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ABSTRACT

The article presents the results of studies on an impact of UV radiation on the potential to form
several organic chlorination by-products in the model solutions, containing the ingredients of
body care products (i.e.,, UV filters and parabens). The research was conducted on seven UV filters
(ethylhexyl methoxycinnamate, butyl methoxydibenzoylmethane, 4-methylbenzylidene camphor,
octocrylene, benzophenone-3, ethylhexyl salicylate, octyl dimethyl-para-amino-benzoic acid) and
three parabens (methyl paraben, propyl paraben, ethyl paraben). The following by-products were
studied: trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane,
tribromomethane), haloacetic acids (monochloroacetic acid, dichloroacetic acid, bromochloroacetic
acid, dibromoacetic acid, trichloroacetic acid), haloacetonitriles (bromochloroacetonitrile,
dibromoacetonitrile, dichloroacetonitrile, trichloroacetonitrile), haloketones(1,1-dichloro-2-propanone,
1,1,1-trichloro-2-propanone), chloropicrin, and chloral hydrate. The test of by-products formation
potential was applied in the studies, with 24 h time of swimming water samples incubation. The water
samples were chlorinated and irradiated with UV, generated with low-pressure UV lamp by Heraeus,
Germany. Three UV doses were studied: 0 kJ/m? (water only chlorinated), 23.5 kJ/m? and 47 kJ/m?.
The research results have been used to assess how UV influences the reactivity of the studied model

compounds and their potential to form halogenated organic chlorination by-products.
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1. Introduction

Any organic compound used in the production of lotions,
creams and lipsticks can flow into swimming pool water along
with the swimmers and reacting with chlorine — through a
series of transformations of these compounds — can lead to
the formation of disinfection by-products (DBPs), such as
trihalomethanes (THM), haloacetic acids (HAA), haloacetoni-
triles (HAN), haloketones (HK), chloropicrin (CP) and chlo-
ral hydrate (CH). Because the cosmetic ingredients are the
original compounds (the substances before these chemical
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reactions), from which DBPs are produced of, they can be
treated as the precursors of DBPs. In a case of swimming pool
water the personal care products (PCPs) are mainly UV filters
and parabens [1]. Most organic UV filters are lipophilic (dis-
solved in fats, oils and nonpolar solvents), they have in their
structure the aromatic rings coupled with carbon-carbon
double bonds [2,3]. Although UV filters are hydrophobic in
their nature, they are washed away from the skin surface and
thus flow into water and environment [4-6]. There are only
two known inorganic UV filters (titanium dioxide and zinc
oxide), while the majority of compounds used in PCPs for
sun protection are organic compounds from the groups of

Presented at the 13th Conference on Microcontaminants in Human Environment, 4—6 December 2017, Czestochowa, Poland.
1944-3994/1944-3986 © 2018 Desalination Publications. All rights reserved.



66 A. Wiodyka-Bergier, T. Bergier / Desalination and Water Treatment 134 (2018) 6575

benzophenones, cinnamates, dibenzylmethanes, derivatives
of camphor, para-aminobenzoates and benzimidazoles [7].
The interest in the contamination of the aquatic environment
with UV filters has also increased in recent years due to their
potential risk of endocrine disruption [3,8]. There are two
dominant ways of entering UV filters into swimming water:
(1) directly as a result of washing from a swimmer’s body and
(2) indirectly from a wastewater treatment plant discharging
sewage to water (an efficiency of UV filters removal by a
wastewater treatment plant is 19% > 99% [3,4].

Parabens are a group of alkyl esters of the
p-hydroxybenzoic acid with alkyl substituents of methyl,
butyl or benzyl groups [9], they are widely used as
preservatives in pharmaceutical and PCPs. The scientific
interest in these compounds is mainly caused by their pos-
sible effect on the endocrine disorders and breast cancer [9].
A few-minute contact between the parabens and chlorine,
presented in swimming water, results in the formation of
bromo- and chloro-organic compounds, which are halogen
derivatives of parabens [10,11].

Although PCPs do not directly affect the health of
swimming users [12], they may be the precursors of the for-
mation of DBPs. However our knowledge on the dynamics
of these reactions in swimming pool water is very limited.
Kim et al. [13] observed — in the DBPs formation test — the
increase of concentration of CH, dichloroacetonitrile and
1,1,1-trichloro-2-propanone, as a result of an addition of
cosmetic lotion (1 mg) to surface water (300 cm?). While the
concentration of trichloroacetonitrile did not change and
the concentration of bromodichloromethane (BDCM) even
decreased. In other studies [14], it has been shown that lotions
containing UV filters can be the precursors of the halobenzo-
quinones formation in swimming pool water.

The application of UV radiation in pool water treatment
technology also influences the dynamics of chlorination
by-products formation. If chlorine-containing pool water is
exposed to UV, the free radicals HO® are formed, thus the
UV-chlorination combination can be classified as the advanced
oxidation process (AOP) [15,16]. In AOP organic compounds
are effectively oxidised, often they are completely miner-
alised. The most important pathways of the organic com-
pounds degradation and breakdown in AOP based on UV
are the direct photolysis and the reactions with the radicals
produced in AOP process [15,17]. The AOP of UV/CL, is con-
sidered as more effective in the oxidation of some micropol-
lutants than the UV/H,0, [18]. For the typical UV doses, used
in water disinfection (<500 J/m?), chlorine photolysis caused
by UV (both from low- and medium-pressure UV lamp) pro-
duces large amounts of free hydroxyl radicals, therefore the
combination of chlorination and UV irradiation is an effective
disinfection method, but also AOP [19,20]. However there are
no publications on the effect of UV radiation on the DBPs’
formation potential (FP) of UV filters and parabens.

2. Materials and methods
2.1. Preparation of precursors solutions

In order to examine the influence of cosmetics
ingredients, introduced to water with swimmers, on
the DBPs FP in chlorinated water, UV filters (ethylhexyl

methoxycinnamate [EHMC], butyl methoxydibenzoylmeth-
ane [BM-DBM], 4-methylbenzylidene camphor [4-MBC],
octocrylene [OC], benzophenone-3 [BP3], ethylhexyl
salicylate [EHS], octyl dimethyl-para-amino-benzoic acid
[OD-PABA]) and parabens (methyl paraben [MePB], propyl
paraben [PrPB], ethyl paraben [EtPB]) were added to the tap
water (supplied to the water circulation system of the swim-
ming pool of AGH University of Science and Technology in
Krakow). The control sample was also analysed, which was
tap water without any additions. The type of matrix, which
the organic compounds are dissolved in, is important for
DBPs formation. Thus filling water (in this case — tap water)
was used, and not ultrapure one, to model the system of a
real swimming pool. The concentration of all solutions of
PCP components was 1.8x10° mol/L. Table 1 presents the
parameters of the studied UV filters and parabens. Table 2
presents physicochemical characteristics of water filling the
system of the AGH swimming pool, in which the individual
components of human body fluids were dissolved.

2.2. UV/chlorination experiment

The procedure of identifying the DBPs FPs of individ-
ual ingredients of PCPs in swimming pool water disinfected
with UV-chlorine sequence was adopted from the work of
Cimetiere and Laat [21]. In the method, proposed by these
authors, water was irradiated with cumulative UV doses
(23.5 and 47.0 kJ/m?). Both before and after each irradiation
free chlorine concentration was adjusted to 3 mg/L. In the
experiment monochromatic UV lamp TNN 15/32 by Heraeus
was used. The procedure has been adapted to the photoreac-
tor, in which experiments were conducted

For each individual precursor three samples were taken:
(1) Cl,— water only chlorinated, (2) Cl, + UV1 - water chlori-
nated and treated with UV dose 23.5 kJ/m? and chlorinated
again, (3) Cl, + UV2 — water chlorinated, treated with UV
dose 23.5 kJ/m?, chlorinated, treated with UV dose 23.5 kJ/m?
(cumulative UV dose 47.0 kJ/m?) and chlorinated. On all
stages of the experiment the free chlorine concentration was
adjusted to 3.0 = 0.2 mg/L, using sodium hypochlorite.
The free chlorine concentration was determined using the
N,N-diethylphenylendiamine method. The free chlorine
concentration was measured using the Aurius 2021 UV-Vis
spectrophotometer (Cecil Instruments, United Kingdom).
The detection limit of this method was 0.03 mg/L.

After each stage of the experiment the water samples
were taken into dark glass bottles of volume 250 mL, with the
silicon sealing covered with polytetrafluoroethylene (PTFE).
The bottles were completely filled to avoid air bubbles. The
chlorinated water samples were incubated at 25 + 2°C. After
24 h these samples were dechlorinated and DBPs were ana-
lysed. The chlorination experiments, within the studies on
DBPs FP, were conducted twice for all studied precursors.
The results presented in the article are an average of the
results from two parallel experiments.

2.3. DBPs analysis

After 24 h incubation time the concentration of THM —
trichloromethane (TCM), BDCM, dibromochloromethane
(DBCM), tribromomethane (TBM); HAA — monochloroacetic
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Table 1
Physicochemical properties of cosmetic ingredients (manufacturer data)
Compound  Structural formula Form Concentration ~ Manufacturer
EHMC 0o Light yellow  >98% Sigma-Aldrich, Fluka
. S
/@,J‘J\)ko/\(\/\CHS liquid
H3CO CHj
BM-DBM 0O O Powder <100% Sigma-Aldrich, Sigma
7 W
H3CO CH:3
CHg
4-MBC HAC CHj; Powder >98,5% Sigma-Aldrich, Fluka
8 CHs
0
\ CHs
oC Viscous 100% Sigma-Aldrich, Fluka
O o liquid
— O/\(\/\CHS
CN
)
BP3 O OH Powder 98% ACROS Organics
EHS 0 Colourless 99% Sigma-Aldrich, Aldrich
liquid
0 /\(\/\ CHs
OH CHs
OD-PABA o) Viscous 98% Sigma-Aldrich, Fluka
liquid
H?,C\I\I‘I CHs
CHs
MePB 0 Powder 99% ACROS Organics
ea
HO
PrPB Powder 99+% ACROS Organics
OO ~chy &
OH
EtPB 0 Powder 99% ACROS Organics
0" CH,
HO

EHMC, ethylhexyl methoxycinnamate; BM-DBM, butyl methoxydibenzoylmethane; 4-MBC, 4-methylbenzylidene camphor; OC, octocrylene;
BP3, benzophenone-3; EHS, ethylhexyl salicylate; OD-PABA, octyl dimethyl-para-amino-benzoic acid; MePB, methyl paraben; PrPB, propyl
paraben; EtPB, ethyl paraben.
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Table 2
Physicochemical parameters of filling water

Parameter Filling water
Ny mg/L 0.02

Nor mg/L <0.002

N,y Mg/L 1.9

TN, mg/L 26

DOC, mg/L 1.1

SUVA, m'xL/mg 2.873

Br, mg/L 0.45

pH 7.8
Conductivity, mS/cm 0.438

SUVA, specific ultraviolet absorbance; DOC, dissolved organic
carbon.

acid (MCAA), dichloroacetic acid (DCAA), bromochloroace-
tic acid (BCAA), dibromoacetic acid (DBAA), trichloroace-
tic acid (TCAA); HAN - bromochloroacetonitrile (BCAN),
dibromoacetonitrile (DBAN), dichloroacetonitrile (DCAN),
trichloroacetonitrile (TCAN); HK - 1,1-dichloro-2-propa-
none, 1,1,1-trichloro-2-propanone, CP and CH was analysed
in all samples. Prior to the analysis of HAAs the samples
were dechlorinated with sodium sulphite, while prior to the
analysis of the rest of volatile DBPs the samples were dechlo-
rinated with ascorbic acids.

The compounds from groups THM, HAN, HK, CH and
CP were analysed with a gas chromatograph Trace Ultra
DSQII gas chromatograph-mass spectrometer (GC-MS) by
Thermo Scientific, United States. Carrier gas was helium.
The compounds separation was performed on a capillary
column Rxi™-5ms by Restek, United States (film thickness
0.5 um, column length 30 m, and internal column diameter
0.25 mm). The analysed DBPs were extracted from the water
samples in 40 mL dark glass bottles with a PTFE septa, with
methyl tert-butyl ether (MTBE) in the liquid-liquid method,
with addition of sodium sulphate (35 mL of a water sample,
6 g of Na,SO,, and 3 mL of MTBE) according to the meth-
odology recommended by U.S. EPA [22]. The following
temperature program was applied for volatile DBPs analy-
sis on GC-MS — 35°C (9.5 min) to 200°C (0 min), tempera-
ture increase rate 40°C/min. The detection limit for each
individual compounds was 0.01 pug/L.

The HAA concentrations were measured with the method
of acid esterification and GC-MS (Trace Ultra DSQII, Thermo
Scientific) [23]. Carrier gas was helium. The compounds were
separated with a capillary column Rxi™-5ms by Restek (film
thickness 0.5 pm, column length 30 m, and internal columns
diameter 0.25 mm). HAA was extracted with acid extraction
liquid-liquid with MTBE (30 mL of water samples, 12 g of
Na,SSO,, 6 g of CuSO,-H,O, 2 mL of concentrated sulphuric
acid, and 3 mL of MTBE). A total of 0.9 mL of the extract
was moved into 15 mL dark glass bottles, afterwards 2 mL
of sulphuric acid solution in methanol (10%) was added, and
the samples were placed in water bathing in the temperature
of 50°C for 1 h. After this time, they were cooled down in the
temperature of 4°C for 10 min, and 5 mL of copper sulphate
pentahydrate and anhydrous sodium sulphate solution was
added (respectively, 50 g/L and 100 g/L). The samples were

shaken for 2 min and then left for 5 min. The gas chromato-
graph injection was carried out with an extract taken from
the top layer of the solution. The chromatograph column was
heated up from 40°C (0 min) to 100°C (5 min) with a tempera-
ture rate of 40°C/min, and afterwards to 200°C (0 min) with a
rate of 8°C/min. The detection limit was 0.50 ug/L for MCAA
and 0.01 ug/L for the remaining HAA.

2.4. Statistical analysis

To assess the UV influence on the by-products FP the
statistical analyses of results were conducted. Therefore the
one-way analysis of variance with post-hoc Tukey’s test was
used to evaluate if the concentration of each DBP was statis-
tically significantly different (significance level < 0.05) in the
analysed water samples for studied UV doses (0, 23.5 and
47 kJ/m?). Prior the main analysis, the Lavene’s test was used as
the assumptions test. Those analyses were conducted for two
parallel experiments (as described in Section 2.2). All statistical
analyses were performed using Statistica 10.0 by StatSoft.

3. Results and discussion

Tables S1-S3 show the average concentrations of the
individual DBPs analysed in model UV filters and parabens
solutions in chlorinated samples (CL,) (Table S1); chlorinated
and irradiated with UV dose 23.5 kJ/m*> (Cl, + UVI)
(Table S2); chlorinated and irradiated with UV dose 47 kJ/m?
(Cl, + UV2) (Table S3). Figs. 1 and 2 show how UV radiation
influences the FP of carbon-containing DBPs (Fig. 1) and
nitrogen-containing DBPs (Fig. 2).

The statistically significant impact of UV radiation on
YTHM FP was observed in the samples with EHMC, 4-MBC,
EHS, MePB, PrPB, EtPB for both studied UV doses; and
only for UV2 dose in OC, BP3 and OD-PABA. The stron-
gest impact of UV radiation on the formation of THMs was
observed in a case of the water samples with parabens. The
highest “THM-FP was observed in the sample with the addi-
tion of PrPB disinfected in Cl, + UV2 variant. The concentra-
tion of YTHM in this sample (121.19 ug/L) was 585% higher
than in the sample only chlorinated (17.69 ug/L). In CI,+ UV1
variant, Z-THM concentration was 36.85 ug/L. In the sample
with an addition of EtPB, a significant increase in “THM-FP
was also noticed, as compared with the sample only chlori-
nated. In the later one “THM concentration was 12.56 pg/L,
while for Cl, + UV1 variant it was 49.21 ug/L (292% higher),
and for CI, + UV2 - 82.30 pg/L (555%). In the sample with
an addition of MePB only chlorinated XTHM concentration
was 11.59 ug/L, while in a case of additional UV radiation it
was 38.00 ug/L (228%) and 54.74 ug/L (372%), respectively,
for Cl,+ UV1 and Cl, + UV2 variants.

The statistically significant impact of UV radiation on
YHAAFP was observed for all cosmetic ingredients, however
in a case of the samples with 4-MBC, OC, OD-PABA and all
parabens, statistically significant differences were observed
for both analysed UV doses, for the sample with EHS only
for the dose UV1, and in the sample with EHMC, BM-DBM
and BP3 for UV2. The strongest influence of UV radiation on
the formation of HAA compounds was noticed in the sample
with an addition of EtPB - its UV radiation in the cumula-
tive dose of 47 kJ/m? increased ZHAA concentration in this
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Fig. 1. UV influence on formation potential of carbon-containing DBPs: (A) trihalomethanes, (B) halogenacetic acids, (C) halo ketones,
and (D) chloral hydrate.
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Fig. 2. UV influence on formation potential of nitrogen-containing DBPs: (A) halogenoacetonitriles, and (B) chloropicrin.

sample by 1,061% (from 29.71 ug/L in the sample only chlori-
nated to 344.89 ug/L).

The statistically significant influence of UV radiation on
CH-FP was observed in the samples with EHMC, BP3 and
EtPB for both UV doses, and in the samples with BM-DBM,
4-MBC, OC, EHS, OD-PABA, MePB and PrPB only for the
dose UV2. The strongest effect of UV radiation on CH forma-
tion was noticed in the sample with an addition of PrPB for
UV2 dose — CH-FP in this sample was 47.92 ug/L, which is
413% higher than in the sample only chlorinated (9.34 pg/L).

The statistically significant influence of UV radiation
on YHK concentration was observed in the sample with an
addition of 4-MBC for both UV doses, in M-DBM sample
only for UV1 dose, and in the samples with EHMC, OC,
BP3, EHS, OD-PABA and PrPB for UV2 dose. In the sam-
ple with MePB also for UV2 dose the statistically important
effect on XHK-FP was observed, however YHK concentra-
tion did not differ statistically importantly between this
sample and the control one (the sample of filling water)
disinfected in the variant Cl, + UV2. The UV influence on
HK formation in the samples with cosmetic ingredients
was not as strong as in the case of THM, HAA and CH.
The strongest effect was observed in the sample with EHS.
The concentration of ZHK was 7.22 ug/L in the sample
only chlorinated, whereas it was 16.83 ug/L (133% higher)
in the sample disinfected in Cl, + UV2 variant. In any of
these samples the statistically significant influence of UV
radiation on XHAN concentrations was not observed, how-
ever LZHAN concentrations are generally higher than those
observed in the control sample.

UV radiation significantly influenced the CP formation
in the samples with BP3 and EtPB for both UV1 and UV2
doses; in the samples with OD-PABA, MePB and PrPB
only for UV2 dose; and in the sample with OC only for
UV1 dose. The strongest increase of CP-FP was noticed in
the sample with PrPB disinfected in Cl, + UV2 variant. CP
concentration was 1.09 ug/L in the sample only chlorinated,
whereas it was 4.05 ug/L in the sample exposed to UV2
dose (271% higher).

As presented studies showed, UV irradiation of chlori-
nated water with the addition of cosmetic ingredients causes
an increase in the concentration of DBPs. The FP of XDBPs
in all samples of filling water with the addition of cosmetic
ingredients differed statistically significantly from ZDBP-FP
in the sample with filling water disinfected in the same vari-
ants. The statistically significant difference between DBPs FP
in chlorinated and UV-irradiated samples was also observed
in all samples, for both analysed radiation doses. The influ-
ence of UV radiation on chlorination by-products formation
was especially strong in the samples with EHMC, BP3 and
parabens. The formation of halogenated DBPs from organic
compounds in chlorinated water occurs particularly rap-
idly in a case of compounds with phenolic and/or amino
groups [2]. Oxidation, addition and electrophilic substitu-
tion are possible chlorine reactions with organic compounds.
However, taking into account the reaction kinetics, only
this last reaction plays a significant role [24]. Zhang et al.
[25] identified monochlorinated BP3, dichlorinated BP and
2,4,6-trichloro-3-methoxyphenol as chlorination products of
BP3; while monochlorinated BP3 was formed very quickly
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and was very unstable. The reduction rate of dichlorinated
BP3 was much slower and 2,4,6-trichloro-3-methoxyphenol
was very stable and remained in chlorinated water for long
time. Thus PCPs in contact with chlorine form the chlorinated
derivatives, which in turn form DBPs. The identification of
intermediates would allow us to understand the degradation
pathways of individual PCPs, but the diagnosis of this topic
would require additional detailed research, going far beyond
the scope of this article.

As the studies of Negreira et al. [2] on the stability of
three UV filters in the presence of chlorine (concentration up
to 3 mg/L) showed — BP3 was the most stable, than OD-PABA
and EHS was the least stable. It is confirmed by the results
presented in this article — XDBPs in a sample only chlorinated
was highest for BP3 solution, then OD-PABA and EHS.

While the solution with chlorine is exposed to UV radi-
ation — AOP occurs and free radicals HO® are formed [15],
and organic compounds are effectively oxidised, often com-
pletely mineralised. The most important pathways of organic
matter degradation and decay in AOP combined with UV
are direct photolysis and reactions with free radicals [11,15].
During UV/CI, process, the hydroxylation and bond cleavage
of the compounds occur more intensively than during chlo-
rination alone [26]. In the case of chlorophenols it can lead
to the formation of resorcinol type of structures, which are
the strong precursors of THM formation. The radicals HO*
can also react with organic compounds [27]. Table 3 includes
the rates of second-order reaction with hydroxyl radicals
for selected substances — the ingredients of analysed PCPs.
Considering the high reaction rates of cinnamonian ion, ben-
zophenone and 4-hydroxybenzoate, and the high increase
of DBPs concentration resulted in irradiation of EHMC, BP3
and parabens, the assumption can be made that hydroxyl
radicals may play an important role in the formation of DBPs
during UV/CI, disinfection of PCPs.

Outdoor swimming pools are a specific case of UV irradia-
tion of chlorinated water containing the high amount of PCPs.
As shown by studies by Simard et al. [29] carried out on 15
indoor and 39 outdoor swimming pools in Quebec, Canada,
HAA concentration was significantly higher (1.5-2.5 times)
in outdoor swimming pools than in indoor ones, with lower
THM concentration. The authors explained this effect by the
high volatility of THM and their easier transpiration to the
atmosphere in outdoor facilities. However the use of outdoor
swimming pools also involves the more intensive sunbath-
ing and the higher consumption of cosmetics, containing
UV filters. Anyway the presented studies evidently shows

Table 3
The rates of second order reaction with hydroxyl radicals [28]

Substance K ;0. molxs™
Cinnamonian ion 8.1 x10°
Camphor 4.1 x10°
Acrylic acid 1.5 x10°
Benzophenone 9.0 x 10°
Salicylate ion 1.2 x 10"
Benzoic acid 1.8 x 10°

4-Hydroxybenzoic acid 6 x 10°-9 x 10°

that cosmetic ingredients are primarily precursors of HAA
compounds, which may be another cause of elevated HAA
concentration in pool water generally, and in outdoor swim-
ming pools particularly.

4. Conclusions

Based on the results of experiments on influence of
UV disinfection on an influence of PCPs components on
the DBPs potential formation in swimming pool water, the
following conclusions were made:

e UV irradiation of chlorinated water with an addition of
cosmetic ingredients increases the concentration of DBPs
for all analysed PCPs components;

¢ among analysed cosmetic components, parabens were
the most sensitive to an influence of UV radiation on the
DBPs formation;

e UV irradiation of parabens increased the FP of THM,
HAA, CH and CP;

¢ among UV filters, EHMC was characterised with the
highest potential to form DBPs after UV irradiation, espe-
cially HAA and CH; and

e an increase of the concentration of CH was also observed
as the result of UV irradiation of OC, BP3 and EHS
solutions.

The article focuses on qualitative and quantitative anal-
yses on how the cosmetic ingredients form the analysed
DBPs, and how UV radiation influences these formation
processes. However the chemical reactions behind these pro-
cesses are much more complex and multistage, and PCPs go
through transformations, in which the variety of chlorinated
subproducts is formed. The comprehensive examination of
these phenomena and their kinetics is an interesting and
current research challenge, undoubtedly worth the separate
studies.
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