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a b s t r a c t
To use the fuzzy theory for considering the corrosion-influencing factors, this study developed 
the corrosion depth prediction model for steel pipe. An analysis result of individual factors affecting 
corrosion shown that it was reasonable to apply the method to simultaneously consider the various 
corrosion influence factors using fuzzy theory. To make corrosion depth prediction models, a modified 
two-phase model that combines the fuzzy score was adopted. The developed models can express 
different corrosion characteristics according to the various environmental conditions, and the models 
had higher correlation than previous models. Especially, the proposed model that considers corrosion 
influence factors provided higher explanatory and prediction power than the models that simply 
consider only the pipe age. In conclusion, it is expected that the proposed corrosion depth prediction 
model will make it possible to predict the service life of water pipes more accurately as a basic model 
that can be utilized for predicting the physical residual life of water pipes.
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1. Introduction

The deterioration of water pipes lowers the safety and 
reliability of water supply in various ways. In the case of 
metal pipes, corrosion is the major cause of water pipe dete-
rioration [1]. The causes of corrosion in metal pipes such as a 
steel pipe (SP) and ductile cast iron pipe (DCIP) can be sum-
marized as follows. The iron component included in metal 
pipes acts as an anode where oxidation occurs, and it can 
also become an electrical conductor that connects the anode 
with the cathode. As water pipes are buried underground 
and oxygen and moisture in soil, as well as water flowing in 
pipes, become the cathode, buried water pipes are naturally 
exposed to corrosion.

Owing to the damages caused by the failure or malfunc-
tion of deteriorated water pipes, the need for replacing old 
water pipes with new ones is well understood, but it is always 
difficult to determine the most appropriate replacement 

timing. Deb et al. [2] proposed a method of assessing the 
physical condition of a water pipe through the safety fac-
tor between the stress acting on the pipe and the residual 
strength. The extension of this concept has been frequently 
used as a method of determining the replacement timing of 
water pipes from a physical perspective.

Bae et al. [3] proposed a regression equation capable of 
deriving the residual strength of water pipes through the cor-
rosion rate. If the corrosion depth of a water pipe can be pre-
dicted by year, it is possible to predict the residual strength 
of the pipe by year. Furthermore, it is possible to derive the 
safety factor of the pipe by year under the assumption that 
the burial environment of the pipe does not significantly 
change [4]. These processes can be utilized to predict the 
physical residual life of a water pipe.

Romanoff’s [5] model and Rossum’s [6] model using the 
power model are the representative early studies on predict-
ing the corrosion depth and corrosion rate of a water pipe. 
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Afterward, Sheikh et al. [7] proposed the linear model as a 
corrosion depth model, and Rajani and Makar [8] proposed 
the two-phase model by combining the linear model and 
power model. Lee [9] derived the coefficients of the model 
equation with the highest correlation with the collected 
data using the power model, linear model, and exponential 
model (two-phase model). The model equation was created 
to predict the external corrosion depth and internal corrosion 
depth of each pipe type. K-water [10,11] also created a model 
to predict the external and internal corrosion depth for the 
three models, as with Lee [9].

As can be inferred from the model equations of the power 
model, linear model, and two-phase model, previous studies 
on the corrosion depth and corrosion rate of water pipes have 
limitations in that the corrosion depth and corrosion rate can 
be expressed only as functions of the pipe age. However, 
research results have suggested that there are various factors 
that affect the corrosion of water pipes other than the pipe 
age [12]. Rajani and Makar [8] found that the water contents, 
soil pH, soil resistivity, and sulfur-oxidizing bacteria affect 
the external corrosion of water pipes, and Chung et al. [13] 
revealed that the soil pH, as well as the chloride ion and sul-
fate ion concentrations, is highly correlated with external cor-
rosion. Katano et al. [14] pointed out that the redox potential, 
soil resistivity, and sulfate ion in soil are major factors that 
accelerate corrosion, and Sarin et al. [15] pointed out that the 
mineral iron and soil permeability are factors that influence 
corrosion rates. Arai et al. [16] found that the sulfide con-
centrations are the factor that most significantly affects the 
external corrosion of water pipes, and Peterson and Melchers 
[17] presented that moisture properties are the major factors 
of external corrosion. Kim et al. [18,19] suggested that major 
corrosion influence factors are the pipe–soil potential differ-
ence and water contents for SP and the soil resistivity and 
sulfide concentrations for DCIP through the discriminant 
analysis of factors affecting the corrosion of water pipes. In 
addition, Chung et al. [13] obtained a research result that 
internal corrosion is affected by the water pH, dissolved 
oxygen, electrical conductivity, residual chlorine, alkalinity, 
and microorganisms inside water pipes.

As can be seen, there are various factors that affect the 
corrosion of water pipes other than the pipe age. Bae et al. 
[3] proposed an external corrosion rate model in the form 
of a nonlinear regression equation considering corrosion 
influence factors, and De Masi et al. [20] proposed a model 
of predicting internal corrosion through an artificial neural 
network model for various influence factors. However, these 
models have limitations in that they cannot secure a large 
number of specimens and that their usability is somewhat 
low in specifically identifying the replacement timing of 
water pipes.

Therefore, this study aimed to develop a corrosion 
depth prediction model for SP, which is mostly utilized as 
a large-diameter water pipe, considering various corrosion 
environments through a large number of investigations on 
specimens. To consider various corrosion environments, 
fuzzy theory was utilized in this study. The purpose of this 
study is to propose a model that can express the corrosion 
tendency of water pipes better than the existing models. 
Also, the purpose of this study is to propose a quantitative 
model that can be utilized as a basic model for calculating the 

specific replacement timing of water pipes by developing a 
modified two-phase model that combines the fuzzy score for 
comprehensively expressing various corrosion environments 
with the two-phase model proposed by Rajani and Makar [8].

2. Methods

The corrosion depth prediction model was developed 
using the flow shown in Fig. 1. Fuzzy theory was applied to 
consider various factors affecting corrosion, and the weight 
for each fuzzy item was determined using a genetic algo-
rithm. This study aimed to propose a modified two-phase 
model that reflects the fuzzy scores of factors affecting 
corrosion based on the two-phase model, which has been 
frequently used in previous studies. The coefficients of the 
modified two-phase model were obtained using the curve 
fitting method so that the differences between them and the 
measured values could be as small as possible.

2.1. Data investigation

South Korean law designates multiregional water sup-
ply systems as important facilities. Accordingly, such water 
supply systems are subject to safety diagnosis every 5 years. 
For development of a corrosion depth prediction model, this 
study utilized the results of 43 precision safety diagnoses for 
23 multiregional water supply systems from 1988 to 2013, 
that is, the results of corrosion depth measurements and cor-
rosion influence factor investigations.

The external and internal corrosion of water pipes 
have different corrosion influence factors. Therefore, it was 
deemed appropriate to develop the model by distinguishing 
external and internal corrosion. External corrosion is mostly 
affected by the soil outside water pipes, while internal corro-
sion is affected by the quality of the water flowing in water 
pipes.

The investigated external corrosion items were the 
pipe–soil potential difference, soil resistivity, soil pH, water 
contents, chloride (Cl–) concentrations, and sulfide (SO4

2–) 
concentrations, while the investigated internal corrosion 
items were the water pH, Langelier saturation index (LI) 
utilized as the water quality corrosion index, and alkalinity. 
Table 1 shows the number of investigated data for the devel-
opment of the corrosion depth prediction model.

The investigated data may have outliers. After examining 
whether each of the investigated items formed a normal 
distribution, if an open form that can be determined as a 
normal distribution appeared, the data that exceeded the 
95% confidence level were determined as outliers, and such 
data were excluded from the analysis.

2.2. Application of fuzzy theory

The fuzzy theory proposed by Zadeh [21] can handle 
the inaccuracy of variables through the many-valued logic 
for a qualitative state or unclear or ambiguous state instead 
of applying the binary concept of “Yes” or “No.” In other 
words, it is a theory that expresses inaccuracy by creating 
rules that use approximate or subjective values [22].

Fuzzy theory means that a target is not expressed with 
a single value but with infinite values between 0 and 1. 
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Therefore, fuzzy theory can be highly applicable to systems 
in which subjective thinking can be involved or systems 
in which uncertain human judgments are involved. It can 
be used as a methodology for objectifying subjective and 
uncertain systems.

In this study, triangular fuzzy numbers were applied as 
fuzzy numbers, and a function with a triangular form was 
applied considering that the fuzzy membership function uses 
triangular fuzzy numbers. The triangular fuzzy numbers that 
represent the seven grades used in this study (Excellent, Good, 
Adequate, Normal, Poor, Bad, and Fail) are shown in Fig. 2.

Tables 2 and 3 show the grades applied to fuzzify the 
factors affecting external and internal corrosion, respectively.

The process of converting the fuzzy-inferenced value 
calculated using a fuzzy set into a definite scalar value is 
referred to as defuzzification. In this study, the center-of-gravity 

method was used among various defuzzification methods. 
The fuzzy membership value calculated by multiplying the 
weight value of each influence factor, as shown in Eq. (1), was 
used to derive the center of gravity. As for the weight values, 
the values with the highest correlations with the corrosion 
rate (mm/y) were applied using a genetic algorithm.
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where Cμ is the value of μ fuzzy membership, Wn is the weight 
value of influence factor, and Hn is the grade of influence 
factor.

Table 1
Number of data for developing corrosion depth prediction 
model

Case Total number 
of samples

Corrosion influence factors

SP external 223 Pipe–soil potential difference, 
soil resistivity, soil pH, water 
contents, Cl– concentrations, 
and SO4

2– concentrations
SP internal 192 Water pH, LI index, 

and alkalinity

Fig. 1. Development flow for corrosion depth prediction model.

Fig. 2. Transformation of fuzzy number of membership function.
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2.3. Genetic algorithm to finding the weight 
value of influence factor

The weight values of fuzzy items, that is, the weight values 
for each corrosion influence factor, were determined using 
a genetic algorithm. The objective function of the genetic 
algorithm was set using the weight value that maximizes 
the correlation coefficient between the fuzzy score derived 
through the center-of-gravity method and the corrosion rate, 
as shown in Eq. (2).

Max Maxr
x x y y

x x y y

i ii

n

ii

n
ii

n
=

− −

−( ) −( )
=

= =

∑
∑ ∑

( )( )

( ) ( )
1

2
1

2
1

 (2)

where r is the correlation coefficient between corrosion rate 
and fuzzy score, xi is the corrosion rate of specimen i (mm/y), 
x is the average corrosion rate (mm/y), yi is the fuzzy score of 
specimen i (–), y is the average fuzzy score (–), i is a specimen, 
and n is the total number of specimen.

The chromosome of the genetic algorithm was 
constructed with the weight values for each influence factor, 
and the weight values were set between 0.000 and 1.000. The 
population, generation, crossover rate, and mutation rate, 
which are the genetic parameters of the genetic algorithm, 
were set to 50, 2,000, 0.8, and 0.2. The genetic operation was 
set to be terminated upon completion of calculation for the 
set generation. The genetic algorithm used the EVOLVER 
software that runs in Microsoft Excel.

2.4. Development of model

As mentioned, this study aimed to develop a corrosion 
depth prediction model for SP using the fuzzy score derived 
through factors affecting the corrosion of water pipes. As 
shown in Eq. (3), the modified two-phase model, which 
applies the fuzzy score as a direct variable, was developed 
by transforming the two-phase model, which predicts the 

Table 2
Grade classification of influence factor for SP external corrosion

Factor Classification Grade

Installation year After 2010 Excellent
2000–2010 Good

1990–2000 Normal

1980–1990 Bad

Before 1980 Fail

Soil resistivity Above 20,000 Ω cm Good

10,000–20,000 Ω cm Adequate

5,000–10,000 Ω cm Normal

1,000–5,000 Ω cm Poor

Below 1,000 Ω cm Bad

Soil pH 6.5–7.5 Excellent

7.5–8.5 Adequate

4.5–6.5 Normal

Above 8.5 Poor

Below 4.5 Bad

Water contents Below 20% Adequate

Above 20% Normal

Chloride (Cl–) 
concentrations

Below 5 mg/L Excellent

5–30 mg/L Good

30–100 mg/L Normal

100–500 mg/L Bad

Above 500 mg/L Fail

Sulfide (SO4
2–) 

concentrations
Below 5 mg/L Excellent

5–30 mg/L Good

30–100 mg/L Normal

100–500 mg/L Bad

Above 500 mg/L Fail

Pipe–soil 
potential 
difference

Below –2,000 mV Excellent

–1,500 to –2,000 mV Good

–1,000 to –1,500 mV Normal

–500 to –1,000 mV Bad

Above –500 mV Fail

Table 3
Grade classification of influence factor for SP internal corrosion

Factor Classification Grade

Installation year After 2010 Excellent
2000–2010 Good

1990–2000 Normal

1980–1990 Bad
Before 1980 Fail

Type of water Raw water Bad

Purified water Normal

Internal coating 
material

Epoxy Good

Enamel Adequate

LI index Above 0.0 Excellent

–0.5 to 0.0 Good

–1.0 to –0.5 Normal

–2.0 to –1.0 Bad

Below –2.0 Fail

Water pH 6.5–7.5 Excellent

7.5–8.5 Adequate

4.5–6.5 Normal

Above 8.5 Poor

Below 4.5 Bad

Alkalinity Below 30 mg/L as CaCO3 Bad

Above 30 mg/L as CaCO3 Normal
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corrosion depth according to the pipe age. Because the model 
equation is a function that represents a nonlinear form, coef-
ficients that minimize the difference between the investi-
gated corrosion depth and the predicted corrosion depth 
were derived using the curve fitting method and applied to 
the model equation.

d a FT b F C ei t i i i
f Ti

, = + +( )( )1− −
 (3)

where di,t is the corrosion depth at T age (mm), T is the expo-
sure time which can be said pipe age (year), F is the fuzzy 
score (–), ai, bi, ci, and fi are the constant, i refers to the internal 
corrosion or external corrosion.

2.5. Evaluation of model

The developed model was evaluated through a compari-
son with the models proposed in previous studies. Model A, 
the first comparison target, was proposed by K-water [10]. 
It is a corrosion depth prediction model based on the two-
phase model developed for large-diameter water pipes in 
South Korea. It considered only the pipe age without con-
sidering corrosion influence factors. Model B, the second 
comparison target, was proposed by Kim et al. [19]. It is a 
two-phase model developed for large-diameter water pipes 
in South Korea, but it added a regression equation after 
deriving corrosion influence factors through discriminant 
analysis. Model C, the third comparison target, is a two-
phase model developed considering only the pipe age for the 
specimens investigated in this study, and it does not consider 
corrosion influence factors.

The model evaluation was performed through the com-
parison of the determination coefficient (r2) and the root 
mean square error (RMSE).

3. Results and discussion

3.1. Analysis of investigated data

Table 4 shows the minimum, average, and maximum 
values of the investigated data as well as the skewness and 
kurtosis values for examining whether the investigated data 
exhibit a normal distribution. In general, when the absolute 
value of skewness is less than 2 and that of kurtosis is less 

than 4, such a case can be judged as a normal distribution. 
Among the investigated data, all of the influence factors, 
except for the qualitative factor and installation year, exhib-
ited a normal distribution. Because the investigated data 
exhibited a normal distribution, the data that exceeded 
the 95% confidence level were determined as outliers and 
excluded from the model development. Finally, 21 data for 
SP external corrosion and 6 data for SP internal corrosion 
were removed as outliers.

After removing outliers from the investigated data, the 
results of plotting each corrosion depth influence factor for 
the corrosion depth are shown in Figs. 3 and 4.

Figs. 3 and 4 show that even the specimens with the same 
pipe age exhibit significantly different corrosion depths when 
only the pipe age is considered. For example, in Fig. 3(a), the 
pipes installed in 1988 show external corrosion depths ranging 
from 0.05 to 2.60 mm, indicating significant differences.

Meanwhile, when only one influence factor was 
considered, some factors were found to exhibit tendencies that 
are different from those already known. The chloride and sul-
fide concentrations may accelerate external corrosion as they 
increase. However, the tendency between the corrosion rate 
and influence factors was different. This is because high soil 
resistivity may have triggered the factors inhibiting corrosion, 
even if the chloride and sulfide concentrations were high. As 
another example, even if low water pH may act as a factor that 
accelerates corrosion, high alkalinity may inhibit corrosion.

These lead to the conclusion that simply considering 
only one influence factor is not reasonable. Therefore, in this 
study, it was deemed appropriate to apply fuzzy theory, a 
method capable of comprehensively considering various 
influences.

3.2. Results of weight value of influencing factors 
using genetic algorithm

Figs. 5(a) and (c) show the relationship between the fuzzy 
score and the corrosion rate derived after applying the same 
weight value to each fuzzy item for SP external corrosion 
and internal corrosion, respectively. Figs. 5(b) and (d) show 
the relationship between the fuzzy score and the corrosion 
rate after applying the weight values that exhibit the highest 
correlation between the fuzzy score and the corrosion rate 
using the genetic algorithm.

Table 4
Analysis results of investigated data

Case Factor Minimum Average Maximum Skewness Kurtosis Remark

SP 
external

Soil resistivity (Ω cm) 1,246.00 14,270.00 85,000.00 1.58 2.71 Normal distribution
Soil pH (–) 4.00 6.40 12.40 0.45 0.37 Normal distribution
Water contents (%) 4.70 18.52 50.70 0.41 –0.11 Normal distribution
Chloride concentrations (mg/L) 0.90 18.05 453.10 1.45 3.62 Normal distribution
Sulfide concentrations (mg/L) 0.00 48.53 1,069.15 1.76 3.87 Normal distribution
Pipe–soil potential difference (mV) –6,974.00 –1,050.00 –89.00 –0.99 1.09 Normal distribution

SP 
internal

LI index (–) –2.93 –1.65 –0.33 0.16 –1.30 Normal distribution
Water pH (–) 6.66 7.92 8.99 –0.06 0.35 Normal distribution
Alkalinity (mg/L as CaCO3) 16.01 35.38 61.53 0.19 –0.78 Normal distribution
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The results show that, when the same weight value was 
applied, the determination coefficient (r2) between the fuzzy 
score and the corrosion rate was as low as 0.1532 for external 
corrosion rate and 0.1023 for internal corrosion rate. When 
the optimized weight values were applied, however, the 
determination coefficient (r2) was 0.3689 for external corro-
sion rate and 0.3011 for internal corrosion rate, which was 
improved compared with the previous value, and the cor-
rosion rate showed a tendency to increase as the fuzzy score 
increased.

Tables 5 and 6 show the results of applying the optimized 
weight values to the fuzzy items affecting external and inter-
nal corrosion, respectively. The weight values that increase 
the correlation between the fuzzy score and the corrosion 
rate can be construed as representing the importance of cor-
rosion influence factors.

Among the factors affecting the external corrosion of 
SP, the soil resistivity exhibited the highest weight value 
of 0.295, followed by the sulfide concentrations (0.253) 
and installation year (0.201). This tendency is similar to 

(a)

(b) (c)

(d) (e)

(f ) (g)

Fig. 3. Investigated external corrosion depth data by influence factors: (a) by installation year, (b) by soil resistivity, (c) by soil pH, 
(d) by water contents, (e) by chloride concentrations, (f) by sulfide concentrations, and (g) by pipe–soil potential difference.
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those presented as the results obtained by Arai et al. [16] 
and Peterson and Melchers [17]. Meanwhile, the pipe–soil 
potential difference was found to have the lowest influence 
on external corrosion. In South Korea, it is recommended 
to install water pipes in areas with a pipe–soil potential dif-
ference of less than –500 mV to prevent corrosion. Owing 

to this recommendation, water pipes are installed in areas 
that can minimize corrosion in terms of the pipe–soil 
potential difference, and the investigated specimens also 
exhibited the same tendency. It appears that the pipe–soil 
potential difference received the lowest weight value for 
this reason.

(a) (b)

(c) (d)

Fig. 4. Investigated internal corrosion depth data by influence factors: (a) by installation year, (b) by LI index, (c) by water pH, and 
(d) by alkalinity.

(a) (b)

(c) (d)

Fig. 5. Fuzzy score and corrosion rate by weight value: (a) in case of same weight value for external corrosion, (b) in case of optimized 
weight value for external corrosion, (c) in case of same weight value for internal corrosion, and (d) in case of optimized weight value 
for internal corrosion.
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As for the internal corrosion of SP, the water quality 
influence factors, such as the LI index, water pH, and alka-
linity, exhibited the lowest influence on internal corrosion. 
However, internal coating materials exhibited the high-
est influence. The water quality data used in this study 
were investigated at a specific time point and, thus, cannot 
reflect all the water quality characteristics that change every 
moment. For this reason, the influence of the water quality 
factors was low. In the case of internal coating materials, 
the use of epoxy as a coating material was found to be bet-
ter than the use of enamel in terms of preventing internal 
corrosion. However, this result appears to be because of the 
characteristics of the investigated specimens. The specimens 
that used epoxy coating material accounted for 67% of all the 
specimens, and their average pipe age was 21.4 years, while 
the specimens that used enamel coating material repre-
sented 33% and their average pipe age was 26.9 years. Lee [9] 
investigated large-diameter water pipes in South Korea and 
suggested that the peeling of the internal coating of SP is 
accelerated 25 years after the installation of SP. Therefore, 
the results derived in this study can be constructed as results 
reflecting the influence of the characteristics of the speci-
mens. For this reason, it is reasonable to analyze the influ-
ence of internal coating on corrosion after securing more 
specimens from a long-term perspective.

3.3. Developed fuzzy-based corrosion depth prediction model

Eqs. (4) and (5) represent the models developed for the 
external and internal corrosions of SP, respectively, and Fig. 6 
shows the results of predicting the corrosion depth according 
to the pipe age and fuzzy score using the developed model. 
The coefficient of determination between the investigated 
corrosion depth and the predicted corrosion depth through 
the model was also found to be higher than 0.6, indicating 
that the developed model accurately represents the investi-
gated value.

d FT F e rt
T

external, = + − − −−0 046 1 212 0 233 1 0 6120 352 2. ( . . )( )( . ).  (4)

d FT F e rt
T

internal, = + − − −−0 043 1 579 0 139 1 0 6260 654 2. ( . . )( )( . ).  (5)

where dexternal,t is the external corrosion depth of SP at T age 
(mm), dinternal,t is the internal corrosion depth of SP at T age 
(mm), T is the exposure time which can be said pipe age (y), 
and F is the fuzzy score (–).

If the fuzzy score in Eq. (4) is less than 0.192 and the pipe 
age is close to 0.0 year, the corrosion depth may be negative. 
However, the external corrosion depths did not appear to be 
negative for investigated specimens, because the minimum 
fuzzy score of investigated specimens was 0.232. Likewise, 
in Eq. (5), there was no case where the corrosion depth was 
negative for investigated specimens.

Table 5
Weight value of external corrosion influence factors of SP

Influence factors Sum
Installation 
year

Soil resistivity Soil pH Water 
contents

Chloride 
concentration

Sulfide 
concentration

Pipe–soil potential 
difference

0.201 0.295 0.035 0.026 0.097 0.253 0.087 1.000

Table 6
Weight value of internal corrosion influence factors of SP

Influence factors Sum
Installation year Type of water Internal coating LI index Water pH Alkalinity
0.314 0.026 0.597 0.038 0.003 0.021 1.000

(a)

(b)

Fig. 6. Corrosion depth according to pipe age and fuzzy score: 
(a) by external corrosion depth prediction model and (b) by 
internal corrosion depth prediction model.
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As shown in Fig. 2, when corrosion is accelerated, in 
other words, the fuzzy membership is Fail, the fuzzy score 
was defined as 1.0 in this study. As can be seen from the 
model equation, the initial and overall corrosion rates appear 
to be high as the score (fuzzy score) of the factor accelerat-
ing corrosion increases. It was confirmed that this tendency 
was applied to the developed model equation without logical 
errors.

3.4. Evaluation results of developed model

Table 7 shows the coefficients of determination and error 
indices of Model A, Model B, and Model C, which are com-
parison targets, as well as the developed model. Compared 
with the previously proposed models, the correlation of 
the developed model was higher, and its difference from 
the investigated values was smaller. In other words, the 
developed model exhibited higher explanatory power and 
more-accurate prediction results compared with the models 
proposed in previous studies.

There are factors that could not be considered in this 
study. The oxidation–reduction potential is known to affect 
external corrosion, while the flow velocity and microorgan-
isms inside pipes are known to affect internal corrosion. 
These factors, however, could not be considered, because it 
was not possible to investigate significant data. If additional 
factors affecting the corrosion of water pipes are considered, 
it is expected that a model closer to the actual corrosion ten-
dency will be developed using the same methodology.

4. Conclusion

In this study, fuzzy theory was applied to the factors 
affecting the corrosion of SP, which is frequently utilized as 
a large-diameter water pipe, and then a modified two-phase 
model was developed by reflecting the derived fuzzy score.

As a result of analyzing the factors affecting corrosion, it 
was deemed reasonable to apply the fuzzy theory capable of 
comprehensively analyzing various factors. When the fuzzy 
theory was applied in this study, weight values for each 
influencing factor that exhibited the highest correlation with 
the corrosion rate were applied using a genetic algorithm 

to derive reasonable results. The soil resistivity and sulfide 
concentrations were found to have the highest influence on 
external corrosion. This indicates that it is reasonable to select 
the areas with high soil resistivity and low sulfide concentra-
tions for the installation of new water pipes in the future. For 
internal corrosion, the type of internal coating material was 
found to have the highest influence. However, because this 
result appears to be caused by the characteristics of the spec-
imens investigated in this study, further research is required.

The proposed corrosion depth prediction model that 
considers corrosion influence factors provided higher explan-
atory and prediction power than the models that simply con-
sider only the pipe age. In addition, the developed model also 
exhibited higher explanatory and prediction power for spec-
imens similar to those investigated in this study. Therefore, 
it is expected that the proposed corrosion depth prediction 
model will make it possible to predict the service life of water 
pipes more accurately as a basic model that can be utilized 
for predicting the physical residual life of water pipes.
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