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a b s t r a c t
Water has a fundamental role in human life. The proper quality and quantity of water is therefore 
an important issue. Coagulation and flocculation are essential processes for turbidity removal from 
drinking water. Metals such as aluminium have been implicated in the pathogenesis of Alzheimer’s 
disease. In this study, group method of data handling (GMDH)-type neural networks have been used 
for modeling and prediction of turbidity and free residual aluminium in drinking water. To validate 
the proposed model, a case study was carried out based on the data sets obtained from Guilan WTP. 
For modeling, the experimental data were divided into train and test sections (70% for training and 
30% for testing). Eventually, the results of modeling were compared with experimental data and 
demonstrated good data compliance, with the coefficient of determination (R2) in GMDH-type 
network was 0.8239 and 0.9138 for residual turbidity and residual aluminium, respectively. 
Moreover, the results of error analysis showed good performance of the proposed models, in this 
regard can be referred to the mean square error results which obtained 0.0248 for residual turbidity 
and 0.00000438 for residual aluminium. 

Keywords:  Water treatment; Turbidity; Free residual aluminium; Coagulation and flocculation; 
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1. Introduction

Water quality is becoming an ever more important 
issue, as water of low quality causes many significant 
problems. In particular, there is a wide range of microbial 
and chemical constituents of drinking water that can cause 
either acute or chronic detrimental health effects, and the 
detection of these constituents in treated water is often 
time-consuming, complex, and expensive [1]. However, 
water of poor quality can also be harmful from an eco-
nomic perspective, as resources have to be directed toward 
improving the water supply system every time a prob-
lem arises. For these reasons, there is growing pressure to 
improve water treatment and water quality management 
in order to ensure safe drinking water at reasonable costs. 
Systematic assessments of raw water, treatment processes, 

and operational monitoring issues are needed to meet 
these challenges.

There are many parameters, which can be used to 
measure the quality of water, of which turbidity is a common 
one, the purpose being to measure impurities in the water. 
In a physical sense, turbidity is a reduction in the clarity of 
water due to the presence of suspended or colloidal particles, 
and it is commonly used as an indicator of the general con-
dition of drinking water [1]. In addition, turbidity has been 
used for many decades as an indicator of the efficiency of 
drinking water coagulation and filtration processes, so that 
it is an important operational parameter for this reason, too. 
High turbidity values refer to poor disinfection and possi-
bly to fouling problems in the distribution network, so that 
turbidity should be minimized [2]. However, turbidity is a 
quite sensible and faulty measurement, and many variables 
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and phenomena are influencing it. This makes turbidity 
challenging for modeling purposes [1,2].

Another important quality parameter for treated water is 
residual aluminium, especially when aluminium flocculants 
are used in the treatment process [2]. Residual aluminium 
causes turbidity in water networks, resulting in acceptabil-
ity problems for consumers. Usually the phenomenon can be 
seen when residual aluminium exceeds 0.1–0.2 mg/L, which 
are the usual guideline levels for residual aluminium [1]. In 
addition, aluminium has been suggested as a causal factor in 
Alzheimer’s disease, in part because of reports showing the 
toxicity of aluminium, the elevation of aluminium concentra-
tions in the brains of patients with Alzheimer’s disease, and 
an association between aluminium concentrations in water 
and the prevalence of Alzheimer’s disease [3]. Some epidemi-
ological studies show that there can be a correlation between 
neural disorders and Al concentrations of 0.1 mg/L in the 
drinking water [4].

Many chemical and physical features of raw water affect 
the water treatment process. As an example of physical 
parameters, the water temperature has a remarkable influ-
ence on the flocculation in water treatment processes [5–7]. 
Naturally, process conditions also have a great effect. The 
dose of the flocculation chemical is naturally the key param-
eter, as is the adjusted pH value [2]. Turbidity can affect or 
be affected by the physical, microbiological, chemical and 
radiological characteristics of water [8]. Electrolytic conduc-
tivity, which is also called specific conductance, is a useful 
test in raw water for quick determination of minerals. Other 
important parameters that influence coagulant dosage in the 
water treatment process are colour and suspended solids [9].

In recent years, modeling and optimization have received 
great importance in most areas. Optimization allows for a 
better understanding of the needed system and in predicting 
the system behavior. In modeling, obtaining a non-linear rela-
tionship between input and output is the most important part 
that in classical way is often expensive and time-consuming 
and has little flexibility against sudden changes [10]. To 
overcome such problems, researchers decided to use neural 
networks to solve these problems.

The group method of data handling (GMDH) algorithm 
introduced by Ivakhnenko [11] is a heuristic self-organization 
process that establishes an input–output relationship within 
a complex system. It utilizes a multi-layered conceptual 
structure, similar to a feed forward multilayer neural net-
work [11]. Ikeda et al. [12] added a recursive procedure to the 
GMDH algorithm to utilize updated observation data and to 
modify parameters within the nodes of each layer, enabling 
time-variable modeling. They subsequently applied the 
enhanced model to the prediction of daily river flows. Tamura 
and Kondo [13] utilized the prediction of sum of squares or 
Akaike’s information criterion as parameter selection indi-
cators. Because the algorithm can easily generate high-level 
non-linear terms, this non-linear dynamic system can be well 
defined; however, its practicality would be seriously reduced 
[13]. In response, Yoshimura et al. [14] improved the model 
with a stepwise regressive procedure, returning the com-
plex final system to a low-level non-linear system, thereby 
increasing its applicability. The GMDH algorithm enables 
the automatic selection of input variables during model con-
struction, as well as a hierarchical polynomial regression of 

necessary complexity [15]. Specific functional dependence 
between the input and output variables is unnecessary, as 
the dependence has been incorporated into the modeling 
structure. The GMDH algorithm has been applied in various 
fields, for example, weather modeling, pattern recognition, 
physiological experiments, cybernetics, medical science, edu-
cation, ecology, safety science, economics and hydraulic field 
engineering systems [16–31].

Nowadays many studies are being performed on pre-
diction of residual turbidity and aluminium. For example, 
Chaves and Kojiri [32] developed the method, named sto-
chastic fuzzy neural network, and successfully applied to 
the optimization of the monthly operational strategies con-
sidering maximum water utilization and improvements on 
water quality in Barra Bonita reservoir located in the Sao 
Paulo State of Brazil. In 2012, Juntunen et al. [33] employed 
a multivariate linear regression method and a non-linear 
modeling method (multi-layer perceptron [MLP]) to model 
turbidity and residual aluminium in a water treatment in 
Finland. The results showed no significant difference in the 
turbidity case and only a small difference in the residual 
aluminium case between the linear and non-linear method 
[33]. Rak [34] developed a flexible Bayesian model of neural 
network, Gaussian processes and mixtures that demonstrate 
Markov chains of Monte Carlo Methods to model water tur-
bidity during the water treatment process in Sosnowka res-
ervoir located in Finland. Kennedy et al. [35] evaluated four 
different types’ neural network models, including two hybrid 
MLP models, a generalized regression neural network model 
and radial basis function model for predicting both tur-
bidity and dissolved organic matter removal at the Akron 
water treatment plant in Ohio, USA. The results showed two 
hybridizations of MLP were selected as the best model for 
predicting both outputs [35].

Although the above methods may be used to predict 
residual turbidity and aluminium, the disadvantages should 
be taken into consideration. For instance, artificial neural 
networks have a poor reproducibility because the weight 
and bias between neurons are given randomly and therefore 
are easy to fall into a local optimal solution, thus they cannot 
provide an optimal condition for the engineering application 
in water treatment [36]. In this research, multi-objective uni-
form-diversity genetic algorithm (MUGA) [37] is used for 
Pareto optimal design of a GMDH-type neural network. This 
method is developed according to a series of steps, includ-
ing solutions encoding, fitness computation based on the 
objective function, selection of the best chromosomes and 
the genetic propagation of chosen parent chromosomes by 
genetic operators, such as crossover and mutation. Both cross-
over and mutation are implemented to produce the new and 
better populations of chromosomes. Also, this method would 
be practical when the number of input variables is large while 
training dataset is relatively small. Furthermore, the outputs 
are formed as a mathematical equation which is used in opti-
mizing, simulating and developing integrated software. 

In this study, modeling was conducted with six inputs 
including pH, temperature, initial turbidity, electrolytic con-
ductivity and also the amount of chemical injection, coagu-
lant (polyaluminium chloride [PAC]) and coagulant assistant 
(polyelectrolyte) that the effect of input parameters on the 
residual turbidity and aluminium was studied. To ensure 
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the accuracy of the proposed approach toward behavior 
of experimental data, coefficient of determination (R2) and 
mean square error (MSE) were used.

2. Materials and methods

Clean output water from treatment plants is one of the 
highly important parameters with regard to the inlet water to 
treatment plant from natural sources such as rivers. A sche-
matic diagram of experimental plant is shown in Fig. 1. Raw 
water is supplied from bed of river and surface waters, and 
a screen filter is installed to remove debris that might cause 
problems with pumps. In order to provide proper height 
of raw water, a pumping station where multiple centrifu-
gal pumps are installed is considered. Output water from 
primary pumping station enters to divider of primary sed-
imentation ponds. In this unit, chemicals (polyelectrolyte) 
are added to water in order to accelerate the settling process; 
and copper sulfate and lime milk are used to control the 
growth of rooted aquatic plants. In the primary sedimenta-
tion, after mixing with chemicals, the raw water is directed to 
six circular ponds, and then in the next stage, after injecting 
polyaluminium chloride as coagulant and polyelectrolyte as 
coagulant assistant into water, it first enters to coagulation 
and flocculation unit and then settling basin. After coagula-
tion, filtration is used to remove suspended solids in the liq-
uid, which is the last stage of treatment to remove suspended 
solids in the water. In water filtration output, disinfectants 
(secondary chlorine) are used to destroy or deactivate the 
pathogenic microorganisms (pathogens) including bacteria, 
seaweeds, viruses, etc.

In order to measure pH, the pH meter device (SENTIX41 
model, WTW company, Germany) and conductivity meter and 
digital thermometer (WTW company, and cond 330i/tet-
rocon325 model) turbidity meter (N2100.model, HACH 
company, USA) were used. To evaluate the effect of resid-
ual turbidity, jar test was used. This experimental study 
was performed in laboratory scale (80 series experiments 
in jar container) over a period of a year (from July 2016 to 
July 2017) in chemical laboratory of Guilan water treatment 
plant located in Rasht, Guilan, Iran. The plant uses mainly 
surface water from Sepidrood River or Shahrebijar River 

and provides drinking water of cities and villages in central 
regions and parts of East and West regions of Guilan prov-
ince. In this period polyaluminium chloride applied as coag-
ulant and polyelectrolyte operated as assistant coagulant. At 
the beginning of each series of tests, four parameters of raw 
water such as initial turbidity, electrical conductivity, pH and 
temperature were assigned as inputs. The jar test was used to 
identify the most adapted mix of chemical compounds and 
concentrations for coagulation–flocculation. It was a batch 
test consisting of using several identical jars containing the 
same volume and concentration of feed, which were charged 
simultaneously with six different doses of a potentially effec-
tive coagulant. The six jars could be stirred simultaneously 
at known speeds. The treated feed samples were mixed rap-
idly and then slowly and then allowed to settle. These three 
stages were an approximation of the sequences based on the 
large-scale plants of rapid mix, coagulation flocculation and 
settling basins. At the end of the settling period, test samples 
were drawn from the jars and turbidity of supernatant liquid 
were measured. A plot of turbidity against coagulant dose 
gave an indication of the optimum dosage (i.e., the minimum 
amount required to give acceptable clarification). So, a water 
sample with the lowest turbidity was identified and the spec-
trophotometer (DR 6000 model, HACH company) showed 
the amount of free residual aluminium. The lower, upper and 
average bounds of the data are shown in Table 1 and samples 
of experimental data including obtained input and output 
from Guilan water treatment plant are shown in Table 2.

The results of this experiment are used to provide a 
non-linear model to predict water quality. The model consists 
of six parameters as input and two outputs that is amount of 
residual turbidity and aluminium.

3. GMDH type – neural network

The GMDH is a basic technique for self-organized learn-
ing. It enables the researchers to control the process of the 
complex model from the input set to the output data and to 
determine the model parameters [38]. 

3.1. Basic theory 

Imagine for a given input vector X = (x1, x2, x3, ..., xN) 
we want to predict the output (yˆi) as close as possible to 
the actual output (yi). Therefore, given M observations of 
multi-input-single-output data pairs, we have:

Fig. 1. Water treatment stages in treatment plant.

Table 1
Range of collected data from tapping unit

Inputs Minimum Maximum Average

Temperature (°C) 12.7 23.4 16.59
pH 7.33 8.6 8.05
Electrolytic conductivity 
(µs/cm)

140.8 290 200.5

Initial turbidity (NTU) 1.92 197 46.04
Polyelectrolyte (ppm) 0.05 0.32 0.104
Polyaluminium chloride 
(ppm)

1 11.5 3.62
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yi = f (xi1, xi2, xi3, . . . , xin)    (i = 1, 2, 3, ..., M) (1)

To train the GMDH network to predict (yˆi) with a given 
input vector X = (x1, x2, x3, ..., xN), we have:

yˆi = fˆ(xi1, xi2, xi3, . . . , xin)    (i = 1, 2, 3, ..., M) (2)

Now the GMDH neural network should be determined 
such that the square difference between the actual output 
and predicted value is minimized:
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The GMDH neural network establishes a general mapping 
between the input and output variables as a function of the 
non-linear Volterra equation as follows [39]:
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This equation is represented as a Kolmogorov–Gabor 
polynomial [15]. This mathematical equation can also be 
represented by a system of partial quadratic polynomials 
containing only two variables (neurons) in the form of:

yˆ = G(xi, xj) = a0 + a1xi + a2xj + a3xi
2 + a4xj 2 + a5xixj  (5)

The purpose of GMDH is to determine coefficient ai in 
Eq. (5) using regression in order to minimize the difference 
between the actual output (y) and predicted output (yˆ) for 
each pair (xi, xj) of input variables [40,41]. Therefore, to opti-
mize the coefficients of each quadratic function, the principle 
of least-squares error is employed as follows:
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In the basic GMDH algorithm form, all possibilities of 
two independent variables out of a total of n input vari-
ables are used to construct the regression polynomial in 
the form of Eq. (5) that best fits the dependent observation 
(yi, i = 1, 2, 3, ..., M) with a least squares sense. Consequently 
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neurons will be built in the first hidden layer 

of the feedforward neural network from the observations 
{(yi, xip, xiq); (i = 1, 2, 3, ..., M)} for different (p, q ∈ {1, 2, 3, ..., 
n}). Hence, for each M data triples the following matrix is 
presented:

Y = Aa (7)

where Y = {y1, y2, y3,..., yM} is the observed output vector, 
a = (a1, a2, a3, a4, a5) is the vector coefficient of the quadratic 
polynomial, and A is computed as follows:
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The least squares process from multiple regression 
analysis generates a normal equation solution as follows:

a = (AT A)−1ATY (9)

which calculates the vector of the best coefficients of qua-
dratic equation (Eq. (5)) for the entire set of M data triples. It 
should be noted that this process is repeated for each neuron 
in the next hidden layer according to the network’s connec-
tivity topology.

3.2. Applying the genetic algorithm to the generalized structure 
GMDH (GS-GMDH)

Genetic algorithms (GAs) are more efficient than 
traditional gradient methods [42] and are utilized to train 
neural networks with coefficients and associated weights. 
The classical GMDH algorithm can be in the form of a set 
of neurons, whereby in each layer various neuron pairs are 
connected and associated with a quadratic polynomial, thus 
creating new neurons in the next layer. 

Table 2
Sample of experimental data including obtained input and output from Guilan water treatment plant

Test no. Model inputs Model outputs
Polyelectrolyte 
(ppm)

pH Initial 
turbidity 
(NTU)

Polyaluminium 
chloride (ppm)

Temperature 
(°C)

Electrolytic 
conductivity 
(ms/cm)

Residual 
turbidity (NTU)

Free residual 
aluminium 
(ppm)

1 0.06 7.78 7.23 1.5 15.7 182.2 0.45 0.053
2 0.11 8 43.6 4 19 174 2.2 0.13
_ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _
79 0.18 8.34 127 7.5 15.9 213 1.4 0.08
80 0.15 7.75 118 6.5 13.5 176 0.88 0.066
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Therefore, it is possible to produce a simple and novel 
encoding scheme applicable to the evolutionary design of 
the generalized structure GMDH (GS-GMDH) where the 
connectivity configuration is not limited to adjacent layers, 
as specified initially by Nariman-Zadeh and Jamali [43]. 

The GS-GMDH encoding scheme involves GA and two 
objective functions, that is, training error (TE) and prediction 
error (PE) and presents accurate solutions. This kind of 
GMDH must exhibit the ability to specify different sizes 
and lengths of such neural networks [44]. GS-GMDH is 
summarized below.

Neuron 14 in the first hidden layer is connected to the 
output layer directly and passes to the second layer. Hence, 
the output layer neuron is denoted by 12231414 (with 
14 twice). In fact, a neuron 1223 in the second hidden layer 
is used to induce output neuron 12231414 by constructing a 
virtual neuron 1414 created in the second hidden layer (Fig. 2). 
If a neuron traverses many adjacent layers and connects to 
another neuron in the next second, third, fourth or following 
hidden layers, the above iteration takes place. The number of 
neuron iterations depends on the number of hidden layers 
traversed, n˜, which is computed as 2n˜. It is also noted that 
chromosome 1212 2323 (not the same as chromosome 1212 
1323) is not valid and should be rewritten as 1223. 

The crossover and mutation genetic operators are utilized 
to induce two offspring from the parents. The crossover of two 
chosen individuals, substitutes two chromosomes’ tails by a 
random point selected according to Fig. 3. The building block 
information of GS-GMDH can be substituted by crossovers, 
as seen in Fig. 4. Different lengths of chromosomes created 
via such crossover operation lead to varying GS-GMDH net-
work structure sizes. The population diversity is related to the 
mutation operation, which is easily substituted by different 
chromosome genes to other possible symbols, for example, 
12231414 to 12233414. These operations are repeated until a 
valid chromosome is created. The flowchart of the GS-GMDH 
is shown in Fig. 5.

3.3. Multi-objective Pareto optimization

Multi-objective optimization which is also called 
multi-criteria optimization or vector optimization has been 
defined as finding a vector of decision variables satisfying 
constraints to give optimal values to all objective functions. 
In multi-objective optimization problems (MOPs), there are 
several objective or cost functions (a vector of objectives) 
to be optimized (minimized or maximized) simultane-
ously. These objectives often conflict with each other so that 
improving one of them will deteriorate another. Therefore, 
there is no single optimal solution as the best with respect to 
all the objective functions. Instead, there is a set of optimal 

Fig. 3. Crossover operation of two individuals in the GS-GMDH 
model.

Fig. 2. GS-GMDH network chromosome structure.
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Fig. 5. Flowchart of GS-GMDH neural network.

Fig. 4. Crossover operation in two GS-GMDH networks.
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solutions, known as Pareto optimal solutions or Pareto front 
for MOPs. Such multi-objective minimization based on the 
Pareto approach explained in a study by Jamali et al. [37].

3.3.1. Multi-objective uniform-diversity genetic algorithm

The MUGA uses non-dominated sorting mechanism 
together with an ε-elimination diversity preserving 
algorithm to get Pareto optimal solutions of multi-objective 
optimization more precisely and uniformly. A sorting 
procedure to constitute a front could be simply accomplished 
by comparing all the individuals of the population and 
including the non-dominated individuals in the front [37].

4. Results 

Genetic algorithm is used to create optimum 
chromosome in which an initial population is considered 
for optimization, and new chromosomes are produced with 
mutation probability functions and the new chromosome 
crossover. Genetic stage parameters are shown in Table 3. 
Chromosome with lowest experimental and training error 
is selected as the top chromosome that is shown by Pareto 
curve in Figs. 6 and 7. Considering the graph, point A has 
the greatest training error and the least experimental error. 
In this paper, the purpose is to optimize the training and 
experimental error that point M is the optimum due to 
the high correlation coefficient point. The lowest training 
and testing error according to Pareto’s figure is given in 
Tables 4 and 5. The final premier chromosomes to predict 
the amount of residual aluminium and turbidity in water is 
shown in Tables 6 and 7. It should be noted that each number 

Table 3
Structural parameters of GMDH model

Population 
size

400 Crossover 0.98

Number of 
iteration

1,300 Number of objective 
function

2

Mutation 0.1 Number of hidden 
layer

6

Fig. 6. Pareto points of training and testing errors of GMDH 
model for residual turbidity.

Fig. 7. Pareto points of training and testing errors of GMDH 
model for residual aluminium.

Table 4
Train and test error of Pareto curve for residual turbidity

Design points Training error Testing error

A 0.01041 0.27523
B 0.019359 0.036913
M 0.019359 0.036913

Table 5
Train and test error of Pareto curve for residual aluminium

Design points Training error Testing error

A 0.0000416411 0.0004807126
B 0.0000728757 0.0000158282
M 0.0000459905 0.0000390073

Table 6
Premier chromosomes to predict the amount of residual 
aluminium

The best of chromosomes Training error Testing error
11453436163526331535243
61634365612255556233534
46134614362336345512232
35513343556135614561434
46552222265625343546264
4334526453535

0.0000459905 0.00000390073

Table 7
Premier chromosomes to predict the amount of residual turbidity

The best of chromosomes Training error Testing error
113516351545154514142446
164624361466252623562656
233444552644354612242626
353635661416223414241646
133314231445234514232325
15362556

0.019359 0.036913
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allocated to one input variable, which are listed as: (1) poly-
electrolyte, (2) pH, (3) turbidity, (4) polyaluminium chloride, 
(5) temperature, (6) electrical conductivity.

The proposed structure of GMDH neural network which 
applied to predict residual turbidity and aluminium is 
revealed in Figs. 8 and 9.

In this modeling, for better network training, laboratory 
data were divided into two categories (70% for training and 
30% for testing). After obtaining the proposed model, results 
of the model were compared with experimental results. As 
can be seen in Figs. 10 and 11, the results of the model are in 
good agreement with the obtained results in operation unit 
of water treatment plant.

To assess accuracy of the model and error calculation, 
mean squared error (MSE; Eq. (10)), mean absolute RMSE 
(Eq. (11)) and coefficient of determination (R2; Eq. (12)) rela-
tions were used. Where, N is the number of samples used for 
modeling, Y(i,exp) is the experimental value, and Y(i,model) is the 
networks’ predicted value. Table 8 indicate the reliability of 
model by presenting the coefficient of determination values 
(R2), mean square error (MSE), normal root mean square 
error (NRMSE).

MSE model= −∑
1 2

N
Y Y
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i i( )( ,exp) ( , )  (10)
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Fig. 8. Structure of the proposed GMDH neural network for 
residual turbidity.

Fig. 9. Structure of the proposed GMDH neural network for 
residual aluminium.

Fig. 10. Real output vs. modeled output for residual turbidity.

Fig. 11. Real output vs. modeled output for residual aluminium.
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Prediction of residual turbidity and aluminium using 
the GMDH, parameters values were obtained by non-linear 
Volterra equation (Appendices 1 and 2).

5. Discussion

Artificial intelligence (AI) provides an effective tool for 
many complicated engineering problems in various fields. As 
a result, in this study, AI-based techniques of GMDH were 
employed for prediction on residual turbidity and residual 
aluminium. The models were presented using GMDH net-
work, which indicated the relation between pH, tempera-
ture, initial turbidity, electrolytic conductivity and also the 
amount of chemical injection, coagulant (PAC) and coagulant 
assistant (polyelectrolyte) with residual turbidity and resid-
ual aluminium.

According to premier chromosomes (Tables 6 and 7), it 
can be concluded that amount of polyelectrolyte injection, 
pH, initial turbidity, amount of polyaluminium chloride 
injection, temperature, electrical conductivity have effect on 
residual turbidity (14.84%, 16.40%, 14.84%, 20.31%, 15.62%, 
17.96%) and also residual aluminium (10.15%, 13.28%, 
23.43%, 15.62%, 21.09%, 16.40%), respectively. The results 
of modeling were compared with experimental data that 
demonstrates good data compliance, with the coefficient of 
determination (R2) in (GMDH)-type network of 0.8239 and 
0.9138 for residual turbidity and for residual aluminium, 
respectively. Also, error analysis results showed good perfor-
mance of the proposed models, with the mean square error 
(MSE) values of 0.0248 for residual turbidity and 0.00000438 
for residual aluminium. 

6. Conclusions

As drinking water quality guidelines continue to become 
more stringent, modeling methods which utilize process his-
tories will offer valuable tools for process modeling and con-
trol in water treatment plants and provide an alternative to 
conventional methodologies. Moreover, these modeling tech-
niques allow such utilities to increase their process knowl-
edge and, therefore, facilitate process control. These results 
provide further support for the wider use of the data-driven 
selection of variables and modeling in water treatment pro-
cesses and warrant further investigation. 

In this paper, genetic algorithms (GAs) are deployed 
for multi-objective Pareto optimal design of GMDH-type 

neural networks that have been used for modeling of a 
non-linear system. In this way, GAs with a specific encod-
ing scheme is first presented to evolutionary design of 
the generalized GMDH-type neural networks in which 
the connectivity configurations in such networks are not 
limited to adjacent layers. Multi-objective GAs with a new 
diversity preserving mechanism are second used for Pareto 
optimization of such GMDH-type neural networks. The 
important conflicting objectives of GMDH-type neural 
networks that are considered in this work are, namely, TE, 
PE and number of neurons (N) of such neural networks. 
Moreover, an important trade-off can be discovered by 
such Pareto optimum approach to the design of GMDH-
type neural networks which helps a designer to select a 
network compromisingly.
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Appendices

Appendix 1
Polynomial equation of the GMDH model for the prediction of residual turbidity

Y1=(-2.534249e+00)+( 5.349917e-03*Tu)+(3.972091e-01*T)+(-4.958308e-05*(Tu)^2)+(-1.173815e-02*(T)^2)+(2.325866e-04*Tu*T);
Y2=(4.396963e+00)+(6.594475e+00*PE)+(-3.689741e-02*EC)+(-2.111863e+01*(PE)^2)+(8.346654e-05*(EC)^2)+(6.467581e-03*PE*EC);
Y3=(-3.171863e-01)+(-9.978223e+00*PE)+(1.715436e-01*T)+(-1.540328e+01*(PE)^2)+(-7.523384e-03*(T)^2)+(1.066683e+00*PE*T);
Y4=(-1.302972e+00)+(-2.347234e-02*PAC)+(2.467508e-01*T)+(-1.399330e-02*(PAC)^2)+(-8.069955e-03*(T)^2)+(1.353679e-02*PAC*T);
Y5=(1.403025e+00)+(-2.625819e+01*PE)+(5.287365e-01*PAC)+(-7.140982e+01*(PE)^2)+(-1.796670e-01*(PAC)^2)+(9.546558e+00*PE*
PAC);
Y6=(3.021631e+01)+(-6.808825e+00*pH)+(-7.717788e-01*PAC)+(3.860603e-01*(pH)^2)+(-2.206140e-02*(PAC)^2)+(1.275657e 
01*pH*PAC);
Y7=(3.855509e+00)+(1.406572e-01*PAC)+(-3.061957e-02*EC)+(-1.996265e-02*(PAC)^2)+(6.734379e-05*(EC)^2)+(4.527770e-04*PAC*EC);
Y8=(3.858998e+00)+(8.082464e-03*Tu)+(-2.914066e-02*EC)+(-5.870398e-05*(Tu)^2)+(6.640365e-05*(EC)^2)+(8.225888e-06*Tu*EC);
Y9=(1.570817e+01)+(-5.886964e+00*pH)+(1.304018e+00*T)+(4.258881e-01*(pH)^2)+(-1.634969e-02*(T)^2)+(-8.960211e-02*pH*T);
Y10=(9.454767e+00)+(-6.431176e+00*pH)+(1.829721e-01*EC)+(7.174420e-01*(pH)^2)+(6.888317e-05*(EC)^2)+(-2.648328e-02*pH*EC);
Y11=(2.161046e+01)+(-4.810229e+00*pH)+(-2.040795e-02*Tu)+(2.752489e-01*(pH)^2)+(-6.079240e-05*(Tu)^2)+(3.802826e-03*pH*Tu);
Y12=(-4.172748e+00)+(6.226588e-01*T)+(3.451400e-05*EC)+(-8.963073e-03*(T)^2)+(5.668901e-05*(EC)^2)+(-1.497650e-03*T*EC);
Y13=(5.729705e-01)+(3.665203e-03*Tu)+(1.027654e-01*PAC)+(-1.264403e-04*(Tu)^2)+(5.054042e-03*(PAC)^2)+(9.753606e-04*Tu*PAC);
Y14=(1.738917e+01)+(-2.363417e+00*PE)+(-3.821225e+00*pH)+(-1.592304e+01*(PE)^2)+(2.135904e-01*(pH)^2)+(1.138403e+00*PE*pH);
Y15=(9.331941e-01)+(-6.419897e-01*PE)+(1.803878e-03*Tu)+(-5.374308e+01*(PE)^2)+(-2.882927e-04*(Tu)^2)+(2.781535e-01*PE*Tu);
Y16=(5.139762e-01)+(-2.080955e+00*PE)+(-9.858684e-02*Y1)+(9.006520e+00*(PE)^2)+(7.969901e-01*(Y1)^2)+(-1.251081e+00*PE*Y1);
Y17=(-3.018744e-01)+(3.131842e+00*Y2)+(-1.827276e+00*Y1)+(-2.676241e+00*(Y2)^2)+(-1.351629e-01*(Y1)^2)+(2.840377e+00*Y2*Y1);
Y18=(1.008218e+00)+(5.738668e+00*Y3)+(-6.779057e+00*Y4)+(-2.184193e+01*(Y3)^2)+(-1.397651e+01*(Y4)^2)+(3.683629e+01*Y3*Y4);
Y19=(3.600092e-02)+(1.309750e+00*Y6)+(-4.728705e-01*Y7)+(-8.149312e-01*(Y6)^2)+(7.742147e-02*(Y7)^2)+(8.657444e-01*Y6*Y7);
Y20=(-3.192379e-01)+(-1.966325e+00*Y2)+(3.768856e+00*Y7)+(2.321067e+00*(Y2)^2)+(4.421428e-01*(Y7)^2)+(-3.240565e+00*Y2*Y7);
Y21=(-1.220172e-01)+(2.192853e+00*Y6)+(-9.715260e-01*Y8)+(-8.083308e-02*(Y6)^2)+(1.389922e+00*(Y8)^2)+(-1.413312e+00*Y6*Y8);
Y22=(3.123993e+00)+(1.232929e+00*Y5)+(-3.036353e-02*EC)+(-5.062570e-01*(Y5)^2)+(6.427012e-05*(EC)^2)+(3.021726e-03*Y5*EC);
Y23=(8.532315e-01)+(7.236378e-01*Y9)+(-1.865073e+00*Y10)+(-2.032153e+00*(Y9)^2)+(-3.885186e-01*(Y10)^2)+(3.751105e+00*Y9*Y10);
Y24=(8.194861e-01)+(-6.309860e-01*Y11)+(-6.709227e-01*Y12)+(-3.253282e-01*(Y11)^2)+(-3.594373e-01*(Y12)^2)+(2.180767e+00*Y1
1*Y12);
Y25=(-1.872281e+00)+(1.955294e+00*Y10)+(2.354289e+00*Y12)+(1.505519e+00*(Y10)^2)+(1.404478e+00*(Y12)^2)+(-
4.367517e+00*Y10*Y12);
Y26=(-2.740226e-01)+(1.129560e+00*Y11)+(4.130860e-01*Y13)+(6.234194e-01*(Y11)^2)+(1.193394e+00*(Y13)^2)+(-
2.088544e+00*Y11*Y13);
Y27=(3.185215e-01)+(-6.712800e-02*Y10)+(1.276433e-01*PAC)+(3.539824e-01*(Y10)^2)+(-1.711278e-02*(PAC)^2)+(5.568889e-
02*Y10*PAC);
Y28=(4.488382e-01)+(-1.108440e+00*Y1)+(1.102692e+00*Y7)+(-3.682313e+00*(Y1)^2)+(-4.723191e+00*(Y7)^2)+(9.009614e+00*Y1*Y7);
Y29=(9.630772e-01)+(-5.028623e+00*Y14)+(4.381553e+00*Y16)+(3.882025e+00*(Y14)^2)+(4.092315e-01*(Y16)^2)+(-
3.629140e+00*Y14*Y16);
Y30=(4.445298e-01)+(-2.125319e+00*Y1)+(2.082777e+00*Y8)+(-2.603745e+00*(Y1)^2)+(-4.507046e+00*(Y8)^2)+(7.743488e+00*Y1*Y8);
Y31=(3.330239e+00)+(-9.219826e-02*Y1)+(-2.710335e-02*EC)+(4.188751e-01*(Y1)^2)+(5.990984e-05*(EC)^2)+(1.473905e-03*Y1*EC);
Y32=(-1.159549e+00)+(7.945073e-01*Y5)+(2.410819e+00*Y2)+(-9.978539e-01*(Y5)^2)+(-1.707158e+00*(Y2)^2)+(1.715868e+00*Y5*Y2);
Y33=(3.536761e+01)+(-7.705563e+00*pH)+(-6.399059e+00*Y13)+(4.085510e-01*(pH)^2)+(-2.374659e-01*(Y13)^2)+(9.707910e-
01*pH*Y13);
Y34=(-5.121630e-02)+(6.335661e-01*Y5)+(4.097567e-01*Y6)+(-1.195428e+00*(Y5)^2)+(-1.105537e+00*(Y6)^2)+(2.322328e+00*Y5*Y6);
Y35=(-1.154447e+00)+(2.733729e+00*Y15)+(1.058104e-02*Tu)+(-4.329898e-01*(Y15)^2)+(-1.029354e-05*(Tu)^2)+(-1.205211e-02*Y15*Tu);
Y36=(-9.942429e-02)+(9.612879e-01*Y5)+(1.890964e-01*Y11)+(-8.540307e-01*(Y5)^2)+(-6.205909e-01*(Y11)^2)+(1.436177e+00*Y5*Y11);
Y37=(7.019803e-01)+(1.361868e+00*Y5)+(-1.835637e+00*Y4)+(-3.551945e+00*(Y5)^2)+(-1.892801e+00 *(Y4)^2)+(6.228997e+00*Y5*Y4);
Y38=(1.063678e-01)+(1.094391e+00*Y11)+(-4.711464e-01*Y4)+(-6.720486e-01*(Y11)^2)+(2.833633e-01*(Y4)^2)+(6.556707e-01*Y11*Y4);
Y39=(1.179561e+00)+(3.961439e-01*Y11)+(-2.056264e+00*Y9)+(-2.312680e+00*(Y11)^2)+(-1.102893e+00*(Y9)^2)+(4.955775e+00*Y11*Y9);

(Continued)
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Y40=(7.392900e-01)+(-1.515048e+00*Y3)+(9.608336e-01*Y8)+(-1.579244e+00*(Y3)^2)+(-2.622079e+00*(Y8)^2)+(5.035660e+00*Y3*Y8);
Y41=(2.639330e+00)+(-7.775909e+00*Y9)+(2.435152e+00*Y12)+(3.877738e+00*(Y9)^2)+(-9.913655e-01*(Y12)^2)+(7.657675e-01*Y9*Y12);
Y42=(2.779018e-01)+(3.220507e+00*Y16)+(-2.573860e+00*Y17)+(-1.225961e+01*(Y16)^2)+(-9.472484e+00*(Y17)^2)+(2.190167e+01*Y1
6*Y17);
Y43=(1.751429e-02)+(6.389429e-01*Y5)+(3.750539e-01*Y19)+(-4.050181e+00*(Y5)^2)+(-3.534269e+00*(Y19)^2)+(7.587393e+00*Y5*Y19);
Y44=(-4.952019e-03)+(-2.625304e+00*Y20)+(3.590192e+00*Y21)+(4.282066e+00*(Y20)^2)+(1.039065e+00*(Y21)^2)+(-
5.288120e+00*Y20*Y21);
Y45=(-5.686924e-01)+(1.393357e+00*Y22)+(6.324175e-01*Y23)+(-2.127044e-01*(Y22)^2)+(2.907076e-01*(Y23)^2)+(-5.242944e-
01*Y22*Y23);
Y46=(5.665858e-02)+(2.643864e+00*Y24)+(-1.888613e+00*Y25)+(-9.475337e-01*(Y24)^2)+(1.309524e+00*(Y25)^2)+(-1.892508e-
01*Y24*Y25);
Y47=(1.731618e+00)+(2.357651e+00*Y26)+(-4.975441e+00*Y4)+(-1.027736e+01*(Y26)^2)+(-7.540594e+00*(Y4)^2)+(1.974631e+01*Y26*Y4);
Y48=(7.381382e-01)+(-4.099027e-01*Y27)+(-4.066926e-01*Y28)+(8.390097e-01*(Y27)^2)+(9.514665e-01*(Y28)^2)+(-7.697851e-
01*Y27*Y28);
Y49=(2.322927e-01)+(8.453149e-01*Y29)+(-6.937675e-01*Y10)+(-2.776347e-01*(Y29)^2)+(5.017628e-01*(Y10)^2)+(3.826283e-
01*Y29*Y10);
Y50=(2.150037e-01)+(-7.776868e-01*Y30)+(1.300145e+00*Y31)+(-6.256264e+00*(Y30)^2)+(-6.705575e+00*(Y31)^2)+(1.325905e+01*Y3
0*Y31);
Y51=(3.037004e-01)+(5.289203e-01*Y32)+(-3.144789e-01*Y33)+(5.400987e-01*(Y32)^2)+(7.692310e-01*(Y33)^2)+(-8.475286e-
01*Y32*Y33);
Y52=(2.148329e-01)+(1.859845e+00*Y34)+(-1.288501e+00*Y20)+(-6.208213e+00*(Y34)^2)+(-4.115877e+00*(Y20)^2)+(1.056565e+01*Y3
4*Y20);
Y53=(-4.258709e-01)+(1.089225e+00*Y35)+(7.810581e-01*Y36)+(1.388191e-01*(Y35)^2)+(1.431551e-01*(Y36)^2)+(-7.131398e-
01*Y35*Y36);
Y54=(-4.765462e-02)+(-9.960924e-01*Y37)+(2.096180e+00*Y38)+(9.175709e-02*(Y37)^2)+(-2.445221e+00*(Y38)^2)+(2.306137e+00*Y3
7*Y38);
Y55=(2.208790e-01)+(1.519750e+00*Y36)+(-1.143601e+00*Y39)+(-1.999338e+00*(Y36)^2)+(-6.114384e-01*(Y39)^2)+(3.032686e+00*Y3
6*Y39);
Y56=(-2.176225e-01)+(1.550833e+00*Y40)+(-3.664896e-01*Y41)+(-3.196257e-01*(Y40)^2)+(7.396902e-01*(Y41)^2)+(-3.954749e-
01*Y40*Y41);
Y57=(-4.195049e-01)+(-1.290428e+00*Y42)+(3.146901e+00*Y18)+(2.188431e+00*(Y42)^2)+(-1.484755e+00*(Y18)^2)+(-
1.161502e+00*Y42*Y18);
Y58=(1.040030e-01)+(3.630972e-01*Y43)+(3.989505e-01*Y44)+(-2.840879e+00*(Y43)^2)+(-2.519960e+00*(Y44)^2)+(5.507675e+00*Y4
3*Y44);
Y59=(2.834904e-01)+(1.000719e+00*Y45)+(-5.358068e-01*Y46)+(-3.337358e+00*(Y45)^2)+(-2.197664e+00*(Y46)^2)+(5.810000e+00*Y4
5*Y46);
Y60=(5.097583e-01)+(1.501204e+00*Y47)+(-1.678192e+00*Y48)+(5.357896e-01*(Y47)^2)+(1.913017e+00*(Y48)^2)+(-
1.849728e+00*Y47*Y48);
Y61=(7.820931e-01)+(-1.299957e-01*Y49)+(-8.145208e-01*Y50)+(-6.867047e-01*(Y49)^2)+(-5.716942e-01*(Y50)^2)+(2.412836e+00*Y4
9*Y50);
Y62=(2.606641e-01)+(-1.239490e+00*Y51)+(1.601514e+00*Y52)+(4.182415e-01*(Y51)^2)+(-9.907003e-01*(Y52)^2)+(9.384172e-
01*Y51*Y52);
Y63=(2.362268e-01)+(1.816781e+00*Y53)+(-1.272461e+00*Y54)+(-5.968370e+00*(Y53)^2)+(-4.532086e+00*(Y54)^2)+(1.078464e+01*Y5
3*Y54);
Y64=(-1.312742e-01)+(1.730468e+00*Y55)+(-5.129862e-01*Y56)+(-7.931690e-01*(Y55)^2)+(3.608799e-01*(Y56)^2)+(3.568982e-
01*Y55*Y56);
Y65=(-5.471205e-01)+(-1.171959e+00*Y57)+(3.579326e+00*Y58)+(1.073377e+00*(Y57)^2)+(-1.961507e+00*(Y58)^2)+(3.088630e-
02*Y57*Y58);
Y66=(-1.072116e-01)+(8.825674e-01*Y59)+(1.446823e-01*Y60)+(2.328192e+00*(Y59)^2)+(2.625686e+00*(Y60)^2)+(-
4.931836e+00*Y59*Y60);
Y67=(-4.504153e-01)+(-4.010753e-01*Y61)+(2.518524e+00*Y62)+(-1.055767e-01*(Y61)^2)+(-2.085689e+00*(Y62)^2)+(1.555078e+00*Y6
1*Y62);

Appendix 1 (Continued)
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Y68=(-2.845898e-01)+(1.637336e+00*Y63)+(-4.042879e-02*Y64)+(2.211240e-01*(Y63)^2)+(1.064879e+00*(Y64)^2)+(-
1.604184e+00*Y63*Y64);
Y69=(-8.118940e-02)+(1.152379e+00*Y65)+(-4.807945e-02*Y66)+(5.285302e-01*(Y65)^2)+(1.047534e+00*(Y66)^2)+(-
1.622464e+00*Y65*Y66);
Y70=(2.585155e-01)+(-1.492458e+00*Y67)+(1.941866e+00*Y68)+(2.897684e-01*(Y67)^2)+(-1.065277e+00*(Y68)^2)+(1.062598e+00*Y6
7*Y68);
Y71=(-1.346896e-01)+(-1.275198e+00*Y69)+(2.723254e+00*Y70)+(3.368519e-01*(Y69)^2)+(-2.510099e+00*(Y70)^2)+(1.886811e+00*Y6
9*Y70);

Appendix 1 (Continued)

Appendix 2
Polynomial equation of the GMDH model for the prediction of residual aluminium

Y1=(-1.702106e-01)+(-7.626401e-03*PAC)+(2.772828e-02*T)+(8.764070e-05*(PAC)^2)+(-7.425876e-04*(T)^2)+(5.624936e-04*PAC*T);
Y2=(7.467993e-02)+(-1.193848e-04*Tu)+(2.578315e-03*PAC)+(1.165939e-05*(Tu)^2)+(4.991641e-03*(PAC)^2)+(-4.934242e-04*Tu*PAC);
Y3=(-1.397023e-01)+(1.296172e-03*Tu)+(2.017830e-03*EC)+(-2.076688e-06*(Tu)^2)+(-4.387130e-06*(EC)^2)+(-5.371943e-06*Tu*EC);
Y4=(-1.455833e-01)+(6.966782e-01*PE)+(1.954198e-03*EC)+(-5.603512e-01*(PE)^2)+(-4.062518e-06*(EC)^2)+(-2.740257e-03*PE*EC);
Y5=(-2.451797e-01)+(1.375095e-04*Tu)+(3.572820e-02*T)+(-1.591860e-07*(Tu)^2)+(-9.321519e-04*(T)^2)+(-4.779012e-06*Tu*T);
Y6=(1.161813e+00)+(-4.200895e-01*pH)+(4.844727e-03*EC)+(3.430198e-02*(pH)^2)+(-2.305933e-06*(EC)^2)+(-4.912461e-04*pH*EC);
Y7=(-2.051531e-01)+(-1.921306e-02*PE)+(3.066802e-02*T)+(-1.956042e-01*(PE)^2)+(-8.075459e-04*(T)^2)+(9.139996e-03*PE*T);
Y8=(2.155929e+00)+(-5.500166e-01*pH)+(-2.631814e-03*PAC)+(3.618751e-02*(pH)^2)+(-5.309768e-04*(PAC)^2)+(1.065628e-
03*pH*PAC);
Y9=(-5.714772e-01)+(3.868021e-02*T)+(3.074136e-03*EC)+(-4.232457e-04*(T)^2)+(-3.589102e-06*(EC)^2)+(-9.949798e-05*T*EC);
Y10=(1.611915e+00)+(1.659953e+00*PE)+(-4.326280e-01*pH)+(-1.518830e-01*(PE)^2)+(3.009217e-02*(pH)^2)+(-1.962753e-01*PE*pH);
Y11=(2.842984e-01)+(-1.031613e-02*pH)+(-2.849727e-02*T)+(-7.071133e-03*(pH)^2)+(-1.038367e-03*(T)^2)+(8.291753e-03*pH*T);
Y12=(1.717629e+00)+(-4.421779e-01*pH)+(7.262944e-04*Tu)+(2.970533e-02*(pH)^2)+(-1.097958e-06*(Tu)^2)+(-7.185976e-05*pH*Tu);
Y13=(-1.555620e-01)+(2.452657e-02*PAC)+(1.999944e-03*EC)+(-7.878449e-04*(PAC)^2)+(-4.146337e-06*(EC)^2)+(-8.695351e-
05*PAC*EC);
Y14=(5.920667e-02)+(6.427719e-01*PE)+(-7.099443e-04*Tu)+(-2.692234e+00*(PE)^2)+(-5.167198e-06*(Tu)^2)+(7.281772e-03*PE*Tu);
Y15=(1.369970e-01)+(-1.415961e+00*PE)+(1.503667e-02*PAC)+(-6.204435e+00*(PE)^2)+(-1.127340e-02*(PAC)^2)+(6.868821e-
01*PE*PAC);
Y16=(2.185037e-01)+(8.541725e-01*PE)+(-5.344332e+00*Y1)+(1.079376e+00*(PE)^2)+(4.609771e+01*(Y1)^2)+(-1.374756e+01*PE*Y1);
Y17=(1.343818e-01)+(2.149488e+00*Y2)+(-5.477240e+00*Y3)+(-9.106743e+00*(Y2)^2)+(3.723016e+01*(Y3)^2)+(3.603377e+00*Y2*Y3);
Y18=(5.666695e-01)+(-3.615028e+00*Y4)+(-9.594257e+00*Y5)+(1.219410e+01*(Y4)^2)+(5.002180e+01*(Y5)^2)+(2.526634e+01*Y4*Y5);
Y19=(-6.701909e-02)+(1.721888e+00*Y6)+(2.004564e-03*Tu)+(3.269030e-01*(Y6)^2)+(-7.603734e-07*(Tu)^2)+(-2.199544e-02*Y6*Tu);
Y20=(3.307525e-01)+(2.667156e+01*Y7)+(-3.378600e+01*Y5)+(2.032380e+02*(Y7)^2)+(5.323017e+02*(Y5)^2)+(-6.868417e+02*Y7*Y5);
Y21=(4.871092e-01)+(-4.133341e+00*Y8)+(-6.847067e+00*Y3)+(8.296314e+00*(Y8)^2)+(2.665166e+01*(Y3)^2)+(3.799179e+01*Y8*Y3);
Y22=(-1.642597e+00)+(9.798463e+00*Y4)+(2.631407e+01*Y2)+(4.235934e+01*(Y4)^2)+(-5.411164e+01*(Y2)^2)+(-1.748619e+02*Y4*Y2);
Y23=(3.384227e-01)+(-4.570937e+00*Y3)+(-2.882316e+00*Y9)+(1.694423e+01*(Y3)^2)+(8.619815e+00*(Y9)^2)+(2.635116e+01*Y3*Y9);
Y24=(1.316068e-01)+(3.989315e+00*Y10)+(-6.101945e+00*Y11)+(-1.634729e+01*(Y10)^2)+(5.268875e+01*(Y11)^2)+(-
1.864935e+01*Y10*Y11);
Y25=(2.301653e-01)+(-2.150307e-02*T)+(-3.238182e-01*Y9)+(-2.914314e-04*(T)^2)+(-3.595513e+01*(Y9)^2)+(4.109595e-01*T*Y9);
Y26=(6.278603e-01)+(-3.921739e+00*Y12)+(-1.013051e+01*Y5)+(5.442693e+00*(Y12)^2)+(4.847550e+01*(Y5)^2)+(3.506918e+01*Y12*Y5);
Y27=(-2.694828e-01)+(7.106106e+00*Y2)+(-1.014597e+00*Y13)+(-2.443348e+01*(Y2)^2)+(2.296014e+01*(Y13)^2)+(-
2.146924e+01*Y2*Y13);
Y28=(4.427188e-01)+(-4.255171e+00*Y14)+(-6.262085e+00*Y13)+(1.775463e+01*(Y14)^2)+(3.067336e+01*(Y13)^2)+(2.511680e+01*Y1
4*Y13);
Y29=(1.002296e+00)+(-1.107236e+01*Y15)+(-1.297106e+01*Y3)+(3.722526e+01*(Y15)^2)+(5.051247e+01*(Y3)^2)+(6.705163e+01*Y15*Y3);
Y30=(6.648106e-01)+(-6.346648e+00*Y12)+(-8.811894e+00*Y3)+(1.263621e+01*(Y12)^2)+(3.083724e+01*(Y3)^2)+(5.390646e+01*Y12*Y3);
Y31=(3.377283e-01)+(-5.172374e+00*Y2)+(-1.376425e-02*T)+(1.641678e+00*(Y2)^2)+(-3.919779e-04*(T)^2)+(3.642431e-01*Y2*T);
Y32=(1.403684e-02)+(7.760952e+00*Y10)+(-7.101946e+00*Y12)+(-4.986240e+01*(Y10)^2)+(4.013851e+01*(Y12)^2)+(1.176993e+01*Y1
0*Y12);
Y33=(6.463184e-02)+(-1.700262e+00*Y12)+(6.290647e-03*T)+(-2.411700e+01*(Y12)^2)+(-1.060072e-03*(T)^2)+(3.774901e-01*Y12*T);
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Y34=(5.914215e-02)+(-4.658054e+00*Y14)+(4.104756e+00*Y2)+(-1.802256e+01*(Y14)^2)+(-5.766816e+01*(Y2)^2)+(8.582254e+01*Y14*Y2);
Y35=(3.015854e-01)+(-6.287214e+00*Y5)+(-1.094381e-01*Y9)+(2.465462e+01*(Y5)^2)+(-1.014813e+01*(Y9)^2)+(3.000888e+01*Y5*Y9);
Y36=(7.087682e-01)+(-9.953921e+00*Y14)+(-6.763801e+00*Y9)+(3.540559e+01*(Y14)^2)+(1.564900e+01*(Y9)^2)+(5.831482e+01*Y14*Y9);
Y37=(5.621038e-01)+(-8.019685e+00*Y15)+(-4.971425e+00*Y9)+(3.251684e+01*(Y15)^2)+(1.501012e+01*(Y9)^2)+(3.836387e+01*Y15*Y9);
Y38=(-4.955778e-02)+(9.138187e-01*Y15)+(9.090873e-01*Y2)+(-3.445020e+01*(Y15)^2)+(-3.218532e+01*(Y2)^2)+(6.391056e+01*Y15*Y2);
Y39=(4.554947e-01)+(-1.016541e+01*Y13)+(-7.565611e-04*T)+(2.610914e+01*(Y13)^2)+(-9.610654e-04*(T)^2)+(4.141756e-01*Y13*T);
Y40=(3.191118e-01)+(-2.158306e+00*Y6)+(-4.440265e+00*Y9)+(-8.888179e+00*(Y6)^2)+(7.455868e+00*(Y9)^2)+(4.615532e+01*Y6*Y9);
Y41=(2.282294e-01)+(-6.446318e+00*Y11)+(9.636250e-01*Y2)+(3.096603e+01*(Y11)^2)+(-1.127202e+01*(Y2)^2)+(2.408074e+01*Y11*Y2);
Y42=(4.548860e-01)+(-8.760339e+00*Y5)+(-1.675484e+00*Y13)+(4.942921e+01*(Y5)^2)+(4.385355e+00*(Y13)^2)+(1.659361e+01*Y5*Y13);
Y43=(-5.305011e-02)+(8.943502e-01*Y6)+(3.604592e-02*PAC)+(6.974033e+00*(Y6)^2)+(-3.822623e-04*(PAC)^2)+(-3.661066e-
01*Y6*PAC);
Y44=(-7.829315e-02)+(1.825786e-03*Tu)+(1.895250e+00*Y1)+(-1.326595e-06*(Tu)^2)+(3.073980e-01*(Y1)^2)+(-2.041109e-02*Tu*Y1);
Y45=(0.3408869)+(-3.046889*Y6)+(-4.256494*Y1)+(12.05424*(Y6)^2)+(21.89969*(Y1)^2)+(15.81724*Y6*Y1);
Y46=(1.420851e-01)+(-3.168047e+00*Y16)+(2.831768e-01*Y17)+(8.857065e+00*(Y16)^2)+(-1.166653e+01*(Y17)^2)+(2.847227e+01*Y1
6*Y17);
Y47=(6.566266e-01)+(-1.139555e+01*Y18)+(-3.256348e+00*Y19)+(1.814263e+01*(Y18)^2)+(-2.795880e+01*(Y19)^2)+(1.020880e+02*Y1
8*Y19);
Y48=(2.571339e-01)+(-4.127256e+00*Y20)+(-1.109898e+00*Y21)+(5.607210e+00*(Y20)^2)+(-1.497806e+01*(Y21)^2)+(4.668779e+01*Y2
0*Y21);
Y49=(1.317087e-01)+(-1.319946e+00*Y22)+(-1.380712e+00*Y23)+(8.753604e+00*(Y22)^2)+(8.890915e+00*(Y23)^2)+(7.017114e+00*Y2
2*Y23);
Y50=(1.617116e-01)+(-3.272548e+00*Y24)+(5.286486e-01*Y25)+(1.045688e+01*(Y24)^2)+(-7.136798e+00*(Y25)^2)+(1.800095e+01*Y2
4*Y25);
Y51=(3.288396e-01)+(-4.553038e+00*Y26)+(-2.799668e+00*Y27)+(1.792298e+01*(Y26)^2)+(8.431920e+00*(Y27)^2)+(2.556933e+01*Y2
6*Y27);
Y52=(-2.971049e-01)+(5.748685e+00*Y28)+(2.115851e+00*Y29)+(-8.087998e+01*(Y28)^2)+(-5.916694e+01*(Y29)^2)+(1.010739e+02*Y2
8*Y29);
Y53=(5.565498e-02)+(-8.427367e-01*Y30)+(3.007034e-01*Y31)+(1.690756e+01*(Y30)^2)+(1.320418e+01*(Y31)^2)+(-
2.017835e+01*Y30*Y31);
Y54=(1.515383e-01)+(-1.972281e+00*Y32)+(-4.184907e-01*Y33)+(3.285382e+01*(Y32)^2)+(3.407253e+01*(Y33)^2)+(-
4.855808e+01*Y32*Y33);
Y55=(5.812883e-02)+(8.946222e-01*Y34)+(-2.183154e+00*Y35)+(-1.039693e+01*(Y34)^2)+(7.315430e+00*(Y35)^2)+(2.151615e+01*Y3
4*Y35);
Y56=(-8.122167e-02)+(-6.356687e+00*Y36)+(9.218034e+00*Y37)+(7.532590e+00*(Y36)^2)+(-7.726045e+01*(Y37)^2)+(5.936385e+01*Y3
6*Y37);
Y57=(3.154600e-01)+(-3.461287e+00*Y38)+(-3.902124e+00*Y39)+(1.296978e+01*(Y38)^2)+(1.512429e+01*(Y39)^2)+(2.585887e+01*Y3
8*Y39);
Y58=(-2.966618e-02)+(5.170626e-02*pH)+(-3.114333e+00*Y40)+(-5.857013e-03*(pH)^2)+(9.275808e-02*(Y40)^2)+(4.993455e-01*pH*Y40);
Y59=(3.114790e-01)+(1.211976e+00*Y41)+(-7.709163e+00*Y42)+(-1.586467e+01*(Y41)^2)+(3.192999e+01*(Y42)^2)+(2.820228e+01*Y4
1*Y42);
Y60=(3.627212e-01)+(-3.693760e-01*Y43)+(-7.894409e+00*Y44)+(-2.790019e+01*(Y43)^2)+(1.769592e+01*(Y44)^2)+(6.816923e+01*Y4
3*Y44);
Y61=(5.091826e-01)+(-6.287808e+00*Y45)+(-4.859507e+00*Y5)+(-9.167714e+00*(Y45)^2)+(-
1.183473e+01*(Y5)^2)+(9.228548e+01*Y45*Y5);
Y62=(1.456590e-01)+(8.676825e-01*Y46)+(-3.079996e+00*Y47)+(1.629688e+01*(Y46)^2)+(3.620852e+01*(Y47)^2)+(-
3.574769e+01*Y46*Y47);
Y63=(1.583390e-01)+(-4.127409e+00*Y48)+(1.415799e+00*Y49)+(4.121019e+00*(Y48)^2)+(-2.534568e+01*(Y49)^2)+(4.278700e+01*Y4
8*Y49);
Y64=(2.259574e-01)+(-4.008972e+00*Y50)+(-2.788540e-01*Y51)+(-3.209335e+01*(Y50)^2)+(-5.416222e+01*(Y51)^2)+(1.171980e+02*Y5
0*Y51);
Y65=(3.095170e-01)+(-4.763668e+00*Y52)+(-2.143051e+00*Y53)+(5.176012e+00*(Y52)^2)+(-9.751222e+00*(Y53)^2)+(5.418689e+01*Y5
2*Y53);
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Y66=(1.833375e-01)+(-3.310632e+00*Y54)+(-1.155082e-01*Y55)+(9.120995e+00*(Y54)^2)+(-6.254389e+00*(Y55)^2)+(2.340187e+01*Y5
4*Y55);
Y67=(-1.549757e-02)+(-1.197713e+00*Y56)+(2.480742e+00*Y57)+(-2.672636e+01*(Y56)^2)+(-5.016641e+01*(Y57)^2)+(7.606205e+01*Y5
6*Y57);
Y68=(7.209168e-02)+(5.042132e-01*Y58)+(-1.256884e+00*Y59)+(-1.640672e+01*(Y58)^2)+(-5.291244e+00*(Y59)^2)+(3.222831e+01*Y5
8*Y59);
Y69=(1.362146e-01)+(-1.132576e+00*Y60)+(-7.613028e-01*Y61)+(4.367624e+01*(Y60)^2)+(3.448826e+01*(Y61)^2)+(-
6.382457e+01*Y60*Y61);
Y70=(-1.362799e-01)+(-6.202449e-02*Y62)+(4.127659e+00*Y63)+(-4.540964e+01*(Y62)^2)+(-7.890652e+01*(Y63)^2)+(1.082866e+02*Y6
2*Y63);
Y71=(-5.806236e-02)+(-6.562674e-01*Y64)+(2.849079e+00*Y65)+(-1.918779e+01*(Y64)^2)+(-3.785218e+01*(Y65)^2)+(5.169410e+01*Y6
4*Y65);
Y72=(2.197707e-02)+(-9.656269e-01*Y66)+(1.429030e+00*Y67)+(2.132677e+01*(Y66)^2)+(8.728264e+00*(Y67)^2)+(-
2.710257e+01*Y66*Y67);
Y73=(3.444996e-02)+(1.319262e+00*Y68)+(-1.079021e+00*Y69)+(-6.577506e+00*(Y68)^2)+(5.984380e+00*(Y69)^2)+(4.608135e+00*Y6
8*Y69);
Y74=(2.880070e-02)+(-3.854216e-01*Y70)+(8.145178e-01*Y71)+(-2.343069e+01*(Y70)^2)+(-3.134929e+01*(Y71)^2)+(5.787011e+01*Y7
0*Y71);
Y75=(-1.006981e-02)+(1.450968e+00*Y72)+(-5.741348e-02*Y73)+(7.086416e+01*(Y72)^2)+(7.861047e+01*(Y73)^2)+(-
1.534599e+02*Y72*Y73);
Y76=(-1.870998e-02)+(2.710722e+00*Y74)+(-1.340864e+00*Y75)+(1.174450e+01*(Y74)^2)+(3.187583e+01*(Y75)^2)+(-
4.573037e+01*Y74*Y75);
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