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a b s t r a c t
The presence of secondary micro-pollutants, including trihalomethanes, in water intended for human 
consumption is a common phenomenon in water supply systems, therefore tap water is subjected to 
constant quality monitoring. Relations between the large number of factors affecting water quality 
are complicated and it is difficult to form them in simple mathematical formulas which would define 
simulation models applicable in practice. This paper presents the detailed analysis of statistical 
properties of prediction models for trihalomethanes in tap water. All models were based on data 
collected in real water supply system during its standard exploitation from 2007 to 2017 and obtained 
by multiple regression. We propose a procedure which allows to select the model with the best 
predictive properties. It is shown also that the determination coefficient (R2) for the model in implicit 
form does not determine whether the model may be useful in the decision-making process: it is 
possible that model in implicit form has low R2 while the correlation between observed and estimated 
values of trihalomethane at endpoints is high, and vice versa. The best model depicted in the paper 
has correlation 0.76 between observed and predicted values which is a good result for data from real 
water supply systems.
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1. Introduction

Growing pollution of the natural environment, including 
surface water resources, is the result of dynamic economic 
development and increasing technological progress. 
Especially surface water is a resource exposed to various 
contaminants both natural and anthropogenic origins. 
Numerous annual reports of world environment state 
are pointing out that approximately one-third of organic 
compounds produced in the national economy goes into 
the environment. Therefore, the scarcity and poor quality 
of surface water resources force water supply operators 
to use not only coagulation and filtration but also highly 
effective processes that guarantee good water quality in 

terms of its physicochemical parameters [1–4]. Disinfection 
with chlorine application is still a commonly used process 
which guarantees the microbiological stability of water. 
However, unavoidable consequence of water chlorination is 
the formation of disinfection by-products (DBPs), including 
trihalomethanes (THMs). Numerous researchers confirm 
that THMs have mutagenic and carcinogenic properties, 
dangerous for human health [5–11], that is why the law relat-
ing to drinking water quality protects the consumer health. 
The directive of European Union 98/83/EC of 3 November 
1998 which concerns drinking water quality, defines maximal 
permissible concentrations of DBPs (mainly THMs) in water 
delivered directly to consumers. Standard water treatment 
processes both coagulation and filtration do not guarantee 
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the efficient removal of DBP precursors, consequently the 
risk of THMs formation in chlorinated water may be signifi-
cantly increased. Therefore, the harmfulness of THM and 
other DBPs forces the necessity of complex technological 
processes of water treatment such as preliminary oxidation, 
ozonization, sorption on activated carbon, and double disin-
fection process using chlorine and chlorine dioxide [12–16]. 
All these processes together guarantee the production of 
high quality tap water and thus the risk of THM formation in 
tap water has been significantly reduced. The essential prob-
lem is that THMs arise not only in disinfection in water treat-
ment plants (WTPs) but also during treated water transport 
by very large water pipe network. In big cities, the transport 
of water needs long times (e.g., a few days) due to oversized 
water distribution system resulting in low water flow rates 
(sometimes less than 0.01 m/s). This is a consequence of the 
extensive water pipes network and reduced water consump-
tion due to consumers growing awareness. Therefore, to 
reduce the risk of THM formation and to ensure the safety of 
consumers’ health, it is necessary to optimize the chlorine use 
in the whole water supply system by placing into service in 
water network additional points of chlorine doses. Thus the 
monitoring of THM concentration in water supply systems 
in both production and distribution subsystems is important 
and necessary. On the other hand, in water supply systems 
the precise monitoring of THM is expensive and time con-
suming so it is limited to indispensable minimal range.

The formation of THM is a complicated process occur-
ring within the overall water supply system. The concentra-
tion of THM in drinking water in consumer’s taps depends 
on many factors such as temperature, pH, concentration of 
natural organic matter, chlorine dose, reaction time, and 
other. This problem of THM formation in both water produc-
tion and water distribution subsystems is intensively stud-
ied for several decades but still it is not explored in details 
[17–21]. Modern statistical tools allow their use for the math-
ematical description of the THM formation process. A lot of 
problems in statistical application of data and then the inter-
pretation of obtained results explain the fact that there were 
only a few attempts made in order to define a mathematical 
model which describes changes of level of THM formation 
in time, in real extensive water pipe network [22–27]. Well-
calibrated model, estimating the concentration of chlorina-
tion by-products in drinking water, can be used to predict the 
THMs concentration in water at consumer’s tap. Such math-
ematical predicting models might be an important tool both 
in decision making in determining the technological param-
eters of the water treatment processes and in identifying the 
critical control points in the monitoring process.

The aim of this paper is to present a method of select-
ing the best predictive model from many models obtained 
by multiple regression. Two variants of multiple regression 
(backward elimination and forward selection) applied to dif-
ferent sets of both original and transformed data give usually 
many models. However, some of them have the similar sta-
tistical characteristics; therefore, the problem of choosing the 
best model arises. It will be shown that coefficient of deter-
mination (commonly used in such studies) is not a sufficient 
measure, especially if statistical model is obtained in implicit 
form. All considerations were conducted on the base of data 
collected in Silesian water supply system. 

2. Materials and methods

2.1. Characteristics of research subject

The subject of research is the separated zone of Silesian 
water supply system. The system is one of the biggest sys-
tems not only in Poland but also in Europe and it spreads 
out over an area of 4,300 km2 providing water to nearly 
3.5 million inhabitants of the Silesian region. The origins of 
this system are dating back to the 80’s of the 19th century 
and they are strongly associated with the development of 
the mining and metallurgical industries. Currently, the sys-
tem is built of 11 WTPs which were fed with 87% of water 
from surface water resources (Fig. 1). The two greatest WTPs 
(Goczałkowice and Czaniec) take water from Wisła and Soła 
rivers, and then treat it with highly efficient technological 
processes. The current average daily water production of 
whole Silesian water supply system is over 381,500 m3. This 
value of average production represents scarcely 45.5% of 
full available production capacity of analyzed water supply 
system.

From an operational point of view, the Silesian water 
supply system is divided into eight major networks. The 
distribution system uses the combination of pressure and 
gravity mains conveying the water to 42 local distribution 
subsystems and industrial bulk buyers. The total length of the 
water pipe network is 876.2 km and it consists mainly of the 
mainline in the large diameter range from 500 to 1,800 mm, 
characterized by considerable material diversity (Table 1). 

Table 1
Materials structure of water pipe network in 2017a

Material Length (km) Percentage (%)

GRP 0.3 0.04
PE 102.3 11.70
Steel 620.7 70.77
Concrete 38.8 4.44
Grey iron 32.6 3.73
Ductile iron 81.5 9.32
Sum 876.2 100.00

aArchival data of Silesian Waterworks PLC.
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Fig. 1. Silesian water supply system – research subject.
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Pipelines with diameters less than 500 mm cover only 12.8% 
of the total length. The average age of the pipelines is about 
38 years (Fig. 2). Both materials and the age of water pipes 
affect the kinetics and concentration of THMs. Therefore, 
water company consequently invests in the modernization of 
water distribution network. Now only 20% of the pipelines 
(approximately 170 km) have been lined with cement-mortar, 
PU or PE to protect against corrosion and secondary water 
contamination.

An integral element of the water distribution system is 
nine complexes of network equalizing–storage tanks with 
the total capacity of 363,800 m3 and five network pumping 
stations (Fig. 1). 

A key role in the Silesian water supply system is played 
by the storage tanks in Mikołów, with the total capacity 
96,000 m3. Their convenient location allows gravity trans-
port of water to the northern and western parts of the sys-
tem. These tanks are supplied from three major WTPs: 
Goczałkowice, Czaniec, and Dziećkowice. WTP Czaniec, 
with average daily water production at the level of 66,000 m3, 
delivers about 50% of water to storage tanks in Mikołów per 
day (via Urbanowice tank). This WTP intakes water from 
the Czaniec reservoir located on the Soła river, characterized 
by high seasonal variability of water quality. In particular, 
during spring rainfall, the amount of water turbidity sig-
nificantly increases, often exceeding the level of 100 NTU. 
This causes difficulties in purification of water and leads 
directly on decreasing of the quality of tap water. The tech-
nological treatment system includes both contact filtration 
with an average dose of aluminium sulphate 1.02 mgAl/dm3 
(variation range from 0.37 to 5.52 mgAl/dm3) and disinfec-
tion with chlorine (chlorine dose from 0.71 to 1.08 mg/dm3). 
In order to protect microbiological stability of water chlo-
rine is added both at WTP Czaniec and at Urbanowice tank 
(18,300 m3). Chlorine use in the disinfection process and 
the long water transport to the Mikołów tanks (over 1 d) 
at the TOC concentration at level 1.44 mgC/dm3 in treated 
water increases the risk of chlorine by-products formation, 
especially chloroform. The average concentration of chloro-
form in treated water at WTP Czaniec is 7.28 µg/dm3, and it 
increases to 11.47 µg/dm3 in tanks at Mikołów. Water from 
Mikołów tanks is delivered to consumer’s tap, and this trans-
port to farthest endpoints takes up to 6 d. Such long water 
transport results from low water flow with average speed 
0.19 m/s (depending of water flow the speed changes from 
0.02 to 0.33 m/s).

From these reasons, quality of drinking water at Mikołów 
tanks should be as good as possible. WTP Czaniec plays an 
important role in supplying water to Mikołów tanks, thus 
the separated zone from Czaniec to Mikołów is the subject of 
presented study which initiates the complex research related 
to health risk assessment of Silesian inhabitants.

2.2. Research methods and data specification

The modeling of water quality, including changes of 
THMs concentration, may be based on statistical methods, 
especially multiple regression [18,21,26]. Statistical analysis 
and software give equations in which dependent variable 
(the concentration of THMs) is expressed as a function of 
selected independent variables. If there are nonzero cor-
relations between inputs, then the equation may appear 
worthless for practical application or even it is possible that 
the equation does not exist. Research based on large sets of 
data may be examined for their suitability as reliable pre-
dictive models by adequate statistical tests at the assumed 
significance level (such as the Kolmogorov–Smirnov test, 
chi-square test, goodness of fit, correlation between observed 
and predicted values, analysis of statistical errors of estima-
tion). For these reasons, data should be carefully selected due 
to following stages of research method. At the beginning, the 
correlations between all possible pairs of variables should be 
calculated. The most important in future prediction models 
will be these independent variables, which have significant 
correlation (positive or negative) with dependent variable. In 
the second stage, there are constructed sets of independent 
variables such that the correlations between them are close 
to zero or negligible. Above analyses are provided also for 
transformations of all variables (usually logarithms, powers, 
products or quotients of two variables). Then, using two vari-
ants of multiple regression (forward selection and backward 
selection), many different models with different statistical 
properties may be obtained. Therefore, the main research 
problem is the choice of the best predictive equation which 
would be applicable in management of water supply system. 
In this research method, a new approach to the solution of 
this problem is proposed. It is based on both determination 
coefficient and the analysis of goodness of fit for predictive 
equations in their explicit forms.

The study is based on data collected from January 2007 to 
September 2017 during normal exploitation of water supply 
system obtained from Silesian Waterworks PLC in Katowice. 
Technological parameters (chlorine dose and residual chlo-
rine) were examined every day while quality parameters of 
tap water (temperature, pH, UV254, UV272, total organic car-
bon, THMs) were measured up to three times in each month 
according to monitoring plan. From this large set of data, 
the subset of records containing the concentration of THMs 
in Czaniec and Mikołów was excerpted. Finally, predictive 
models were built basing on 8,778 values of 17 water quality 
parameters and 2 operational parameters which were col-
lected during 10 years by water company. All water samples 
were analyzed using standard methods for the examination 
of water. Table 2 presents basic descriptive statistics of these 
19 variables which turned out to be significant in the gener-
ation of THMs during water transport from WTP Czaniec to 
Mikołów tanks.

Fig. 2. Age structure of water pipe network in 2017 (based on 
archival data of Silesian Waterworks PLC).
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The concentration of THMs at Mikołów is greater than at 
Czaniec and it is the result of an average 1-d reaction between 
chlorine and organic matter (water from WTP Czaniec to 
Urbanowice tank is transported during about 20 h, from 
Urbanowice tank to Mikołów tanks – about 9.5 h). It should 
be explained that the greater mean value of chlorine dose at 
Urbanowice is related to accidental failures in the system 
which happened a few times during examined time of 
exploitation.

The simulations by EPANET showed that water from 
Czaniec to Mikołów flows on average 1 d time so records at 
day N at Czaniec were paired with records at day N + 1 in 
Mikołów. This gave 142 records (of course with missing data 
because different parameters are tested according to different 
monitoring plans). Then the correlations between the con-
centration of THMs at Mikołów and variables at Czaniec and 
Urbanowice were calculated (Table 3). The highest correla-
tions are noted between concentration of THMs at Mikołów 
and

• the concentration of THMs at Czaniec, 
• the concentration of chloroform at Czaniec, because 

chloroform is the largest share of total THMs,

• temperature at Czaniec, which is similar to the 
temperature at Mikołów, because in higher temperature 
the chemical reaction is faster,

• residual chlorine at Urbanowice (where additional 
chlorine dose is applied), because the smaller residual 
chlorine, the greater chlorine usage per reaction of THMs 
forming.

Surprisingly, the correlation with pH is negative. 
Moreover, in further research from these data, a few models 
with negative coefficient in pH were obtained. Such situation 
is noted only in two papers [22,25].

Finally, for multiple regressions, there were considered 
following dependent variables: 

• THM(M) – the concentration of THMs at Mikołów,
• ΔTHM = THM(M) – THM(Cz) – the increment of 

concentration of THMs from Czaniec to Mikołów,
• lnTHM(M),
• lnΔTHM,
• ln(1 + ΔTHM) – this variable was taken into consideration 

because it is possible that the increment of THMs is equal 
to zero or close to zero (which happens rarely).

Table 2
Basic descriptive statistics of considered variables

Variable N Mean Minimum Maximum Standard deviation

Temperature (Cz) (°C) 410 10.67 0.70 24.00 6.39
Temperature (M) (°C) 378 10.90 1.00 22.40 6.41
pH (Cz) 425 7.22 6.39 7.76 0.16
pH (M) 437 7.31 7.00 7.63 0.13
UV254 (Cz) (cm–1) 420 0.12 0.05 0.21 0.03
UV254 (M) (cm–1) 131 0.10 0.03 0.19 0.03
UV272 (Cz) (cm–1) 420 0.09 0.01 0.17 0.02
Total organic carbon (Cz) (mg/L) 163 1.44 0.76 3.41 0.35
Total organic carbon (M) (mg/L) 145 1.40 0.76 2.31 0.29
Chlorine dose (Cz) (mg/L) 456 0.71 0.21 1.08 0.13
Chlorine dose (U) (mg/L) 467 1.68 0.00 5.42 0.83
Residual chlorine (Cz) (mg/L) 456 0.26 0.02 0.46 0.07
Residual chlorine (U) (mg/L) 467 0.18 0.14 0.33 0.04
Residual chlorine (M) (mg/L) 433 0.30 0.02 1.18 0.10
Bromates (Cz) (µg/L) 100 0.44 0.00 2.10 0.41
Chloroform (Cz) (µg/L) 414 7.28 1.30 19.80 3.69
Chloroform (M) (µg/L) 354 11.47 1.70 28.40 5.35
THM (Cz) (µg/L) 414 8.62 1.60 23.60 4.22
THM (M) (µg/L) 354 15.17 3.60 33.30 6.24

Table 3
Correlation coefficients between the concentration of trihalomethanes at Mikołów and variables at Czaniec and Urbanowice

Variable Correlation coefficient Variable Correlation coefficient

Temperature (Cz) 0.6167 Chlorine dose (Cz) 0.1745
pH (Cz) –0.3178 Chlorine dose (U) 0.1020
UV254 (Cz) 0.4306 Residual chlorine (U) –0.6780
Total organic carbon (Cz) 0.4376 Chloroform (Cz) 0.7777
Residual chlorine (Cz) –0.2956 THM (Cz) 0.7706
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Independent variables considered in predictive models 
were:

• T(Cz) – temperature at Czaniec,
• pH(Cz) – pH at Czaniec,
• TOC(Cz) – total organic carbon at Czaniec,
• UV254(Cz) – absorbance UV at 254 nm at Czaniec,
• UV272(Cz) – absorbance UV at 272 nm at Czaniec,
• Br(Cz) – the concentration of bromates at Czaniec,
• THM(Cz) – the concentration of THMs at Czaniec,
• CHCl3(Cz) – the concentration of chloroform at Czaniec,
• DCl2(Cz) – chlorine dose applied at Czaniec,
• DCl2(U) – chlorine dose applied at Urbanowice,
• RCl2(Cz) – residual chlorine at Czaniec,
• RCl2(U) – residual chlorine at Urbanowice,

and their logarithms. The six sets of independent variables 
were considered: pure variables with either THM(Cz) or 
CHCl3(Cz), similarly natural logarithms but there was taken 
into account either lnpH or pH (because it is logarithm itself).

3. Results and discussion

The aim of presented study was to find the equation 
expressing the concentration of THMs at Mikołów as a 
function of operational and quality parameters at Czaniec 
and Urbanowice. Basing on 142 selected records (some with 
missing data), the statistical models were obtained by multiple 
regression. For all possible choices of dependent variable and 
sets of independent variables two variants of multiple regres-
sion were applied (the forward selection and backward elimi-
nation using STATISTICA software with Fenter = 4 and Fdelete = 3). 
Although 60 equations were expected, finally 37 different mod-
els were obtained because in 5 cases backward eliminations 
gave no result and sometimes forward selection and backward 
elimination gave the same results. There were 22 models with 
at least one coefficient or constant term statistically insignifi-
cant or indicating process inconsistent with actual knowledge 
on THMs formation (e.g., such with negative coefficient in 
temperature or chlorine dose). At this stage, there were consid-
ered 15 predictive models with acceptable statistical character-
istics. These models contain similar but independent variables 
as models reported in literature [17,18,20–22,24]. It should be 
stressed that coefficients in predictive equations are strongly 
related to operational conditions of whole water supply sys-
tem as well as quality of drinking water.

From the set of 15 models with all terms statistically 
significant 6 models in explicit form with coefficient of 
determination less than 0.60 were removed (coefficients of 
determination in the case of models in implicit form were not 

considered because we are interested in the goodness of fit 
only for THMs concentration, not on its transformations).

In the end, nine models remained. The procedure of 
choosing the best one will be explained on the example on 
four of them. They were tested with respect to their residuals 
distributions, correlation between observed and predicted 
concentrations of THMs at Mikołów, and properties of rela-
tive errors of estimation. The four best models, based on 131 
cases, are as follows:

model A:

ln , , ,

,

THM CHCl3M Cz T Cz

RCl U
( ) = + ( ) + ( )

− ( ) +
2 2798 0 0484 0 0234

2 0048 2 22 0299 0 2286254, ,UV Cz( ) ±
 (1)

model B:

∆THM = + ( ) + ( ) ±3 3301 0 1626 30 4509 4 0518254, , , ,T Cz CzUV

 (2)

model C:

ln , , ,

,

1 1 6958 0 0141 2 8140

0 04193
254+( ) = + ( ) +

±
( )∆THM UVT Cz Cz

 (3)

model D:

ln , , ln , ln

, ln

THM CHCl

RC

M Cz T Cz( ) = + ( ) + ( )
−

1 6764 0 3958 0 1677

0 2928
3

ll UV2 2540 2342
0 1949

U Cz( ) + ( )
±

, ln
,

 (4)

All these models are in implicit form so each model above 
was rewritten in the explicit form and the correlation between 
observed and predicted values of THM(M) was calculated. 
The comparison of correlations for models in both implicit 
and explicit forms is shown in Table 4.

Although models B and C explain a small part of 
variability of dependent variable in its implicit form, they 
indicate quite good correlation between observed and 
predicted values of concentration of THMs at the endpoint 
Mikołów. All models have similar correlations so further 
analysis is necessary. In Fig. 3, the distributions of residuals 
(i.e., differences between observed and predicted values of 
dependent variables) are shown.

Table 4
Comparison of correlations for considered models in their implicit and explicit forms

Model Standard estimation error for the 
model in its implicit form

Ra
2  for the model in its 

implicit form
R for the model in its 
implicit form

R for the model in 
its explicit form

A 0.2286 0.6598 0.8182 0.6920
B 4.0518 0.0983 0.3350 0.7601
C 0.4193 0.0712 0.2925 0.7571
D 0.1949 0.7527 0.8716 0.7583
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Fig. 3. Distributions of residuals of THM(M) in four models.
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Fig. 4. Comparison of observed and predicted values of THM(M) in four models.
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In all models residuals fit to normal distribution but 
only in the case of model B its mean is 3.38. In this model the 
majority of residuals is positive which means that the model 
usually gives values that are less than observed. If a model 
underestimates small values, it does not matter, but it would 
be worse if high values are underestimated. Indeed, model B 
is useless for the water company which may be seen in Fig. 4. 
Moreover, the best are models C and D, because in these two 
cases points on the graphs are much closer to line y = x.

The next step in the selection of the best model was to 
compare the number of correct predictions in the intervals: 
(3, 15), (15, 25), (25, 34). The intervals were chosen arbi-
trarily and the main idea was to find how models estimate 
low, medium and high concentrations of THMs. Note that 
although the maximal allowable concentration of THMs is 
100 µg/L, concentrations close to 30 µg/L may be regarded 
high – from Mikołów water is transported further, up to 6 
d, so the risk of exceeding the maximal allowable concen-
tration of chloroform increases. The results are presented in 
Table 5.

Total number of correct estimations is: 86 for model A, 83 
for B, 92 for C and D. Hence models C and D are comparable, 
but the decisive factor is the number of correct estimations in 
the interval with high THMs concentration. Model C predicts 
properly only one such case (per 18 possible) whereas model 
D – six cases. It is important to note that both C and D have a 
deficiency, that is, in one case (5.6%) they predict low THMs 
concentration while it is high. This must be borne in mind 
when models are used in decision-making processes.

The analysis of relative errors of estimation (Table 6) 
gives helpful information if model will be applied in real 
water supply systems. The least dispersion is observed for 
model B; however, the mean disqualifies this model (values 
are underestimated by an average of 17%). Although model 
C has the best mean which is closest to zero, model D has 
slightly greater mean but less range of relative error of esti-
mation. Thus, finally, model D is the best one.

4. Conclusions

The most important conclusion stemming from the 
research presented in the paper is that the coefficient of 
determination of the model in the implicit form does not 
settle the model usefulness (for example, model C with 
very low R2 = 0.0712 is one of the four best predictive mod-
els). Of course mathematical characteristics of models are 
important but the purpose of building it should be taken 
into account. From the point of view of the water supply 
company, it is better to react to a false alarm (overestimated 
THMs concentration) than to put the consumer health to 
danger.

The presented model D is quite good as a mathemati-
cal model, especially considering the fact that it was based 
on data from the actual water supply system (and not on 
the laboratory data). The correlation between observed and 
predicted by model D concentrations of THM is 0.7583. 
Therefore it may be applied in water supply management. 
It should be stressed that, in this study, the contact time 
between chlorine and organic matter contained in water was 
approximately constant because the distance between initial 
point WTP Czaniec and endpoint Mikołów tanks is constant. 
Since the contact time is the key parameter to changes of 
THM concentration, the building of mathematical models 
predicting THMs concentration at different points on water 
pipe-network is more difficult because of varying contact 
time.

It is worth to continue study on mathematical models 
that can support the management and operation process. 
They are not expensive and simultaneously they could show 
how THMs concentration would change if some parameters 
were changed. The methodology of best model selection, 
presented in this case study for Silesian agglomeration, may 
be used in building THMs’ prediction models in other water 
supply systems.
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Table 6
Descriptive statistics of relative error of estimation

Model N Mean Median Minimum Maximum Standard deviation

A 131 –2.80% 1.95% –82.21% 61.00% 25.03%
B 131 16.83% 19.12% –32.84% 67.13% 17.72%
C 131 0.26% 0.26% –78.24% 57.98% 20.98%
D 131 –1.92% 1.11% –56.65% 58.00% 20.63%

Table 5
Number of observation with correct and incorrect estimations 
with respect to low, medium, and high concentrations of 
trihalomethanes at Mikołów

Model Predicted 
values

Observed values
(3, 15) (15, 25) (25, 34)

A (8, 15) 38 13 1
(15, 25) 6 42 11
(25,39) 0 14 6

B (4, 15) 42 27 2
(15, 25) 2 41 16
(25, 29) 0 1 0

C (8, 15) 36 8 1
(15, 25) 8 55 16
(25, 31) 0 6 1

D (6, 15) 35 6 1
(15, 25) 9 51 11
(25, 33) 0 11 6
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