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a b s t r a c t
Watershed-scale water quality models are often used for interpreting changes in complex 
environmental systems. Precipitation is a primary control affecting the output of watershed-scale 
water quality model, and higher resolution of precipitation data is highly desirable. The objective 
of this study was to investigate whether the radar rainfall estimates can improve the accuracy of 
stream flow, TSS load, and TP load simulations with the soil and water assessment tool for high- and 
low-flow conditions. Yeongsan River watershed (YRW) was selected for this study. This water-
shed, located south-west of Korean Peninsula, has an area of about 2,938 km2, and is divided into 
25 sub-watersheds. The simulations were conducted under different rainfall datasets: (1) rainfall 
observations from nine ground rain gauges (GR), (2) 25 corrected radar rainfall estimates (RR), and (3) 
a combination of nine ground rain gauges and 16 corrected radar rainfall estimates that represent the 
16 ungauged sub-watersheds in YRW (GARR). Simulation results under different the rainfall datasets 
were compared using the Nash–Sutcliffe efficiency coefficient and percentage bias. The prediction 
of both high and low stream flows using GARR was better than using GR and RR data. The model 
performance for predicting TSS load was significantly better under GARR data than under GR and RR 
data. In case of TP, the model performances using RR and GARR data were significantly better than 
that using GR data. Overall, combining gauge rainfall and corrected radar rainfall led to an improve-
ment in the prediction accuracy for the watershed-scale water quality model.

Keywords: �Radar rainfall image; Soil and water assessment tool; Watershed-scale water quality model; 
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1. Introduction

Watershed-scale water quality models are effective 
science-based tools for interpreting change in complex 
environmental systems that affect hydrology cycle, soil 
erosion, and nutrient fate and transport in watersheds [1,2]. 
These models have been widely used to address societally 
important problems of environmental management [3–5]. 
Accurate model-based simulation of hydrology and water 
quality is beneficial for planning and management of water 
resources. Currently, many scientists prefer a distributed 

model because it can represent the watershed systems more 
accurately by considering the spatial variability of model 
parameters and input datasets [6].

Distributed models are developed to improve the 
simulations of hydrological processes. Owing to the increased 
availability of spatially distributed parameters and input data-
sets for distributed models, some authors studied the influence 
of input data characteristics, such as resolution and time step, 
on the ability of models to reproduce observed output. Geza 
and McCray [7] compared model performance for stream 
flow with two different soil data resolutions in a distributed 
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model; Chaubey et al. [8] examined the effect of a digital ele-
vation model data resolution on the output uncertainty of the 
distributed model. Apart from the geological input data, pre-
cipitation is one of the primary input data for rainfall-runoff 
simulation and its detailed spatial distribution is required, 
because the density of rain gauge networks dominantly affects 
the variability of hydrographs as well as the surface water 
quality [9,10]. Thus, input datasets from more dense rainfall 
can improve the model results. To create the spatially dense 
coverage of precipitation, several studies have explored using 
weather radar data as an alternative source of ground rainfall 
observations. Neary et al. [11], and Kalin and Hantush [12] 
compared rain gauge data and weather radar data and con-
cluded that the use of weather radar rainfall over gauge rain-
fall did not offer any improvement. In contrast, some studies 
proved that corrected radar based rainfall datasets in distrib-
uted model simulations were useful for estimating stream 
flows [4,10,13,14]. The contrasting results in application 
of weather radar data on distributed model represented 
that the effectiveness of weather radar data varies with the 
watershed area, precipitation rate, and density of rain gauge 
networks. Nevertheless, weather radar data are known to be 
an alternative way to estimate precipitation rate and are used 
as input data of distributed hydrologic modeling for stream 
flow prediction at ungauged basins [15,16].

Furthermore, using weather radar data has been 
particularly successful for predicting high-intensity 
rainstorm events [17–19]. Watershed-scale water quality 
models, however, generate data that can be used to estimate 
other aspects of the watershed functioning, such as biomass 
of crop and other plants, loss of nutrients to groundwater, 
availability of nutrients to plants, partitioning of nutrients 
between surface runoff and infiltration. These aspects of 
watershed functioning are affected by intermediate and 

low-intensity precipitation. Evaluating the performance 
of the watershed-scale water quality model separately for 
high- and low-intensity rainstorm events may be beneficial 
to understand the efficiency of the model as a prediction and 
management tool.

The objective of this work is to: (1) develop a new rainfall 
input dataset to improve the prediction accuracy of water 
quality and quantity in a distributed model using weather 
radar and (2) evaluate the suitability of weather radar data 
as the source of input data separately for high and low 
rainstorm events.

2. Methods

2.1. Model description

The soil and water assessment tool (SWAT), developed by 
the United States Department of Agriculture, has been widely 
used to evaluate the impact of management and climate on 
water resources and agricultural chemical yields [20]. The 
SWAT model is physically based continuous-time model and 
appropriate for simulating over long time periods of stream 
flow and nutrient load at the watershed scale. A watershed 
in a SWAT model is divided into a number of sub-basins, 
which in turn are subdivided into hydrologic response units 
(HRUs); each HRU is assumed to have homogeneous land 
use, slope, and soil type [21]. Physical characteristics such as 
slopes, reach dimensions, and climate condition were consid-
ered for each sub-basin [22]. We used the ArcSWAT2.3.4 of 
the SWAT2005 version for ArcGIS 9.3 in this study. 

2.2. Site description

Yeongsan River watershed (YRW), located south-west 
of Korean Peninsula, was selected for this study (Fig. 1). 

Fig. 1. Land use characteristics of the Yeongsan River watershed in Korea. The final outlet Hampyeong is used as a calibration point.



D.J. Jeon et al. / Desalination and Water Treatment 138 (2019) 248–256250

Yeongsan River (YR) is one of the four major rivers in South 
Korea. It flows toward the Yellow Sea by passing through 
Gwangju (GJ), which is the sixth largest metropolitan city. 
The length of the main stream is 130 km. The delineated 
watershed has an area of about 2,938 km2 and is divided into 
25 sub-watersheds according to the geophysical conditions 
and the differentiation laws of the landscapes. The land use 
within this watershed primarily includes forestry (54%) and 
agriculture (40%), and the rest is urban. The dominant agri-
cultural crops are rice and soybeans. The weather is typical 
of the Asian monsoon climate, which is characterized by a 
long winter–spring dry season followed by a summer–early 
autumn rainy season. The annual mean precipitation over the 
watershed from 2004 to 2013 was 1,408 mm, and 67% of the 
annual precipitation occurred between June and September.

2.3. Data collection

SWAT input includes (1) meteorological data, (2) spatial 
layers representing elevation, land use, and soil type of the 
watershed, (3) point source pollution, (4) agriculture activity, 
and (5) observed stream flow and nutrients concentration for 
model sensitivity analysis as well as calibration.

The study period is 2 years from 2012 to 2013. There are 
11 rain gauge stations and 1 weather station, which measure 
rainfall, air temperature, wind speed, relative humidity, 
atmospheric pressure, and solar intensity. The meteorological 
data are measured with a 1-min time interval; they were 
provided by the Korea Meteorological Administration 
(KMA). Radar rainfall during the study period was collected 
from the constant altitude plan position indicator (CAPPI) 
operated by KMA. CAPPI is the synthesized image of the 
cloud monitoring at a constant altitude (1.5 km) by radar 
monitoring stations nationwide. The radar image is obtained 
in a grid format at the 4 km2 (2 km × 2 km) spatial resolution, 
with a 10-min interval. All the meteorological data were con-
verted to daily time steps. 

Topographical, land use, and soil type data were obtained 
from the online water management information system 
(WAMIS) managed by the Ministry of Land, Infrastructure 
and Transport (MOLIT). Annual discharge flow and pollut-
ant load of four wastewater treatment plants on the YR were 
acquired from the Ministry of Environment (ME). The agri-
culture activity database was acquired from the Korea rural 
development administration, and it included the timing of 
tillage operation, fertilizer application, planting/beginning 
of growing season, harvest and kill operation, quantity of 
fertilizer applied, and method of tillage. Daily stream flow 
data are derived at the Hampyeong (HP) hydrometric sta-
tion, operated by MOLIT, located 45 km upstream from the 
outlet of Yeongsan River to minimize the effects of tides on 
hydrographs. Weekly concentration of total suspended solid 
and total phosphorus at the HP site was obtained from ME, 
aggregated to monthly pollutant load by using stream flow 
for the SWAT model. 

2.4. Rainfall estimates from weather radar images

The process of estimating rainfall intensity from weather 
radar is divided into three phases. Phase I derives rainfall 
estimates from color distribution in weather radar images. 

Rainfall intensity is converted from 10-min interval to daily 
interval. Phase II estimates the correction factor to convert 
rainfall estimates from Phase I to those with daily rain 
gauge observations. In Phase III, the corrected radar rainfall 
estimates of each grid cell was obtained by applying the 
correction factor from Phase II to rainfall estimates from 
Phase I. Phase III rainfall estimates are supposed to be more 
accurate than Phase I estimates, and can also estimate the 
rainfall intensity of ungauged sub-basins because weather 
radar covered the entire Korean Peninsula. 

In Phase I, weather radar images provided from KMA 
were subjected to the weather radar image processing in a 
MATLAB environment. The characteristics of color in the 
grids of the total radar images were converted to rainfall 
estimates through weather radar image processing, and the 
standard for the conversion is the standard index provided in 
the weather radar image. After weather radar image process-
ing, rainfall intensity (mm/h) at the time of image acquisition 
is assigned to each grid cell. The rainfall intensity provided 
at intervals of 10 min was aggregated in these grids to obtain 
daily rainfall intensity (mm/d). Weather radar images were 
collected during 2 years from January 2012 to December 
2013 (731 d) with 10-min interval; more than 100,000 weather 
radar images were analyzed.

In Phase II, the mean field bias correction (MFBC) 
method was applied for improving the quality of rainfall 
estimates from the weather radar images. This rainfall bias 
correction method has been used by several researchers 
[12,23]. The correction factor based on the MFBC method 
is calculated using the ratio of the spatial averages of rain 
gauge observations and rainfall estimates from weather 
radar images at a corresponding point. The equation of the 
MFBC method is as follows:

Correction factor =
= =
∑ ∑
i i

n

i

n

iG R
1 1
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where Gi is the rainfall observation of the ith rain gauge, Ri 
is the rainfall estimates of the ith point from the radar, and n 
is the total number of the ground rain gauge. In YRW, there 
are 11 ground rain gauges. Therefore, the rainfall estimates 
from the weather radar images at corresponding points with 
11 ground rain gauges were extracted.

In Phase III, the identical correction factor calculated from 
Phase II can be applied uniformly to rainfall estimates from 
radar images all over the area. Thus, this study obtained the 
corrected rainfall estimates of 25 points that are at the center 
of YRW sub-basins.

To compare the model prediction accuracy under 
different composition of rainfall inputs, three different rainfall 
input datasets were constructed. The first input dataset 
encompassed rainfall observed from 11 ground rain gauges 
(GR). The second input dataset was constructed only using 
25 corrected rainfall estimates from weather radar images 
(RR). The third input dataset was constructed by combining 
the 11 observed rainfall with 16 corrected rainfall estimates 
that represent the 16 ungauged sub-basins in YRW (GARR). 
Then, the SWAT model was developed by using the different 
composition of rainfall inputs (GR, RR, and GARR), and indi-
vidual sensitivity analysis and calibration was conducted. 



251D.J. Jeon et al. / Desalination and Water Treatment 138 (2019) 248–256

The SWAT model developed by GR was simulated using 
rainfall data from nine ground rainfall gauges because the 
locations of G3, G6, and G7 are in the same sub-basin (Fig. 2). 
Therefore, sub-basins of 16 that do not have ground rainfall 
gauges use the weather station nearest to the center in each 
sub-basin.

2.5. Sensitivity analysis and model calibration

The sensitivity analysis and calibration of the SWAT 
model were performed to predict daily stream flow, monthly 
TSS load, and monthly TP load during 2 years (2012–2013) at 
HP station (Fig. 1). A sensitivity analysis on model parameters 
was performed based on the Latin-Hypercube One-factor-
At-a-Time (LH-OAT). The LH simulation, as an alterna-
tive to Monte Carlo sampling, selects random values over 
the parameter space [24]. Through the sensitivity analysis, 
significant parameters for calibrating the SWAT model were 
determined.

For automatic calibration of stream flow, the ParaSol 
method, provided by ArcSWAT interface, was applied to 
acquire the optimal parameter value. The SWAT model was 
calibrated for predicting monthly TSS load and monthly 
TP load by using the pattern search method. The Nash–
Sutcliffe efficiency (NSE) coefficient was used to evaluate 
model prediction accuracy [25]. The statistical hypothesis 

test on the efficiency index was applied to compare the 
model performance for predicting stream flow and nutrient 
load [26]. Percentage bias (PBIAS) was also used for 
interpreting the average tendency of simulations to be over- 
or under-estimated compared with observations [27].

3. Results and discussion

3.1. Radar rainfall estimation

Raw rainfall estimations produced by weather radar 
images have limitations for direct application to the water-
shed model because uncorrected rainfall estimates lead to 
substantially underestimated thresholds [28]. Therefore, 
the MFBC method for correcting the raw rainfall estima-
tions was used. Rainfall estimates of 11 grids, which overlap 
with ground rain gauges in the weather radar images, are 
bias-corrected ground rainfall observations; the radar rain-
fall estimation accuracy was assessed by comparison with 
ground rainfall observations at a corresponding point. Fig. 3 
shows the scatter plots with linear regression equation and 
coefficient of regression between corrected radar rainfall 
estimates and ground rainfall observations for all ground 
rain gauges. The slopes of the linear regression equation 
are less than 1, except for G10; this means that the MFBC 
method successfully corrected the rainfall estimates from 
radar but did not completely improve the underestimation of 

(a) (b)

(c)

Fig. 2. Weather radar information. (a) Gridded color distribution representing rainfall intensity (mm/h) produced by weather radar 
image. (b) Map of ground rainfall gauges. (c) Map of selected radar image grids to calibrate of rainfall produced by weather radar 
images and to estimate the rainfall intensity at ungauged sub-basins.
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rainfall estimates compared with the ground rainfall obser-
vations. When we also compared the log-transformed rainfall 
intensities, the radar is more sensitive to very light rainfall 
compared with the ground gauge because the ground gauge 
detects rainfall at 0.5 mm unit per min, while radar can detect 
rainfall at 0.1 mm unit per min. These results mean that the 
radar rainfall estimates corrected by MFBC method describe 
the actual rain event well; furthermore, the correction factor 
is acceptable to be applied to raw rainfall estimates from 
weather radar images for estimating rainfall intensity at 
ungauged sub-basins. 

3.2. SWAT model calibration

The sensitivity analysis was performed to assess the rela-
tive contribution of a set of parameters to predictions of daily 
flow discharge, monthly TSS load, and monthly TP load. The 
sensitivity analysis results and selected parameters are pre-
sented in Table 1. Sensitivity analysis was performed using 
26 stream flow, 7 sediments, and 14 TP parameters. The most 
sensitive parameter for prediction of flow discharge using 
GR was SCS runoff curve number for moisture condition 2 
(CN2), followed by ALPHA_BF, CH_K2, SURLAG, CH_N2, 
GWQMN, and ESCO. In case of RR and GARR, the rank of 
sensitivity was changed; baseflow alpha factor (ALPHA_BF) 

was the most sensitive parameter. The calibration of daily 
stream flow was conducted using the top seven parameters 
based on the results of sensitivity analysis (Table 1). The CN2 
value was initially set based on the parameter given the land 
use, soil, and slope at each HRU, and was calibrated by a 
factor ranging from –25 to 25. The CN2 value using GR data 
was calibrated to a negative skew; this means that infiltra-
tion was increased. A positive skew was observed in RR and 
GARR data; this means that the overland flow was increased 
[29]. These differences are because the corrected radar rain-
fall estimates were relatively underestimated compared 
with the ground gauge rainfall. The most sensitive param-
eter for TSS load simulation using GR data was the coeffi-
cient in sediment transport equation (SPCON), followed by 
PRF, CH_COV, and USLE_P. The peak rate adjustment factor 
(PRF) was considered the most sensitive for the SWAT model 
using RR and GARR data. These sediment parameters were 
used to compute the amount of TSS load from the catchment 
and channel. The calibration parameters showed no big dif-
ferences between the three rainfall data. This was because 
the main parameters for predicting TSS load affect channel 
erosion processes. The most sensitive parameter for TP load 
simulation using GR data was phosphorus enrichment ratio 
concentration of soluble phosphorus (ERORGP), followed by 
BIOMIX, PSP, BC4, GWSOLP, RHCQ, and MUMAX. The local 

Fig. 3. Comparison of calibrated radar rainfall estimates with ground rainfall observations from gauge stations.
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algal respiration rate at 20°C (RHOQ) was considered the 
most sensitive for the SWAT model using RR and GARR data. 
These seven parameters were selected for calibration.

3.3. Sensitivity to rainfall data 

In this section, we examined the availability of the radar 
rainfall estimates from the hydrological and water quality 
modeling perspective. Table 2 presents a comparison of the 
simulation results for the daily total stream flow, daily low 
and high stream flow, monthly TSS load, and monthly TP 
load under the three different rainfall sources (GR, RR, and 
GARR). NSE values all confirmed that the watershed-scale 
and water quality model driven by the rainfall data combin-
ing the gauge rainfall and radar rainfall (GARR) performed 
better than those from gauge rainfall (GR) and radar rain-
fall (RR). Simulations of total stream flow resulted in NSE 
values of 0.79, 0.86, and 0.87 for GG, RR, and GARR data. 
Moreover, PBIAS values were 1.3%, 7.7%, and –0.7%, for GG, 

RR, and GARR data. In general, the performance ratings for 
all rainfall data were “very good” according to the general 
performance ratings for SWAT model shown in Table 3 [30]. 
Comparison of the visual inspection of GR-, RR-, and GARR-
simulated stream flow indicated that SWAT simulations fol-
lowed satisfactorily observed stream flow (Fig. 4). In relative 
terms, GARR data were shown to produce more accurate 
stream flow prediction than GR and RR data, according to 
NSE values. It was also verified that NSE values were sig-
nificantly different among the SWAT models developed by 
GG, RR, and GARR data through hypothesis tests on the NSE 
value.

To examine the variation in stream flow simulation 
results according to rainfall data source, the simulation accu-
racy was compared by subdividing data into high and low 
flow datasets. The standard value for classifying stream flow 
into high and low was calculated by adding the average 
value and standard deviation value of observed stream flow 
during the simulation period. The daily-average stream flow 

Table 1
Results of sensitivity analysis and calibration of stream flow, total suspended solid (TSS) load, and total phosphorus (TP) load

Parameter Gauge Radar Gauge and radar
Sensitivity rank Calibration value Sensitivity rank Calibration value Sensitivity rank Calibration value

Cn2 1 –0.945 2 6.055 2 14.184
Alpha_Bf 2 0.986 1 0.984 1 0.078
Ch_K2 3 2.243 3 51.984 3 12.000
Surlag 4 8.344 4 1.109 4 1.093
Ch_N2 5 0.448 5 0.337 5 0.948
Gwqmn 6 0.586 6 997.300 6 995.425
Esco 7 0.635 7 0.006 7 0.006
SPCON 1 0.001 2 0.001 2 0.001
PRF 2 0.500 1 0.500 1 0.500
CH_COV 3 0.000 3 0.000 3 0.000
USLE_P 4 0.100 4 0.100 4 0.100
ERORGP 1 0.550 3 0.550 3 1.3434
BIOMIX 2 0.100 7 0.020 7 0.100
PSP 3 0.600 4 0.200 4 0.307
BC4 4 0.100 6 0.300 6 0.500
GWSOLP 5 0.000 2 0.825 2 0.000
RHOQ 6 0.050 1 0.050 1 0.050
MUMAX 7 1.000 5 1.000 5 2.200

Table 2
Nash–Sutcliffe efficiency (ENS) and percent bias (PBIAS) for daily stream flow, monthly total suspended soil (TSS) load, and total 
phosphorus (TP) load during calibration period

Indicator Gauge Radar Gauge and radar
ENS PBIAS ENS PBIAS ENS PBIAS

Flow Entirety 0.79 1.3 0.86 7.7 0.87 –6.5
High 0.62 11.3 0.77 11.7 0.79 10.5
Low –0.29 –5.9 –0.05 4.6 0.05 –18.6

TSS Entirety 0.87 –4.5 0.90 1.4 0.93 2.2
TP Entirety 0.72 16.7 0.79 14.9 0.81 8.7
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during 2 years was 75.9 m3/s, and the standard deviation was 
188 m3/s. According to the standard value, stream flow data of 
32 d was classified as high stream flow; average value of high 
stream flow was 731.9 m3/s. The stream flow data of 699 d was 
classified as low stream flow; average value of low stream 
flow was 45.9 m3/s. All NSE values confirmed that the simu-
lation of high stream flow performed better than that of low 
stream flow, regardless of the rainfall source (Table 2). These 
simulation results are similar to the findings in some previous 
studies [31,32]. Simulations of high stream flow resulted in 
NSE values of 0.62, 0.77, and 0.79 for GG, RR, and GARR data. 
The PBIAS values were 11.3%, 11.7%, and 10.5% for GG, RR, 

and GARR data. As a general rule, the PBIAS values indicated 
that the simulation of high stream flow was “good” under 
all rainfall data. The NSE values for RR and GARR data was 
also “very good” while the NSE value for GR was “good”. 
The simulation results generally underestimated high flows 
according to the PBIAS values; a tendency to underestimate 
high stream flow of SWAT model has been observed in some 
published studies even when the model performance was 
satisfactory [33-36]. According to NSE values, GARR data 
produced more accurate simulated high stream flow; the 
hypothesis test on NSE value confirmed significant differ-
ences in NSE values between GR data and RR data as well as 

Table 3
General performance ratings for statistic measures

Performance rating NSE PBIAS (%)
Stream flow TSS TP

Very good 0.75 < NSE ≤ 1.00 PBIAS < ±10 PBIAS < ±15 PBIAS < ±25
Good 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15 ±15 ≤ PBIAS < ±30 ±25 ≤ PBIAS < ±40
Satisfactory 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS < ±25 ±30 ≤ PBIAS < ±55 ±40 ≤ PBIAS < ±70
Unsatisfactory NSE ≤ 0.50 PBIAS ≥ ±25 PBIAS ≥ ±55 PBIAS ≥ ±70

(a) (b) (c)

Fig. 4. Performance of the SWAT model assessed in Hampyung station during 2012 and 2013 for daily flow discharge, monthly total 
suspended solid load, and monthly total phosphorus load: (a) gauge rainfall (GR) data, (b) radar rainfall (RR) data, (c) gauge and 
radar rainfall (GARR) data.
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between GR data and GARR data. However, there were no 
significant differences between RR data and GARR data. In 
general, the radar-driven simulation of high stream flow was 
better than gauge-driven simulation [18,37]. In terms of sim-
ulation of low stream flow, the NSE values were –0.29, –0.05, 
and 0.05 for GR, RR, and GARR data, and the PBIAS values 
were –5.9%, 4.6%, and –18.6%. The NSE values for all rainfall 
data showed unsatisfactory performance rating (NSE ≤ 0.50). 
The lower performance of low stream flow simulation can be 
described as follows. First, measurement errors in the low-
flow condition may be at least twice as large as for those in the 
high stream flow condition [38–40]. Therefore, measurement 
error can affect to calibration of low stream flow. Second, 
SWAT model performance during low stream flow conditions 
is generally lower than that during high stream flow or flood 
conditions [31,41]. Third, the NSE value is sensitive to larger 
values. Consequently, the NSE value more sensitively reflects 
the high stream flow compared with low stream flow [41]. 
Nevertheless, GARR data has improved simulation accuracy 
of low stream flow compared to GR and RR data. On the con-
trary, according to the PBIAS values, the simulations of low 
stream flow using GR or RR data were “very good”, while 
GARR data showed “satisfactory”. The GR and GARR data 
showed overestimation of low stream flow, while the RR data 
showed an underestimation trend.

Comparison between the simulated and the observed 
monthly TSS load showed that the NSE values were 0.87, 
0.90, and 0.93 for GR, RR, and GARR data, and the PBIAS 
values were –4.5%, 1.4%, and 2.2% (Table 2). The statistic 
measures (NSE and PBIAS) indicated that the model per-
formance for predicting TSS load were “very good” for all 
rainfall data. However, when compared with each NSE value 
with the hypothesis test, the model performance was signifi-
cantly better under GARR data than under GR and RR data. 
An explanation for this result is that the simulation of peak 
TSS load using GARR data followed the observed peak TSS 
load more satisfactorily when compared by visual inspection 
(Fig. 4). Comparison between the simulated and observed TP 
load showed that the NSE values under GG, RR, and GARR 
data were 0.72, 0.79, and 0.81, respectively (Table 2), and the 
PBIAS values were 16.7%, 14.9%, and 8.7%. According to the 
NSE value, the model performance using RR and GARR data 
was “very good”, while the model performance using GR data 
was “good”. It was also verified that the model performance 
using RR and GARR data were significantly better than that 
using GR data through hypothesis tests on the NSE value. 
However, there were no significant differences between the 
model performance under RR and GARR. In terms of the 
PBIAS value, the model performance for predicting TP load 
were “very good” in all rainfall data, and the GARR data 
showed the minimum PBIAS value. Moreover, the visual 
comparison of the simulated TP load indicated that the simu-
lation result using GARR data was approximately equal with 
the observed TP load. Comprehensive comparison of the sta-
tistic measures showed that the rainfall data with combined 
gauge rainfall and corrected radar rainfall can improve the 
prediction accuracy for stream flow, TSS load, and TP load. 
The improvements to the model performance presented here 
should contribute to increase the prediction accuracy of water 
quality and quantity in response to regional climate change 
by using high resolution rainfall data of weather radar image.

4. Conclusion

In this study, an attempt was made to identify whether 
the radar rainfall data will be helpful in improving simulation 
performance of watershed-scale water quality model. Three 
different types of rainfall data for a SWAT model were con-
structed: gauge rainfall (GR), radar rainfall (RR), and gauge 
and radar rainfall (GARR). The SWAT model was developed 
for predicting stream flow, TSS load, and TP load at Yeongsan 
River, using three types of rainfall data. The main findings in 
this study are as follows:

•	  In general, the rainfall estimations produced by radar has 
limitations for direct application to the watershed-scale 
water quality model owing to the tendency of underestima-
tion of radar rainfall. Thus, the MFBC method was applied 
to the raw rainfall estimations. When compared with the 
ground rainfall observations, the MFBC method did not 
completely improve the tendency of underestimation, but 
the radar rainfall estimates corrected by the MFBC method 
describe well the actual rainfall event and rainfall inten-
sity. Therefore, the corrected radar rainfall estimates are 
adaptable for estimating rainfall at ungauged sub-basins.

•	 The SWAT model responded differently to rainfall data 
sets. The sensitivity rank of parameters for stream flow, 
TSS load, and TP load was not different under RR and 
GARR data; parameters under GR data showed the great-
est change in rank compared with those under RR and 
GARR data. An explanation for this result is the ungauged 
sub-basins, which used radar rainfall estimates compris-
ing a large proportion of YSW. Therefore, in the case of 
GARR data, the sensitivity rank of parameters is similar 
with that under RR data.

•	 The SWAT model predicted stream flow, TSS load, and 
TP load well during the calibration period even when 
using different rainfall data and optimal parameter val-
ues. In particular, GARR data are more favorable for 
water quantity and quality simulation in the selected 
watershed compared with GR and RR data. This means 
the watershed-scale water quality model can improve 
the simulation accuracy by using a new combination of 
gauge rainfall for gauged sub-basin and radar rainfall 
estimates for ungauged sub-basin. 
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