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a b s t r a c t
In water quality monitoring, one of the main concerns is the increasing level of heavy metals in 
water resources due to human activities. This study aimed to present a framework in which, first, 
a new ontology-based water quality index (WQI) was developed by multi-criteria decision-making 
models in fuzzy environment and then, it was coupled with geographic information system (GIS) 
in order to model the temporal and spatial water quality changes in groundwater resources that are 
being supplied for drinking. The study screened for heavy metals in 45 wells in the west and north-
west side of Shiraz, Iran from for a 5-year period. Six heavy metals including Pb, Zn, Hg, Cd, As, 
and Cr were embedded in the WQI among which the annual mean concentrations of Pb, Zn, Cd, 
Cr, and As increased during the research period but remained below World Health Organization 
(WHO) standard values in all years but, only the mean concentration of mercury exceeded the rec-
ommended WHO standard values. The methodology clearly discovered that over the time, water 
quality degradation has been moved from the northern part to the middle and then the southern part 
of Shiraz because of significant increase in heavy metals concentration which was due to the industrial 
development in the eastern part of the city. Groundwater quality declined over the time leading to a 
gradual increase in number of wells with poor water quality; however, most of them demonstrated 
excellent or good quality for drinking purpose. The presented framework could provide a practical 
pathway to portray and predict how urban development will affect the groundwater quality in future 
and find out its pattern.
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1. Introduction

Groundwater is one of the principal sources for water 
supply in areas where surface water is not sufficiently 
available, especially in arid and semi-arid regions [1]. 
Uncontrolled exploitation of groundwater due to population 
growth and industrial development is undermining this vital 
resource. In addition, various organic pollutants, nitrates, 
heavy metals, etc., which stem from direct and indirect dis-
charge of wastewater from urban, industrial, agricultural 
and landfill sites along with runoffs and floods are contam-
inating groundwater resources [2,3]. According to World 
Health Organization (WHO), about 80% of human diseases 
are water-related; in addition to the fact that the quality of 
an infected groundwater source is not easily recovered even 
after the pollutant emissions have ceased [3]. Therefore, pro-
viding healthy and sanitary drinking water is a key issue for 
improving human health, civilization and culture, and is, in 
fact, one of the criteria for sustainable development [4]. Water 
quality monitoring is necessary to preserve these resources 
from contamination [5].

Various studies have been conducted to determine the 
water quality in various resources [4,6,7]. In a study con-
ducted by Singh et al. [8], the Uttar Pradesh groundwater 
quality which is located in northern India was evaluated 
by measuring the major cations and anions, and its suitabil-
ity for drinking and agricultural purposes was assessed. In 
another study [9,10], the groundwater quality in Nigeria was 
evaluated by measuring four general parameters including 
coliform bacteria, lead, cadmium, and nitrate. In a study by 
Annapoorna et al. [10], the quality of the groundwater was 
evaluated by measuring five parameters in the Karnataka 
state in southwestern India. These types of studies may not be 
able to appropriately apply the cumulative effect of various 
parameters in water quality zoning. Therefore, to fill in this 
blank it is necessary to use appropriate tools that accurately 
and comprehensively demonstrate the water quality. Hence, 
numerous water quality indices (WQIs) that combine multi-
ple parameters and compare them with a single global criteria 
number are used to study the water quality changes. These 
indicators can reflect the water quality and can be used as 
a comprehensive management tool for decision-making and 
pollution analysis [6,11]. Aboyeji and Eigbokhan [36] evalu-
ated the quality of groundwater around Olusosun open solid 
waste dump site in Lagos metropolis, using WQI and IDW as 
a geospatial technique. The results demonstrated acidic water 
with high dissolved oxygen while, 40% of the samples con-
tained concentration of K+ above the recommended limit. The 
heavy metals’ concentrations were generally low. Acharya et 
al. [12] studied groundwater quality for irrigation and drink-
ing purposes in South West Delhi using WQI. The index val-
ues indicated that 34% of the samples were in the range of 
good quality and in contrast, 66% of the samples were pro-
nounced as poor or unsuitable for drinking [12].

Ontology refers to processing a natural language and 
automatic conversion of semantic concepts to the most sim-
ilar numerical score based on the observed evidence. As 
Sánchez et al. [13], and Wimalasuriya and Dou [14] implied, 
different MCDM (multi-criteria decision-making) models are 
identified as ontology-based approaches according to the 
knowledge source and the way they are used.

Recent studies stated that a combination of MCDM with 
GIS presented fair analysis on spatial and managerial data, 
simultaneously [15]. As an example, Niaraki and Kim [16] 
successfully merged analytic hierarchy process (AHP) as 
ontology-based MCDM with GIS to present a framework for 
user-centric selection of the most suitable pathway for travel-
ing. Moreover, studies such as the ones conducted by Jeong 
et al. [17] planning the most suitable place for rural houses 
that are encountered with tourism, Gigović et al. [15] work-
ing on selecting the ecoutorism sites, and Pourahmad et al. 
[18] in which the best places for leisure time in urban aerias 
were determined are other examples of coupling DEMATEL 
(Decision Making Trial and Evaluation Laboratory) or Fuzzy 
DEMATEL as MCDM models with GIS. Also, Stević et al. 
[19] applied a fuzzy BWM (Best-Worst Method) as an other 
MCDM model in internal transport systems.

FOWA (fuzzy ordered weighting average) is one of fuzzy 
MCDM models that having some outstanding features made 
it quintessential comparing with other MCDM models such 
as DEMATEL and BWM. In a real decision-making condition 
some obscure points come up that should be detected and 
made clear. These are the level of influence each stakeholder 
has in the final decision-making result and also the how of their 
attitude toward the decision problem which, somehow, boils 
down to the sensitivity of the issue. All of these factors would 
make the process face with uncertainties that have stem from 
human thoughts and should be modeled appropriately in group 
decision-making. FOWA has exerted more aspects of human 
behaviors and thoughts in aggregating the group’s opinion and 
weighting the criteria by considering two measures and could 
model the risks that are so present in group decision-making 
conditions by taking advantage of fuzzy modeling. It seems 
that incorporating this ontology-based decision-making model 
with GIS has also potential in water quality research and this is 
while, to our knowledge, no previous studies has accomplished 
on incorporating AHP-FOWA and GIS in which modeling the 
heavy metals’ changes in groundwater resources be pursued 
Therefore, this study aimed to present a framework in which 
a new ontology-based WQI developed by MCDM models in 
fuzzy environment is coupled with GIS in order to model the 
temporal and spatial changes of heavy metals in water bodies. 
This methodology was examined on groundwater resources in 
Shiraz plain, Iran between 2011 and 2015.

2. Methodology

2.1. Site specification

Shiraz is the sixth largest metropolis in Iran, and is one 
of its most populous cities. It is located in the southeastern 
part of the country, at an altitude of 1,486 m (29°36′37″ N and 
52°31′52″ E). It covers an area of about 240 km2 and has a 
population of more than 1.4 million people [20,21]. The study 
area is located in the western and northwestern parts of the 
Shiraz plain with an area of about 1,268 m2. The study area 
and the location of sampling points are shown in Fig. 1.

2.2. Data collection

This study was conducted on drinking water wells in the 
western and northwestern parts of Shiraz plain, Iran from 
2011 to 2015. 



261S. Shahsavani et al. / Desalination and Water Treatment 136 (2018) 259–267

The number of sampling wells was estimated to be equal 
to 42 using Eq. (1).

n z SD
D

=
2 2

2  (1)

where n = the sample size; Z-score = 1.96 for a confidence 
level of 95% and standard deviation (SD) equal to 0.309; 
D = the maximum acceptable difference, which is considered 
to be 0.06.

Finally, the water quality data of 45 wells was col-
lected for 5 years (from 2011 to 2015). All of the param-
eters were measured in the laboratory of Shiraz Water 
and Wastewater Co. based on the techniques proposed 
by the Standard Methods for Examination of Water and 
Wastewater [22].

2.3. Developed WQI 

In this study first, a specific WQI was developed serv-
ing as the ontology-based decision-making module of the 

framework. Then, the results were used for further process-
ing of heavy metals’ changes in GIS environment. Six heavy 
metals including Pb, Zn, Hg, Cd, As, and Cr were considered 
for WQI calculation.

This index is based on weighting the heavy metals using a 
combination of AHP and FOWA models followed by expand-
ing the qualitative rank of each heavy metal and computing 
the final index values. 

In the weighting process, primarily, the decision 
makers’ perceptions about the importance of each metal 
were measured through the paired comparison matrix 
of AHP method, and then the AHP outputs (individ-
ual weights) were integrated by applying three measures 
including the optimistic degree, decision-makers’ power, 
and DMs’/criteria consensus degree in order to calculate the 
group weight of each heavy metal as their final weights by 
using FOWA operator.

OWA was founded in 1988 by Yager [23], the entrance of 
fuzzy modeling in the model provided the risks to be taken 
into account in aggregating the decision-makers’ perspective 
and weighting the criteria. This operator is defined in Eq. (2) 
as follows:

Fig. 1. Study area and location of the evaluated wells.



S. Shahsavani et al. / Desalination and Water Treatment 136 (2018) 259–267262

F r r r w b w b w b w bi i i in j jj

n
n n( , , , )1 2 1 1 1 2 2… �= = + +

=∑  (2)

where bj: the jth large value in the input data set {aj} and the 
vector b includes the descending ordered values of vector a; 
n: the number of decision-makers; a: the weight of a criteria 
from the viewpoint of each decision-maker considering his 
decision-making power; wj: the orders weight that has the 
following conditions:

w wjj

n
j= ≥
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1

,  (3)

 

Three measures have been applied in this model. First, 
DMs’ optimistic degree that shows to what extent they are 
risk prone or risk aversion about the heavy metals in water 
resources. In other words, this degree reflexes the issue that 
in what level of sensitivity the decision-maker group, accord-
ing to the group’s expertise, may think about the presence of 
heavy metals in drinking water.

Second, decision-makers’ power which shows the degree 
of influence of each stakeholder according to his/her knowl-
edge, departmental capacity, or experience. This factor is 
separately determined by the manager of the team for each 
decision-maker.

The third feature of FOWA operator is consensus degree. 
It falls into two types including DM’s (Decision-Maker) con-
sensus degree and criteria’s consensus degree. The consen-
sus degree measures the level of DMs’ compromise on the 
selected criteria as well as their opinions’ closeness to each 
other. It is noteworthy that the consensus degree is totally 
different from criteria’s group weight and is used to deter-
mine the eligibility of each criterion or DM for contributing 
in the decision-making process. Turn to [24] for more details 
and mathematics of FOWA operator and its measures.

After the heavy metals’ group weights were determined, 
the following steps were taken to calculate WQI value for 
each sampling point:

The relative weight of each criterion (wrj) was calculated 
using Eq. (4) as follows:

w
w

w
rj

j

jj

n=
=∑ 1

 (4)

The qualitative rank of each parameter (qj) was calculated 
according to Eq. (5) as follows:

q
c
cj
mj

sj

= ×100  (5)

where cmj: measured concentration of each parameter; 
csj: standard concentration.

The index value for each sampling point was computed 
according to Eq. (6) as follows:

GWQI = ×
=∑ ( )w qrj jj

n

1  (6)

This WQI uses drinking water quality standards, 
provided by ISIRI (Standard No. 1053, Table 1) for csj. 
Therefore, csj values can be adapted from local standards on 
water quality in other studies depend on the country or state. 
The linguistic classification of water quality is presented 
according to Table 2.

2.4. Pollution zoning

Interpolation method was used for mapping and char-
acterizing WQI variations by using ArcGIS ver. 10.1.1. This 
method can estimate unknown values based on various 
mathematical and statistical models as well as known val-
ues in sampling points [4]. In this context, semi-variance of 
the variables and semi-variogram curves were prepared in 
order to select the best interpolation method. With regard to 
distribution of wells (cluster distribution), it was found that 
inverse distance weight (IDW) is a more appropriate method. 
IDW method is used when enough sample points (at least 
14 points) are projected to be examined and there is a suit-
able dispersion in local scale levels. This method assumes 
that the rate of correlations and similarities between neigh-
bors is proportional to the distance between them and the 
definition of neighboring radius and the related power to the 
distance reverse function are considered as important prob-
lems [26]. In this way, for each well first, WQI was calculated 
using the heavy metals’ concentrations for every individual 
study years. A handheld GPS device (GPSMAP 64s, Garmin, 
USA) was used to determine the latitude and longitude of 
sampling wells, and their coordinates were obtained as the 
UTM format. In the next step, index values as well as the 
coordinates of wells were imported into GIS. Then, the exact 
location of each well was determined on the map and the 
point layer was digitized. Finally, the interpolation was con-
ducted using quantitative data and WQI variations between 
different wells. The output of GIS includes five interpolated 

Table 1
Water quality parameters used in WQI and their national 
standards [25]

Parameter Maximum standard level

Pb, µg/L 10.0
Zn, mg/L 03.0
Hg, µg/L 06.0
Cd, µg/L 03.0
As, µg/L 10.0
Cr, µg/L 50.0

Table 2
Water quality classification based on WQI [7]

WQI Quality classification

<50 Excellent
50–100 Good
100–200 Bad
200–300 Very bad
>300 Unsuitable for drinking
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maps from 2011 to 2015. The intervals of maps in GIS were 
defined in five colors complying with the linguistic classifica-
tion shown in Table 2.

3. Results and discussion

3.1. Heavy metals concentration

WQI is used as an important and powerful tool to deter-
mine water quality for drinking purposes and to indicate 
potential environmental problems [27,28]. The box plot of 
the mean concentrations of studied heavy metals in the 45 
wells is shown in Fig. 2. Cr and As had the highest mean con-
centrations (Cr = 2.900 ± 2.475 µg/L, As = 2.625 ± 1.702 µg/L), 
while Zn had the lowest mean concentration (Zn = 0.023 ± 
0.014 µg/L) during the study period. Similar studies of Reza 
et al. [29], and Bodrud-Doza et al. [30] have measured high 
levels of As in groundwater in Bangladesh.

The annual mean concentrations of Pb, Zn, Cd, Cr, and 
As increased during the research period but remained below 
WHO standard values in all years. However, in 2014 and 2015, 
the mean concentration of Hg reached to 1.262 ± 0.441 µg/L 
which exceeded the WHO standard value (1 µg/L). This can 
be attributed to urban development and expansion of the 
industrial area in eastern side of Shiraz. Therefore, the leak-
age of industrial wastewater and heavy metals into the soil 
led to increasing heavy metal concentrations in groundwater. 
The conclusion seems much supported by other research 
[31,32]. Asubiojo et al. [33] measured high concentrations of 
Pb and Cd in groundwater resources in southern Nigeria due 
to industrial activities such as wood mills, wood workshops 
and production of wooden artifacts, mining, gas stations and 
car service centers [33].

3.2. Estimation and spatial analysis of GWQI 

As pointed out in the methodology, the first step in WQI 
extension was the weighting process that was done through 
an incorporation of AHP and FOWA. The AHP outputs which 
is the initial weight of heavy metals that have determined by 

each DM along with FOWA results that are the integrated 
group weight of heavy metals are reported in Table 3. In 
this study, the decision-making team had pessimistic atti-
tude toward the presence of heavy metals in drinking water 
(optimistic degree was equal to 0.091) and DMs’ powers were 
determined as fairly high, medium, high, and very high for 
DM1, DM2, DM3, and DM4, respectively.

From the viewpoint of MCDM models being integrated 
with GIS, studies of Gigović et al. [15], Jeong et al. [17], 
Pourahmad et al. [18], and Stević et al. [19] could be pointed 
out so that, the combination of FAHP and DEMATEL or 
BWM are beholden in these studies. Comparing AHP-FOWA 
set used in the present study with FAHP-DEMATEL and 
BWM states substantial differences in their structure and 
approach. In the mentioned studies, fuzzy theory was basi-
cally used as the values of criteria that encounter uncertainty 
that was mentioned as rough numbers in the case of BWM. 
This is while fuzzy modeling in FOWA exerts the uncertain-
ties stem from the groups’ decision-making risks in cumula-
tive result of DMs’ thoughts and attitudes in weighting the 
criteria. This fuzzy modeling is infused in optimistic degree 
and DMs’ power calculation. Therefore, incorporation of 
these measures in FOWA with AHP and embedding these 
two models in GIS is the difference and outstanding features 
of the presented methodology comparing with Gigović et al. 
[15], Jeong et al. [17], and Pourahmad et al. [18].

The calculated WQI in sampling wells is shown in 
Table 4.

WQI values varied over the study period ranging from 
38.691 to 71.925 in 2011, 9.610 to 103.606 in 2012, 9.626 
to 107.174 in 2013, 22.719 to 146.504 in 2014, and 21.564 to 
149.486 in 2015. According to Table 4 and referring to Table 2, 
the results showed that the water quality varied among excel-
lent, good, and poor quality, depending on the years and 
sampling wells. Well no. 8 in the northern part of the study 
area was categorized as having excellent water quality in 
2012, with the study’s lowest WQI of 9.610. Conversely, poor 
water quality was observed in well no. 29 in 2015, with the 
study’s highest WQI of 149.486.

The percentage of studied wells in each water quality cat-
egory is shown in Fig. 3. Groundwater quality declined over 
the time, led to a gradual increase in number of wells with 
poor water quality; however, most of them demonstrated 
excellent or good quality for drinking purpose. In 2011, 31% 
and none of the wells had good and bad water quality for 

Fig. 2. Box plot of the mean concentrations of heavy metals 
during the study years.

Table 3
Results of weighting the heavy metals by AHP and FOWA

Heavy metal Individual weights (AHP) Group weight 
(FOWA)DM1 DM2 DM3 DM4

Pb 0.099 0.273 0.474 0.266 0.177
Zn 0.030 0.022 0.049 0.026 0.020
Hg 0.435 0.163 0.187 0.091 0.130
Cd 0.230 0.167 0.072 0.309 0.123
Cr 0.146 0.102 0.058 0.091 0.064
As 0.060 0.273 0.160 0.218 0.112
Inconsistency 
coefficient

0.19 0.04 0.15 0.13
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drinking, respectively. However, by the final study year, only 
11% of wells had good water quality, while wells with poor 
water quality had reached to 2%.

Spatial distribution of WQI based on the heavy metals’ 
concentration in different years is shown in Fig. 4 which 
reflects the water quality changes. In 2011, all calculated indi-
ces were under 100, and all sampled water wells were clas-
sified as having excellent or good quality. However, in 2012 
and 2013, the groundwater in well no. 39 in the middle part 
of the study area had poor quality for drinking and in 2014 
and 2015 well no. 29 in the southern region of the study area 
showed poor quality.

The interpolation maps and spatial variations demon-
strate that from 2011 to 2015 the water quality has dipped by 
increasing index values from the north to the southern part 
of the study area. During the study, water quality degrada-
tion was observed from the northern to the middle and then 
southern parts of the research area, with a wider range of the 
study area experiencing water quality deterioration over time.

It is clear that for the majority of sampled wells, the WQI 
and heavy metals’ concentrations have increased from 2011 
to 2015. Somehow, this can be attributed to the fact that the 
hydraulic slope of Shiraz aquifer descends from the north to 
the south and to some extent it is related to increased concen-
trations of various environmental pollutants due to industri-
alization and urbanization in the study area. that has included 
construction of new fuel stations and expansion of the indus-
trial area on the east side of Shiraz and development of new 
industries including Iranian Electronics Industry namely 
SAIRAN, metal, cellulose, paper, cardboard, and wood prod-
ucts. With industrial processes such as melting furnaces in 
the southern part, heavy metals’ presence in groundwater 
could be related to the leakage of industrial wastewater into 
the soil and the subsequent leaching of metals from the con-
taminated soil into the groundwater. Similar results were 
observed in a study by Ponsadailakshmi et al. [34] in Tamil 
Nadu, South India, in which WQI was used to assess ground-
water quality for drinking. They reported that deteriorated 
water quality and increase in Cr and Pb concentration were 
attributed to human activities such as leaching of domestic 
wastewater and sewage from silk industry. In another study, 
Bodrud-Doza et al. [30] measured groundwater quality using 
GWQI and interpolation maps. It was found that the quality 
of groundwater was good in the northern parts of their study 
area while declined in the southern parts. The reasons were 
reported to be ion leaching, over-exploitation of groundwater, 
direct discharge of wastewater, and agricultural effects [30].

Table 4
WQI for each sampling well, Shiraz, Iran (2011–2015)

Wells 
number

Index value
2011 2012 2013 2014 2015

1 47.607 35.373 37.404 38.769 37.962
2 48.955 54.019 57.633 64.013 61.353
3 58.795 40.533 44.541 38.559 33.850
4 40.697 26.715 27.504 23.527 23.492
5 54.038 32.117 27.582 40.449 38.341
6 47.376 24.344 20.651 33.391 34.335
7 48.394 94.819 120.542 28.552 28.118
8 44.788 9.610 9.626 22.719 21.564
9 42.037 18.328 20.814 30.678 28.146
10 39.797 20.247 22.396 30.999 30.466
11 50.377 43.001 43.144 47.204 45.292
12 61.329 77.151 87.081 89.111 86.758
13 56.917 39.160 39.402 38.729 37.631
14 71.925 27.120 27.554 28.971 28.521
15 61.124 28.522 28.696 48.867 29.210
16 42.189 30.686 31.059 31.249 31.077
17 49.796 24.117 33.829 36.798 32.267
18 41.912 29.416 30.454 28.819 28.139
19 39.085 75.676 77.056 79.692 77.105
20 47.235 23.242 24.396 26.165 24.461
21 38.691 23.937 24.796 35.077 29.196
22 44.622 35.460 32.967 32.146 32.919
23 40.645 38.196 39.289 45.954 44.234
24 44.810 32.815 34.907 29.037 21.602
25 46.496 29.829 30.543 29.830 31.366
26 44.072 30.842 26.191 45.068 49.171
27 54.584 30.575 30.773 28.028 31.013
28 50.037 27.457 27.435 44.910 48.416
29 52.070 63.828 68.370 146.504 149.486
30 47.922 31.778 31.135 29.376 30.662
31 47.229 26.638 30.534 43.276 41.963
32 46.271 35.248 35.833 37.218 36.514
33 52.048 39.344 39.656 38.802 37.052
34 52.385 23.034 23.832 37.755 38.359
35 41.833 27.415 27.829 27.366 24.409
36 44.915 25.200 25.777 37.032 24.943
37 50.722 60.973 61.949 36.313 36.574
38 48.903 31.163 30.833 37.251 36.229
39 48.984 103.606 107.174 48.336 61.495
40 42.711 20.378 21.461 36.103 35.495
41 43.672 27.310 22.699 45.935 47.814
42 45.687 43.133 32.044 83.593 82.490
43 43.206 36.035 31.386 48.817 47.956
44 39.227 26.302 26.658 33.301 29.112
45 39.76 35.011 39.553 34.244 32.587

Fig. 3. Water quality changes by different linguistic groups in 
studied wells, Shiraz, Iran (2011–2015).
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According to other studies, it was found that this method 
is better than other interpolation method. Gong et al. [35] 
compared the accuracy of kriging and IDW interpolations 
in estimating groundwater arsenic concentrations in Texas. 
They concluded that IDW method is more suitable and cor-
relate than other method for arsenic levels in groundwater 
as a heavy metal [35]. In a study by Aboyeji and Eigbokhan 
[36], the quality of groundwater was evaluated around an 
open solid waste dumpsite in Lagos metropolis. The results 
of WQI calculating and IDW interpolation were shown that 
35% of the water samples were unsuitable for consumption. 
The concentration of Zn, Mn, Ni, Cd, Ag, and Pb was below 
the detection level of atomic absorption spectrophotometry 
in many samples. However, a high level of Pb (higher than 

the WHO guideline value) was detected in one well. The 
groundwater near the dumpsite was generally not of good 
quality compared with locations where there were no solid 
waste dumps. This is somehow due to contamination by 
leachates from the waste dumps that moved downslope to 
the well [36].

4. Conclusion

This study by merging AHP-FOWA with GIS pre-
sented a new approach in studies intending to assess and 
predict the toxic materials’ trends in water resources. The 
presented methodology looked into some planks of group 
decision-making conditions such as fuzzy modeling of 

Fig. 4. Spatial distribution of WQI from 2011 to 2015, western and northwestern parts of Shiraz, Iran.
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decision-making risks that have not been considered in 
previous GIS-based studies. The presented framework 
portrayed how toxic materials such as heavy metals could 
affect the water quality by constructing various digital the-
matic layers and maps and figure out the spatial and tem-
poral distribution of water quality changes in an area. As it 
is important to make for closer-to-real modeling approach 
to reach out more precise results, the presented methodol-
ogy could be applied for any toxic material (not only heavy 
metals) in order to level up the interpretation and prediction 
accuracy in predicting the toxic materials’ trends in drink-
ing water resources. The applied example on one of Iranian 
metropolitans clearly showed that drinking water quality 
was slowly declining over a 5-year period of the study (from 
2011 to 2015). This decline pronounced because of increased 
concentration of heavy metals which was influenced by con-
tinuous release of industrial effluents from different indus-
tries. Since heavy metals have many adverse human health 
effects, including carcinogenic impacts, such ontology-based 
MCDM methodologies are required to couple with GIS to 
determine the exact pollutant sources and to develop meth-
ods for decreasing emissions of them to the environment 
and ground water resources. Finally, it is recommended that 
prospective researchers would couple FOWA with other 
MCDMs such as ANP and DEMATEL and examine their 
application in environmental GIS-based studies.
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Symbols

N — Sample size
Z-score —  1.96 for a confidence level of 95% and stan-

dard deviation (SD) equal to 0.309
D —  Maximum acceptable difference, which is 

considered to be 0.06
bj —  jth large value in the input data set {aj} and 

the vector b includes the descending ordered 
values of vector a

n — Number of decision-makers
a —  Weight of a criteria from the viewpoint 

of each decision maker considering his 
decision-making power

wj —  Orders weight that has the following 
conditions

cmj —  Measured concentration of each parameter
csj — Standard concentration
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