of algae growth system with 
time-varying growth rate G (t) and death rate D (t) are 
obtained as follows:
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The Jacobin matrix is also changed to
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Similarly, the first equilibrium point is meaningless to 
study. Matrix eigenvalue of the second equilibrium points 
(ca2* (t), N2* (t)) is as follows:
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When the system oscillates, algae grow explosively. 
The condition of system oscillation or the condition of algae 
explosive growth is
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It can be seen that not only the system equilibrium point 
changes with time but also the stability of the equilibrium 
point and the condition of the system oscillation are also 
changed with time for the time-varying system. Hence, 
conditions of algae explosive growth are changed with 
time.

When time-varying water temperature (T (t)) and 
illumination (I (t)) are predicted by time-series model (Eq. (16)) 
and satisfy Eq. (17), algae explosive growth conditions are 
reached and there is a risk of algae bloom outbreak. Then, 
when chlorophyll a concentration is predicted to reaches 
the peak value or the prescribed threshold value based on 
Eqs. (10) and (11), algae bloom outbreaks. In this way, algae 
bloom forecasting is realized.

4. Instance verification

In order to validate dynamic analysis of algae growth 
multi-factor time-varying system and forecasting method of 
algae bloom in this paper, chlorophyll a concentration, nutri-
ents (TN) concentration, water temperature and illumination 
were monitored by the algae bloom multi-sensor monitor 
system from 2010 to 2012 in Taihu River Basin of Jiangsu 
Province.

Structural diagram of the algae bloom multi-sensor 
monitor system is as shown in Fig. 2, which includes three 
sections: multi-sensor on-site data sampling module, GPRS 
network communication module and monitor center module.

A total of 784 d of data were monitored by multi-sensor 
once every 2 d. In order to facilitate the analysis, the origi-
nal monitoring data of chlorophyll a concentration are stan-
dardized and the abnormal points are removed. It is shown 
in Fig. 3.

First, the parameters of Eq. (1) are calibrated by the cali-
bration method which is proposed in Section 2.2 of this paper. 
This result of parameter calibration is as shown in Table 1. 
The fitting result of chlorophyll a concentration based on 
parameter calibration of Eq. (1) is shown in Fig. 3. Monitoring 
data of nutrient (TN) concentration, water temperature and 
illumination are used for fitting. Fig. 3 shows that the param-
eter calibration result is ideal.
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Fig. 2. Structural diagram of algae bloom multi-sensor monitor 
system.
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Second, according to equilibrium point stability of Eq. (1), 
the critical bifurcation behaviour of chlorophyll a concentra-
tion changing with algae growth rate is analyzed. For exam-
ple the death rate of algae is 0.5, which is shown in Fig. 4. In 
Fig. 4, the blue line and red curves are equilibrium points 1 
and 2 of chlorophyll a concentration, solid line is the stable 
solution, and dashed line is unstable solution.

It can be seen that system equilibrium state is different at 
different algae growth rate. When the growth rate is 0.0524, 
the critical bifurcation occurs in the system.

In order to compare with the time-varying system, time 
invariant system dynamic behaviour is analyzed first. When 
algae growth rate (G) is 0.3, 0.1, 0.07, 0.05, system phase tra-
jectory is as shown in Fig. 5 and time history of chlorophyll 
a concentration and nutrient concentration is as shown in 
Figs. 6 and 7.

Figs. 5–7 show that when nutrients accumulate to a 
certain degree, and water temperature, illumination and 
other factors meet certain conditions, algae (chlorophyll 
a concentration) began to grow explosively. Then system 
oscillates.

Large amount of nutrients is consumed by algae growth. 
When nutrient is consummated not enough to maintain algae 
growth, chlorophyll a concentration also begin to reduce. 
Hence outbreak mechanism of algae bloom is explained by 
Eq. (1), which accords with the actual situation to a certain 
extent.

When algae growth rate is constant at any time, system 
oscillation amplitude decrease monotonically with time and 
it finally approaches the stable equilibrium point at the algae 
growth rate. However, with the decrease of algae growth rate, 
duration of system oscillation is prolonged, and amplitude 
and steady state of the system are decreased.

When algae growth rate is reduced to 0.0526, Eq. (7) cannot 
be satisfied. There is no oscillation in the system, which tends 
to stabilize the equilibrium point. In other words, there is no 
algae bloom, and vice versa. Hence, the behaviour of algae 
bloom is closely related to algae growth rate.

Considering the actual situation in Taihu River Basin, 
the dynamic behaviour of the time-varying system is 
analyzed. For the effects of water temperature and illumi-
nation changing with time, growth rate and death rate of 
algae also changed with time. Hence, oscillation process 

of the time-varying system is more complicated. Based on 
time-series modelling method proposed in Section 3.2 of this 
paper, time-series forecasting results of water temperature 
and illumination are shown as the red curve in Figs. 8 and 9.

Time-series forecasting values of water temperature and 
illumination are substituted into Eq. (5), which includes 
growth rate and death rate of algae with time-varying 

Table 1
Parameters of algae growth dynamics model

Parameter Range Calibration result

Maximum growth rate of 
algae gmax

0.01–10 0.088

Illumination saturated 
concentration kI

0.01–10 0.36

Maximum death rate of 
algae dmax

0.01–5 0.537

Initial value of nutrient 
concentration N0

0–15 0.192

Absorption rate of algae to 
nutrients gN

0.01–10 4.2011

Nutrient loss rate dN 0.01–5 0.02
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Fig. 4. Bifurcation diagram of chlorophyll a concentration 
changing with algae growth rate.
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Fig. 5. System phase trajectories at G = 0.3, 0.1, 0.07, 0.05.
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parameters. Phase trajectory diagram of algae growth 
time-varying system is as shown in Fig. 10, and the time his-
tory of chlorophyll a concentration and nutrient concentra-
tion is as shown in Figs. 11 and 12.

Obviously, based on the water temperature and illumina-
tion time-series forecasting, there is a significant deviation at 
phase trajectory and time history of the time-varying system 

compared with the time invariant system. For the influ-
ence of time-varying parameters, system equilibrium point 
changes with time, system oscillation process is no longer 
close to a fixed point, and amplitude of oscillation is no lon-
ger following the law of monotonic decay with time. Hence, 
system stability is not fixed but changing at any time. Time 
history (forecasting) of chlorophyll a concentration in algae 
growth is compared with the monitoring data .which is as 
shown in Fig. 13.

Evidently, time-varying parameter model can explain 
why the outbreak of algae bloom is different in every year, 
and there are characteristics of trend, periodicity and ran-
domness in algae bloom. Compared with the time invari-
ant system model, algae growth process described by 
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Fig. 7. Time history of nutrient concentration at G = 0.3, 0.1, 0.07, 
0.05.
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Fig. 8. Water temperature time-series forecasting.
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Fig. 9. Illumination time-series forecasting.
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Fig. 10. Phase trajectory of time-varying system.

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

A

Monitoring time(1point/2 days)

Ch
l-a

(g
/L

)

Fig. 11. Time history of chlorophyll a concentration in 
time-varying system.
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time-varying system model is more consistent with the actual 
situation obviously. 

Algae bloom forecasting results are validated at three 
peaks of chlorophyll a concentration. It is as shown in Table 2.

Obviously, at three peaks of chlorophyll a concentration, 
the predicted values of the growth rate and death rate are 
all satisfied with the condition that Eq. (14) is calculated as 
a negative value. In other words, they all reached the con-
ditions of algae bloom, and the peak value of chlorophyll 
a concentration forecasting is basically consistent with the 
peak value of the actual monitoring value.

5. Conclusions

In this paper, based on the multi-sensor real-time 
information of chlorophyll a concentration, nutrient con-
centration, water temperature and illumination, algae 
growth dynamic characteristics are analyzed based on 
algae growth dynamic model which contains algae feeding 
and nutrient circulation model, and genetic algorithms and 
numerical algorithm is used to optimize the parameters of 
the model. On this basis, algae growth dynamics model 
with multi-factor time-varying parameters which are algae 
growth rate and death rate is put forward to describe that 
the growth rate and death rate of algae affected by water 
temperature, illumination and other factors variation with 
time in algae growth time-varying system. By multi-variate 
time-series modelling of water temperature, illumination 
factors, algae growth time-varying system dynamic anal-
ysis and algae bloom forecasting are realized. An example 
of multi-sensor monitoring data of Taihu River Basin in 
Jiangsu validates that the dynamic characteristics of algae 

bloom descripted by multi-factor time-varying system 
model is more accordant with the actual conditions than 
the time invariant system model, and the model forecast-
ing results are more accurate than the current algae bloom 
forecasting methods.
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