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a b s t r a c t

To better manage groundwater and evaluate environmental risks of groundwater pollution, the fate 
of pollutants was accurately predicted, with the help of the numerical simulation. A set of iterative 
updating local smoothing algorithm was put forward. In the process of implementing the algorithms, 
each sample in the set was not directly updated, but local sample set of each sample was updated to 
fully explore the possible multi-peak distribution. In order to verify the effectiveness of ILUES algo-
rithm, five numerical examples were verified, taking into account different prior parameters, such 
as parameter prior multi modal, parameter posterior multi modal and parameter high dimension. 
These example results showed the effect of the ILUES algorithm in the parameter inversion of the 
complex model. To sum up, compared with the common MCMC algorithm, the ILUES algorithm has 
a significant advantage in computational complexity.
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1. Introduction

Compared with surface water, groundwater has the 
advantages of stable water quantity, good water quality, 
low seasonal variability and even distribution. Therefore, 
groundwater is regarded as one of the most important 
water sources in human production and life. However, due 
to the influence of human activities, the groundwater is suf-
fering from excessive exploitation and water pollution. In 
particular, the increasingly serious groundwater pollution 
poses a very serious threat to human health [1].

In order to better manage groundwater and evaluate 
the environmental risk of groundwater pollution, we need 
to use numerical models to analyse and predict the fate of 
pollutants in underground water. However, due to the dif-
ficulty in direct observation of groundwater system, people 
can only get sparse, indirect and error observation data, 
which brings great challenges to the accurate description of 
the whole groundwater system. Based on the understanding 
of physical, chemical and biological principle, we use math-

ematical methods and the groundwater model to describe 
the specific groundwater system, so as to obtain the quan-
titative causality of groundwater system. We also apply 
observation data to reduce the uncertainty of underground 
water system, so as to provide important technical support 
for effective groundwater resources management [2].

At present, the most widely used standard model in 
the simulation of saturated groundwater movement is 
MOD FLOW. It is a three-dimensional groundwater hor-
izontal type developed by the United States Geological 
Survey (USGS) based on the finite difference method. 
The earliest version of MOD FLOW appeared in 1984, 
and there are now published versions of MOD FLOW-88, 
MOD FLOW-96, MOD FLOW-2000, and MODFLOW-2005. 
Although the original idea of MOD FLOW is only to sim-
ulate the water movement of groundwater, the modular 
structure of MOD FLOW provides a powerful framework 
for the simulation of other processes. Nowadays, MOD 
FLOW series and related program already has been able to 
achieve the simulation of the groundwater / surface water 
system (GS FLOW), particle tracking (MOD PATH), solute 
transport (MT3 DMS), variable density and non-saturated 
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zone groundwater flow (SEA WAT), aquifer contrac-
tion and ground subsidence (SUB), groundwater model 
parameter estimation (MOD FLOWP), zone water balance 
(ZONE BUDGET) and groundwater management (GWM) 
[3,4]. In addition, in order to improve the simulation accu-
racy, MOD FLOW-LGR can also be used to locally refine 
the grid of water movement model of groundwater. In the 
unsaturated groundwater simulation, HYDRUS model 
developed by Simunek and others has been widely used. It 
can be used to simulate the migration and transformation 
of water, heat and solute in one-dimensional to three-di-
mensional unsaturated groundwater, and can be coupled 
with MOD FLOW to study the interaction between the 
vadose zone and saturated underground water. In order 
to facilitate construction and display the results of the 
above model, some people developed some auxiliary tools 
and friendly user interface (including some commercial 
software). For instance, Model Muse and Visual MOD 
FLOW can provide a friendly user interface of models like 
MOD FLOW, MOD FLOW-LGR, MT3DMS, MOD PATH 
and ZONE BUDGET l; Flopy can create and operate MOD 
FLOW related models with the help of Python language, 
as well as provide post-processing toolkit [5,6].

At present, in the saturated groundwater solute migra-
tion, the most widely used model was MT3DMS developed 
by Zheng Chunmiao and so on. It can be coupled with MOD 
FLOW, used to simulate transport and transformation of 
various pollutants, including convection, diffusion, source 
mixing and chemical reaction process. The first version 
of MT3DMS was MT3DPS developed in 1990. Compared 
with earlier versions, MT3DMS can simulate multi-group 
component biological and geochemical reactions, and has 
higher numerical accuracy and stability. It can also simu-
late non-equilibrium adsorption and two-zone convection 
dispersion [7].

The groundwater model based on finite element can 
deal with more complex flow fields and boundary condi-
tions, but it has more complex solution process and slower 
solution speed. In the past few decades, significant increase 
in computing power makes it possible to construct a more 
complex model. The development of sensor technology 
makes the measured data obtained more easily and the 
deepening understanding of groundwater system various 
processes makes the construction of conceptual model more 
accurate [8].

2. Iterative local update set smoothing algorithm

For the convenience of illustration, we use the following 
formula to represent an arbitrary physical model:

d = f(m) + ε (1)

In the above formula, d is a vector of Nd*1, which rep-
resents the observed value. f () is a system model, m is a vec-
tor of Nm * 1, which shows the unknown model parameter, 
and ε is a vector of Nd * 1, indicating the observation error. 
According to the observational value d with error, we can 
use ES to update the unknown parameters:

m m C C C d f mj
a

j
f

MD
f

DD
f

D j j
f= + +( ) − ( ) 

−1
 (2)

In the above formula, M mf f
N
f

e
=  1 , ,m  is a set consist-

ing of Ne prior parameters samples; M ma a
N
a

e
=  1 , ,m  is 

the sample set after updating; D f m f mf f
N
f

e
= ( ) ( )



1 , ,

 

refers to the covariance matrix whose dimension is Nm * Nd; 
CDD

f  is the Df covariance matrix whose dimension is Nd * 
Nd [9]; CD is the observation error covariance matrix whose 
dimension is the same as that of CDD

f ; dj means the sample 
d dj j= + ε  after the measured value is added with random 
disturbance.

If the prior or posterior of the parameter are multi 
modal, the error results will be obtained by using the for-
mula (2) to update the parameters directly. In order to accu-
rately explore the # peak distribution, we do not update the 
Ne samples directly, instead, we update the local set of the 
Ne samples. For the sample M j Nj
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For nonlinear strong problems, we use a simple iterative 
process, that is, in each iteration step, we make Mf = Ma, and 
re-implement the above local update algorithm and get a 
new updated set. We stop the iterative process when the 
difference between the sample sets of the two adjacent iter-
ations is small enough, or when the maximum number of 
iterations is reached. Similar iterative processes have been 
used in the set Kalman filter and set smoother to solve non-
linear and strong parameter problems.
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3. Results and discussion

3.1. Case 1

In iterated local update ensemble smoothing (ILUES) 
algorithm, from the updated local sample set, we randomly 
choose a sample Mj

l ,a , used as the update sample of Mj
f , 

which is called random selection. However, it seems to be 
a good choice for choosing the sample with the smallest J 
value (formula 3) from the updated local sample set as an 
update sample of Mj

f , which is called “optimal choice”. 
From Fig. 1, we can see that the model fitting result of “opti-
mal choice” is often better than that of “random selection”, 
and the y axis represents the Log RMSE value between the 
final model set output corresponding to the sample set and 
the observed value. However, in some cases, the “optimal 
choice” may lead to a large deviation in the parameter inver-
sion result. We will explain it in the next example. From this 
figure, we can also see that the selection of smaller α values 
can usually get better fitting results. However, when the Ne 
value is relatively small, the smaller α value will result in 
very poor results (for example, when Ne = 200, α = 0.01 and 
it is random selection). This is because, when the sample is 
very few in the local set, we cannot update the parameters 
accurately by formula (4).

3.2. Case 2

In this case, we test the ability of the ILUES algorithm 
to deal with multi-peak prior problems. Here, we consider 
in a more practical example and this example is the rain-
fall-runoff model based on Boyle development, HYMOD. 
As shown in Fig. 2, the HYMOD model takes account of 
the following process: after a rainfall, the watershed passes 
through 3 high flow reservoirs and 1 low flow reservoir, and 
then generates runoff. The HYMOD model has 5 unknown 
parameters in total, including the maximum storage capac-
ity Cmax, storage capacity space change index bexp [–], distri-
bution coefficient β [–] between high flow reservoir and low 
flow reservoir, duration time for low flow reservoir Rs [T] 
and duration time for high flow reservoir Rq [T]. Among 
them, the priori of Cmax and bexp is multi modal and can be 
represented by the formulas (5) and (6) Gauss mixture 
model.
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The prior distribution of the remaining 3 parameters 
is uniformly distributed, and their prior range is shown 
in Table 1.

By setting up Ne = 200 and α = 0.1, we can accurately 
estimate the parameters of the unknown model with the 
ILUES algorithm. Compared with the first case, although 
this case considers more model parameters, because the 
number of peaks in the parameter distribution is relatively 
small, we can use the smaller Ne value to accurately esti-
mate the parameters.

Fig. 1. Natural logarithm (Log RMSE) of root mean square error 
between the model output and the observed values when the 
number of set samples Ne and coefficient α of different values 
are given.
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Fig. 2. A schematic diagram of the HYMOD model.

Table 1 
The priori range and true value of model parameters in case 2

Parameters Range True value

Cmax (L) [1500] 409.1018
bexp [0.12] 1.5430
β [0.1, 0.99] 0.8998
RS (L) [0, 0.1] 0.0233
Rq (L) [0.1, 0.99] 0.7232
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3.3. Case 3

Here we consider an example of the analysis of the 
source of pollution in the steady flow of groundwater. As 
shown in Fig. 3, the flow field has the upper and lower 
boundaries of the impermeable water and the left and right 
boundary of the fixed water head. Here, we assume that the 
permeability coefficient and porosity of the flow field are 
homogeneous and known, and their values are K = 8 [LT–1] 
and θ = 0.25 [–]. At the upstream of the flow field located at 
(xs, ys) [L], the pollution source, from the moment of ton [T], 
begins to release pollutants to the downstream with con-
stant intensity Ss

 [MT–1], and it stops releasing at toff [T] time.
The prior of the five pollution source parameters are 

evenly distributed, and their range is shown in Table 2. To 
estimate these 5 parameters, at the moments of t = [6, 8, 10, 
12, 14] [T], we obtained concentration observations from a 
sampling location (the circle of Fig. 3), where the observa-
tion error accords with ε = N(0, 0.012).

By setting up Ne = 300 and α = 0.1, we can accurately 
inverse the parameters of the unknown model with the 
ILUES algorithm. The posteriori of ys is in double-peak dis-
tribution. In order to verify the accuracy of the parameter 
inversion results obtained by the ILUES algorithm, we use 
the DREAM algorithm to retrieve the 5 pollution sources 
parameters again. In the DREAM algorithm, we use 8 par-
allel chains and each chain length is 2000. We also choose 
the Gauss form likelihood ratio. The model parameter 
obtained by DREAM algorithm is very consistent with that 
of the ILUES algorithm, and the computational complexity 
required by the ILUES algorithm is far lower than that of 
the DREAM algorithm.

3.4. Case 4

Here we consider a case of high dimensional pollution 
source analysis. Unlike case 3, the intensity of the pollution 
source varies with time and it is described by 6 parameters, 
namely Ssi [MT–1] and ti = i:i+1[T] where i = 1,..., 6. In this 
way, in addition to the pollution source location parameter 
(xs,ys), we need 8 parameters in total to describe the source 
of pollution. The prior of the 8 pollution source parameters 
conforms to uniform distribution, and their range is shown 
in Table 3. In this case, we use 100 KL expansion to express 
the permeability coefficient field, and after taking the nat-
ural logarithm, the spatial correlation formula of the field 
accords with Eq. (7). In addition, the mean value of the field 
is 2, the variance is 1, and the correlation length of x and y 
directions is 10 [L] and 5 [L], respectively.
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Therefore, there are 108 parameters to be estimated in 
this case, that is, 8 pollution source parameters and 100 
permeability coefficient parameters (that is, 100 KL terms). 
In order to estimate these 108 unknown parameters, we 
obtained water head and concentration observations at 15 
sampling locations at t = [4, 5, 6, 7, 8, 9, 10, 11 and 12] [T] 
moments, and the observed errors accord with ε = N (0, 
0.0052). Because this case contains more unknown parame-
ters, we choose a larger collection of samples Ne = 3000 in the 
ILUES algorithm. The ILUES algorithm can accurately esti-
mate the pollution source parameters within 5 iterations. In 
addition, we show the real Y field, the posterior sample of 
3 Y fields, the mean value of the Y field estimation, and the 
variance of the Y field estimate. The ILUES algorithm can 
also accurately estimate the Y field. This shows the applica-
bility of the ILUES algorithm in the inverse problem of high 
dimensional parameters.

In this case, although no posterior parameter is obvi-
ously a multi-peak distribution, we can still use the same 
setting as the multi-peak case. From this point of view, the 
ILUES algorithm is better than the clustering-based algo-
rithm, because people need to set the number of clustering 
in the algorithm based on clustering analysis. In addition, 
the computational complexity of the ILUES algorithm 
is lower than that of the MCMC algorithm, especially in 
the inverse problem of high dimensional parameters. For 
example, in this 108 dimensional case, even if we use highly 

Table 2 
The priori range and true value of model parameters in case 3

Parameters Range True value

xs (L) [3,5] 3.8537
ys (L) [3,7] 5.9994
Ss (MT–1) [10,13] 11.0442
ton (T) [3,5] 4.8966
toff (T) [9,11] 9.0745

Table 3 
The priori range and true value of model parameters in case 4

Parameters Range True value

xs [L] [3,5] 3.5196
ys [L] [4,6] 4.4366
Ss1 [MT–1] [0,8] 5.6916
Ss2 [MT–1] [0,8] 7.8833
Ss3 [MT–1] [0,8] 6.3064
Ss4 [MT–1] [0,8] 1.4852
Ss5 [MT–1] [0,8] 6.8717
Ss6 [MT–1] [0,8] 5.5517

Measurement location for example 4
Measurement locations for example 5

S

10

h=12[L]

Fig. 3. The flow field and sampling position in case 3.
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efficient DREAM algorithm, we need to call original model 
for exceeding hundreds of thousands of times, while ILUES 
algorithm only takes 18000 times. Moreover, ILUES algo-
rithm can make full use of parallel computing. If we can run 
ILUES algorithm on multi-core workstations, then the time 
needed for simulation will be greatly reduced.

4. Conclusion

We propose an algorithm called iterative locally updated 
ensemble smoothing (ILUES), which is used to solve the 
problem of parameter inversion in high dimensional Gauss 
case. Without clustering analysis, the ILUES algorithm can 
accurately identify the multi-peak distribution of the param-
eters. Compared with the MCMC algorithm, the ILUES 
algorithm has a significant advantage in the computational 
complexity, especially for the high dimensional problem.

In order to verify the effect of the ILUES algorithm, we 
tested 5 numerical examples. The results showed that the 
ILUES algorithm could effectively deal with the problem of 
parameter inversion of high dimensional multi-peak. Then, 
we tested 3 hydrological models, taking into account the 
prior multiple peaks of the parameters, the posterior multi-
peak parameters and the high dimension parameters 3 dif-
ferent scenes. These examples show the effect of the ILUES 
algorithm in the parameter inversion of the complex model.

References

[1] M. Arauzo, J.J. Martínez-Bastida, Environmental factors affect-
ing diffuse nitrate pollution in the major aquifers of central 
Spain: groundwater vulnerability vs. groundwater pollution. 
Environ. Earth Sci., 73 (12) (2015) 1–16.

[2] M. Sakizadeh, E. Ahmadpour, Geological impacts on ground-
water pollution: a case study in Khuzestan Province. Environ. 
Earth Sci., 75 (1) (2016) 1–12.

[3] K. Ostad-Ali-Askari, M. Shayannejad, H. Ghorbaniza-
deh-Kharazi, Artificial neural network for modeling nitrate pol-
lution of groundwater in marginal area of Zayandeh-rood River,  
Isfahan, Iran. KSCE J. Civil Eng., 21(1) (2016) 1–7.

[4] M. Lasagna, D.A.D Luca, E. Franchino, Nitrate contamination 
of groundwater in the western Po Plain (Italy): the effects of 
groundwater and surface water interactions. Environ. Earth 
Sci., 75(3) (2016) 1–16.

[5] S. Venkatramanan, S.Y. Chung, T. Ramkumar, G. Gnanachan-
drasamy, S. Vasudevan, S.Y. Lee, Application of GIS and 
hydrogeo chemistry of groundwater pollution status of Nag-
apattinam district of Tamil Nadu, India, Environ. Earth Sci., 
73(8) (2015) 4429–4442.

[6] J. Li, X. Li, N. Lv, Y. Yang, B. Xi, M. Li, S. Bai, D. Liu, Quantita-
tive assessment of groundwater pollution intensity on typical 
contaminated sites in China using grey relational analysis and 
numerical simulation, Environ. Earth Sci., 74(5) (2015) 3955–
3968.

[7] L. Duarte, A.C. Teodoro, J.A. Gonçalves, A.J. Guerner Dias, E. 
Marques, A dynamic map application for the assessment of 
groundwater vulnerability to pollution, Environ. Earth Sci.,  
74(3) (2015) 2315–2327.

[8] B. Zhang, G. Li, P. Cheng, T.J. Yeh, M. Hong, Landfill risk 
assessment on groundwater based on vulnerability and pollu-
tion index, Water Resour. Manage., 30(4) (2016) 1465–1480.

[9] E. Martínez, S. Singh, J.L. Hueso, D.K. Gupta, Local conver-
gence of a family of iterative methods for Hammerstein equa-
tions, J. Math. Chem., 54(7) (2016) 1370–1386.


