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a b s t r a c t
In the design of water management projects, there is vagueness in the measured data, and the classical 
linear regression becomes problematic in cases where the data set is too small, or there is difficulty 
in verifying that the error is normally distributed, or if there is vagueness in the relationship between 
the independent and dependent variables, or if there is ambiguity associated with the event, or if the 
linearity assumption is inappropriate. Therefore, the classical regression gives imprecise and inaccurate 
output data, and in such cases, the fuzzy set theory method provides the alternative means of treating 
the uncertainty in water management problems. In the present article, two cases are presented. Firstly, 
a fuzzy linear relation between runoff and precipitation is considered for 25 storms in Monocacy 
River at Jug Bridge, Maryland, USA, and a possibilistic linear fuzzy model runoff–precipitation is 
presented, considering the precipitation as crisp data, the runoff as fuzzy data and the coefficients as 
fuzzy. Secondly, a linear fuzzy model for rainfall data between two meteorological stations located in 
the region of Central Macedonia (Northern Greece) is also presented, with crisp data in one station 
and fuzzy data in the other. 
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1. Introduction

Rainfall measurement models have been extensively 
used in the design process of water resources projects such 
as hydrological prediction, spillway design, climatic change 
studies, rainfall and runoff correlation and so on. Rainfall 
measurements in a specific area are commonly displayed in 
the form of time series where recorded values can be either 
continuous or discrete. In many instances, there is a correlation 
between runoff and precipitation that belongs to the same or 
different stations and comprises measurements with differing 
range. The same correlation exists among rainfall data belonging 
to different stations. Generally, a linear relation is assumed 
between them, and we can conclude in a certain relation [1]. 

In classical linear regression, the difference between 
measurement values and estimated values is a random 
variable, which is normally distributed and is considered 
to be caused by measurement errors. According to this, the 
classical regression is considered to be probabilistic and has 
many uses but can be rendered problematic if the data set is 
small, if it is hard to prove that error distribution is normal, 
if there is fuzziness between dependent and independent 
variables or if linearity acceptance is not proper. 

In the last few decades, new regression models have been 
introduced based on fuzzy logic [2–10]. In fuzzy regression, 
the difference between measurement values and estimated 
values is attributed to the inherent fuzziness of the system, as 
well as to the fuzziness of input and output data. In contrast 
with classical regression analysis, fuzzy regression analysis 
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uses fuzzy functions for the regression factors. The above 
problem usually has three cases [11]: crisp input values xij 
and crisp output values yj, crisp input values xij and fuzzy 
output values ỹj and fuzzy input values x̃ij and fuzzy output 
values ỹj. In all of these cases, estimated values Ỹj are fuzzy. 

The adjustment of a fuzzy regression model can be 
achieved through two general methods:

•	 The possibilistic model [2,11,12]. Fuzzy regression is 
possibilistic, and the membership function μÃ(x) of a 
fuzzy number Ã is considered equal to the possibility 
distribution function πx(x). The fuzziness of the model is 
minimized by taking into account the minimum of the 
spreads around the centre of the fuzzy parameters, while 
considering that the experimental values of every sample 
are within a specific interval of possible values. It is to 
point out that possibilistic parameters in the models are 
non-interactive, that is, the joint possibilistic distribution 
of parameters is defined by minimum operators. 

•	 The least squares model [13–15]. The distance between 
the estimated output value of the model Ỹi and the 
observed output value ỹi is minimized. This method of 
Diamond [14] is considered to be an extension of the 
classical linear regression method, based on the notion of 
model efficiency optimization depending on data.

In this article, quadratic membership functions as 
defined by [6,16] are considered to propose a method 
of interactive fuzzy parameters in possibilistic linear 
hydrological systems. Two cases are presented: a fuzzy 
linear relation between runoff and precipitation is 
considered for 25 storms in Monocacy River at Jug Bridge, 
Maryland, USA, borrowed from [1], and the method can be 
reduced to linear programming; and a linear fuzzy model 
for rainfall data between Aggistron and Ano Vrontou 
meteorological stations, located in the region of Central 
Macedonia (Northern Greece), is also presented. In this 
model, the independent observed rainfall values are crisp, 
and the dependent observed rainfall values, as well as the 
parameters of the model, are fuzzy. 

Celmiņš [16] wanted to maximize the membership values 
of the observations by minimizing the sum of squares of the 
deviations of the membership values from one. He obtained 
relatively simple algorithms if the membership functions 
of the data vectors belonged to a particular class of conical 
functions. Tanaka and Ishibuchi [6] used a method similar 
to one considered by Celmiņš, but the proposed approach 
is simpler and more understandable than Celmiņš approach 
and leads to a linear programming problem. They used 
quadratic membership functions as defined by Celmiņš 
and proposed an identification method of interactive fuzzy 
parameters in possibilistic linear systems. 

Here, we use the proposed method by Tanaka and 
Ishibuchi [6] in order to obtain interval inclusion between 
measured and estimated values. Input measured data 
were considered crisp (xi = rainfall measurements), and 
output values were considered fuzzy (ỹi = runoff or rainfall 
measurements). Quadratic membership functions were 
used for measured output values. For the second case, a 
modified version of Tanaka and Ishibuchi [6] model is also 
applied.

2. Mathematic model

2.1. Definitions

2.1.1. Definition 1 

A fuzzy set Ã on a universe set X is a mapping Ã:X → [0, 1],  
assigning to each element x ∈ X a degree of membership  
0 ≤ Ã(x) ≤ 1. The membership function is also defined as μÃ(x) 
with the properties:

(i) μÃ(x) is upper semicontinuous; (ii) there are real 
numbers c ≤ a ≤ b ≤ d, such that μÃ is increasing on [c, a], 
decreasing on [b, d] and μÃ(x) = 1 on [a, b]; (iii) for each x ∈ R, 
μÃ(x) = 0, outside of the interval [c, d] and (iv) Ã is a convex 
fuzzy set, that is, μÃ(λx + (1 – λ)x) ≥ μÃ (λx) Λ μÃ ((1 – λ)x).

2.1.2. Definition 2 

Let X being a Banach space and Ã being a fuzzy set on X. 
We define the α-cuts of Ã as [Ã]α = {x ∈ R|Ã(x) ≥ α}, α ∈ [0, 1],  

and for α = 0, we define the closure [ ] { ( ) } A x R A x0 0= ∈ >
−−−−−−−−−−−−−−−−−−

.

2.1.3. Definition 3 

Let Ҡ(X) the family of all non-empty compact convex 
subsets of a Banach space. A fuzzy set Ã on X is called 
compact if [Ã]α ∈ Ҡ(X), ∀α ∈ [0, 1]. The space of all compact 
and convex fuzzy sets on X is denoted as Ƒ (X). 

2.1.4. Definition 4 

Let [Ã] ∈ Ƒ(R). The α-cuts of Ã are: [Ã]α = [Aα
–(x), Aα

+(x)]. 
According to representation theorem of [17] and the theorem 
of [18], the membership function and the α-cut form of a 
fuzzy number Ã are equivalent and in particular the α-cuts  
[Ã]α = [Aα

–(x), Aα
+(x)] uniquely represent Ã, provided that 

the two functions are monotonic (Aα
– increasing and  

Aα
+ decreasing) and Aα

– ≤ Aα
+, for α = 1. 

2.2. Model development

Consider a fuzzy dependent variable Ỹj and xij , the 
independent variables influencing the variable Ỹj. The result 
of fuzzy linear regression is an equation of the form [2,6]: 

     Y A A x A x A x A x xj j j n nj i ij
i

n

j= + + + + = =
=
∑0 1 1 2 2

0
0 1... ,  (1)

where the measured input values xij are crisp numbers, 
and the measured output values ỹj are fuzzy numbers. The 
parameters Ã = (A0…An) are considered as fuzzy vectors. If 
the solutions of the h-level spreads of the fuzzy parameters 
contain all non-negative elements for j = 0, 1…n, then, the 
fuzzy parameters are called non-interactive and the trends 
between the spreads and the mode of the fuzzy estimated 
values are compatible. If not all the estimated spreads are 
non-negative, then, interactive fuzzy parameters exist [6,13]. 
The selection of Tanaka and Ishibushi model is considered 
necessary in order to prevent the case of interactive fuzzy 
parameters. According to [6], in that case, a membership 
function of fuzzy parameters � �A r Ci = ( *, )  is defined by:

µA
tr r r C r r( ) max{ ( *) ( *), }    

= − − ⋅ ⋅ −−1 01  (2)
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where 
r r r n* ( * ,....., * )= 1  is a centre vector of fuzzy parameter 

Ãi, and C is a symmetrical positive definite matrix.
Tanaka and Ishibuchi [6] propose for the membership 

function of Ỹ the expression:

µ �
� � � �

Y
r y r x

t
T

r r C r r= − − ⋅ ⋅ −( )
=

−max ( *) ( *), ,
( ^ ^

1 01  (3)

and they prove it as equal to:

µ �
� �
� �Y

t

ty r x y
x C x

( ) max ( * ) ,= −
⋅ −
⋅ ⋅









1 0

2

 (4)

According to their theory, the following steps are 
followed:
• Given the input–output data (xi, ỹi, i = 1,…,n) and a thresh-

old h, it must hold an inclusion [19]:

[ ] [ ] , ,...,*


y Y i ni
h

i
h⊂ = 1  

where [Ỹ *
i]h is a h-level defined by: 





 



y Y y y hi

h

i

h

Yi
  ⊂   = ≥( ){ }* ,µ  

• The following sum of spreads of the estimated fuzzy  
[Ỹ*j], i = 1…n should be: 

J C x Cxi
T

i
i

N

( ) =
=
∑

0
 (5)

where the matrix C is proved to be a positive semi-definite 
matrix. 

The problem now is formulated as follows:

min

{( ) } {( )/

J x Cx

r x h x Cx y h e

i
T

i
i

N

T
i i

T
i i i

=

− − ≤ − −

=
∑

0

1 21 1
subject to

}}
{( ) } {( ) }

, ,

/

/ /

1 2

1 2 1 21 1
0

r x h x Cx y h e
x Cx i j i

T
i i

T
i i i

i
T

j

+ − ≥ + −

= ∀ ≠ ∀ ,, , , ,....,j I i N∈ = 0 1

 (6)

where:

[ ] [ {( ) } , {( ) } ]
[ ]

/ /




Y rx h x Cx rx h x Cx
y
i
h

i i i
T

i i i i
T

i

i
h

= − − + −1 11 2 1 2

== − − + −[ {( ) } , {( ) } ]/ /y h e y h ei i i i1 11 2 1 2
 

and the membership function of the output data ỹi is defined as:

µ
y i iy y y e( ) max{ ( ) / , }= − −1 02  (7)

In the above relations, i defines the sum of the fuzziness 
of the model, which should be minimized according to [6]. 
The h value (h ∈ [0, 1]) is referred to as the degree of fit of 
the estimated fuzzy linear model to the given data and 
is subjectively selected by a decision maker as an input to 
the model. Besides xiCx for any x is essential to the above 

inclusion according to definition [6], which means that the 
matrix C is positive semi-definite.

The solution of this problem according to [6,20] is as 
follows.

2.2.1. First phase

An optimum vector r* is found that minimizes the 
expression:

( )*
y r xi

i

m
T

i
=
∑ −

1

2  (8)

This solution constitutes the classical linear regression 
solution.

2.2.2. Second phase

The following optimization problem is solved with linear 
programming:

min , , ,....,

[ ] [ ]
(*

J x Cx i n

y Y

i
T

i
i

N

i
h

i
h

= =

⊆ ⇔ −

=
∑

0
0 1

1

subject to:





yy r x
x Cx

h

h x Cx y r x
h x

i
T

i

i
T

i

i
T

i i
h T

i

i

−
≥

⇔ − ≥ −

⇔ −

*

*

)

{( ) } ([ ] )
{( )

2

21
1



TT
i

T
i i i

i
T

i i

Cx k r x y h e
h x Cx k y r

} {( ) }
{( ) }

/ * /

/

1 2
1

1 2

1 2
2

1
1

≥ = − + −
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{( ) } {max( , )} ,

T
i i

i
T

i

x h e
h x Cx k k

+ −
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1
1

1 2

1 2
2

 (9) 

k r x y h e k y r x h eT
i i i i

T
i i1

1 2
2

1 21 1= − + − = − + −* / * /{( ) } , {( ) }

This problem is called Min. problem according to [6]. If 
the optimum solution C* is a positive semi-definite matrix, 
then (r*, C*) is the solution of the problem. Otherwise, the 
third phase follows.

2.2.3. Third phase

The following orthogonal constraints are added to the 
above problem:

x Cx i j i j I i Ni
T

j = ∀ ≠ ∀ ∈ =0 1 2, , , , , ,....,  (10)

and the problem is solved including these conditions. 
The solution is (r*, C*). In relation to Eq. (10), Ι is the set of 
subscripts of the independent vectors {Ι = (1, 2…n)}.

Remark. The estimated membership function of 
parameters can be computed by the following equation:

1 1− − ⋅ ⋅ − =−( *) ( *)   r r C r r ht  (11)

for different h-levels. According to [16], this boundary of the 
supports of the membership function is a hyperellipsoid, and 
the support principal axes are not parallel to the coordinate 
system.
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3. Application

3.1. Runoff–precipitation model

We consider the data for 25 storms on the Monocacy 
River at Jug Bridge, Maryland, USA [1]: 

In Table 1, the precipitation X is crisp, and the runoff Y 
is fuzzy, with e the fuzziness of runoff taken equal to 0.15Y.

For this case, Eq. (1) becomes:

Ỹj = Ã0 + Ã1x1j , x0j = 1 

Utilizing classical statistics, the vector r* = (–0.1248, 0.4294)T  
is produced. The problem now is formulated as follows:

min ( ) . . .J x Cx c c c cji
T

ji
j

= = + + +∑ 25 53 89 53 89 153 4211 21 12 22

subject tto:

1 1 11 1 11 1 20
1 1 17 1 20 1 40

. . .

. . .
......................................

. . .

. . .
1 2 93 2 90 8 60
1 1 16 1 20 1 30

11

2























⋅

c
c 11

12

22

0 199
0 071

0 180
0 331

c
c





















≥











.

.
........

.

.












 

where the numbers (0.199, 0.071…0.180, 0.331) mean  
max(k1, k2)2, and k1 and k2 are: 

k r x y h e k y r x h ei i i i i i i i1
1 2

21 1= − + − = − + −* / *{( ) } , {( )  

The following matrix is produced from the solution:

C =










0 0407 0 1205
0 1205 0 0086
. .
. .

 

This matrix is not positive semi-definite, and thus, the 
following restriction is added to the problem: 

x Cx i j i j I i N

x x
i
T

j

T

= ∀ ≠ ∀ ∈ =

= =

0 1 2

1 1 01 112 4

, , , , , ,....,

( , . ) , (

, with

,, . )5 62  

The new matrix that is produced is:

C* . .
. .

=
−

−










1 032 0 307
0 307 0 177

 

This matrix is positive semi-definite. Table 2 shows the 
values of J, for various combinations of xi and xj vectors. This 
matrix means that as the first matrix is not positive semi-
definite, we have added for the above case the equation:

x Cx or
c c
c c

c

T
T

1 2
11 12

21 22

11

0
1
1 01

1
1 17

0

=


























 =

→

,
. .

++ + + =1 01 1 17 1 1817 012 21 22. . .c c c
 

with a first combination (x1, x2), and the new matrix was 
positive semi-definite with J = 11,840.25. The same is repeated 
for different combinations of (xi, xj) vectors in order to obtain 
the optimal value of J, which is 19.89 with the combination 
(x12, x4).

Fig. 1 shows the estimated fuzzy outputs with h = 0, and 
the supports include fully the observed measurements of 
the Monocacy River storms [1] with their deviations, in the 
entire study region (points y ± e1/2). According to [19], the 
α-cuts for h = 0, 0.5, and 1 are the intervals of confidence for 
the fuzzy number and show the fuzziness of the estimated 
fuzzy number Ỹ for every h. Fig. 2 illustrates the inclusion 
of predicted and measured data at x = 5.62. For h = 0 we 
have: 

[ ] [ . . , . . ]
[ . , . ],[ ]

/ /




y
Y

h

h
4

0 1 2 1 2

4

2 92 0 438 2 92 0 438
2 26 3 58

=

=

= − +

= 00 0 51 4 07= [ . , . ]
 

and [ỹ4]h=0 ⊂ [Ỹ4]h=0. For h = 0.5 we have: 

[ ] [ . ( . . ) , . ( . . ) ]
[ .

. / /
y h

4
0 5 1 2 1 22 92 0 5 0 438 2 92 0 5 0 438

2 45

= = − × + ×

= ,, . ],[ ] [ . , . ].3 39 1 03 3 554
0 5

Y h= =
 

and [ỹ4]h=0.5 ⊂ [Ỹ4]h=0.5. Fig. 3 illustrates the estimated 
membership function of parameters in the Min. problem. In 
this figure, the ellipse is obtained by applying Eq. (11):

Table 1
Number of storms

a/a Precipitation,  
X (in)

Runoff,  
Y (in)

Fuzziness,  
e = 0.15Y (in)

1 1.11 0.52 0.078
2 1.17 0.40 0.060
3 1.79 0.97 0.146
4 5.62 2.92 0.438
5 1.13 0.17 0.026
6 1.54 0.19 0.029
7 3.19 0.76 0.114
8 1.73 0.66 0.099
9 2.09 0.78 0.117
10 2.75 1.24 0.186
11 1.20 0.39 0.059
12 1.01 0.30 0.045
13 1.64 0.70 0.105
14 1.57 0.77 0.116
15 1.54 0.59 0.089
16 2.09 0.95 0.143
17 3.54 1.02 0.153
18 1.17 0.39 0.059
19 1.15 0.23 0.035
20 2.57 0.45 0.068
21 3.57 1.59 0.239
22 5.11 1.74 0.261
23 1.52 0.56 0.084
24 2.93 1.12 0.168
25 1.16 0.64 0.096
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3.2. Rainfall data model

We consider the rainfall measurement stations of Aggistro 
and Ano Vrontou with the data in Table 3: 

In Table 3, the Aggistro data X are crisp, and the Ano 
Vrodou data Y are fuzzy, with e the fuzziness of Y taken equal 
to 0.2Y.

For this case, Eq. (1) becomes: Ỹj = Ã0 + Ã1x1j, x0j = 1. 
Utilizing classical statistics the vector r* = (–11.941, 1.8181)T is 
produced. The problem now is formulated as follows:

min ( )J x Cx c c c cji
T

ji
j

= = + + +∑ 12 606 606 31612

1 4

11 21 12 22

subject to:

77 6 47 6 2265
1 65 6 65 6 4303

. .

. .
.........................................

. .

. .
1 54 7 54 7 2292
1 47 5 47 5 2256
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
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
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c
c
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c
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where the numbers (154, 271…557, 49) mean max(k1, k2)2, and 
k1 and k2 are: 

k r x h x Cx k r x h x Cxi i i
T

i i i i
T

i1
1 2

2
1 21 1= − − = + −{( ) } , {( ) }/ /  

Table 2 
The optimal value of J vs. xi, xj

Combination x1x2 x1x3 x1x4 x1x7 x1x10 x1x22 x12x4 x12x17 x12x1 x4x12 x2x4

Optimal value J 11,840.25 116.99 20.50 28.95 36.86 21.17 19.89 25.02 1,716.21 19.89 20.92
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Fig. 1. The estimated fuzzy output and the given data for the 
Runoff–Precipitation application.
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Fig. 2. Inclusion of predicted and measured data at x = 5.62 for 
the runoff–precipitation application.

 

-1

0
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(-0.1248,  0.4299)

h=0

h=0.5

h=1

a1

a0

Fig. 3. The estimated membership function of parameters in the 
Min. problem for the runoff–precipitation application.

Table 3
Mean monthly rainfalls: crisp input and fuzzy output data

T xi Aggistro,  
X (mm)

Vrontou,  
Y (mm)

Fuzziness,  
e = 0.2Y (mm)

1929–1930 x1 47.6 65.8 13.16
1930–1931 x2 65.6 118.9 23.78
1931–1932 x3 40.3 57 11.4
1932–1933 x4 30.8 52.5 10.5
1933–1934 x5 45.1 61.1 12.22
1934–1935 x6 54.1 73.9 14.78
1935–1936 x7 58.7 104.4 20.88
1936–1937 x8 60.6 83.1 16.62
1937–1938 x9 55.1 78.8 15.76
1938–1939 x10 45.9 79 15.8
1939–1940 x11 54.7 106.5 21.3
1940–1941 x12 47.5 77.5 15.5
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The following matrix is produced from the solution:

C =
−









2531 62 73
62 73 1 26

.
. .

 

This matrix is not positive semi-definite, and therefore, 
the following restriction is added to the problem: 

x Cx i j i j I i N

x x
i
T

j

T

= ∀ ≠ ∀ ∈ =

= =

0 1 2

1 65 6 12 4

, , , , , ,....,

( , . ) , ( ,

, with

330 80. )  

The new matrix that is produced is:

C* .
. .
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This matrix is positive semi-definite. Table 3 shows the 
values of J, for various combinations of xi and xj vectors. 
Again as in Table 2, this matrix means that as the first matrix 
is not positive semi-definite, we have added for the above 
case the equation:
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with a first combination of (x1, x12), and the new matrix was 
positive semi-definite with J = 22717852. The same procedure 
is repeated for different combinations of (xi and xj) vectors 
in order to obtain the optimal value of J, which is 5,817 with 
combination (x2 and x4).

Fig. 4 shows the estimated fuzzy outputs with h = 0, 0.5, 
and 1, and the supports include the observed measurements 
with their deviations, in the entire study region (points y ± e1/2).  
Fig. 5 illustrates the inclusion of predicted and measured 
data at x = 54.1. For h = 0, we have [ỹ6]h=0 = [70.08, 77.7],  
[ỹ6]h=0 = [63.4, 109.5] and [ỹ6]h=0 ⊂ [ỹ6]h=0. For h = 0.5, we have  
[ỹ6]h=0.5 = [71.2, 76.6], [ỹ6]h=0.5 = [70.01, 102.7] and [ỹ6]h=0.5 ⊂ [ỹ6]h=0.5.  
Fig. 6 illustrates the estimated membership function of 
parameters in the Min. problem for the original [6] model.

Remark: As shown in Figs. 1 and 4, the supports for h = 0  
do not include the observed measurements data with their 
deviations, in the entire study region (points y ± e). The 
inclusion contains only the points y ± e1/2. This result is due 
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to the fact that Tanaka-Ishibuchi model uses as membership 
function of the data y: μYi(y) = max{1 – (y – yi)2/ei , 0}. In order, 
for the inclusion, to contain the points y ± e, the membership 
function is modified by [20] and takes the following form: 
μYi(y) = max{1 – |y – yi|/ei , 0}. 

With this new modification, Fig. 7 shows the estimated 
fuzzy outputs with h = 0, 0.5, and 1, and the supports 
include the observed measurements with their deviations, 
in the entire study region (points y ± e). Fig. 8 illustrates 
the inclusion of predicted and measured data at x = 54.1. In 
the modified model for h = 0, we have [ỹ6]h=0 = [73.9 – 14.8,  
73.9 + 14.8] = [59.12, 88.68], [ỹ6]h=0 = [47.1, 125.8] and [ỹ6]h=0 ⊂ [ỹ6]h=0.  
For h = 0.5, we have [ỹ6]h=0.5 = [66.51, 81.29], [ỹ6]h=0.5 = [58.6, 114.3]  
and [ỹ6]h=0.5 ⊂ [ỹ6]h=0.5. Fig. 6 illustrates the estimated 
membership function of parameters in the Min. problem for 
the [6] modified model.

4. Conclusions 

In this paper, the approach of Tanaka and Ishibuchi 
is considered, which could identify interactive fuzzy 
parameters in a possibilistic linear model of precipitation–
runoff measurements and rainfall station measurements. 
This model is more general and can be used also for cases 
with interactive distribution parameters, where not all the 
estimated spreads are non-negative. 

In the case of rainfall and runoff measurement 
observations, fuzzy correlation is achieved, even for small 
samples, and we can extend the shorter time series, due to 
fuzzy correlation. The estimated fuzzy outputs with h = 0 
include the observed measurements with their deviations, in 
the entire study region.

In cases in which the original [6] approach does not 
insure data inclusion inside estimated supports, a modified 
version of [6] model is applied, which insures fully inclusion.

In the case of rainfall measurement observations, station 
association is achieved, even for small samples, and we can 
extend the shorter time series, due to fuzzy correlation of two 
rainfall stations.

The model of Tanaka and Ishibuchi has a membership 
function of parameters, which is quadratic, but it can be 
reduced to linear programming, easy to apply.

Finally fuzzy regression can be a useful tool for managers 
and researchers in hydrology (water management), for 
estimating relationships among variables with fuzzy, 
incomplete, and limited information. It may be more 
effective than statistical regression with rigid assumptions, 
when the last ones are either violated or cannot be properly 
employed.
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