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a b s t r a c t
Groundwater depth forecasting plays an important role in agricultural irrigation, rational utilization 
of soil and water resources and ecological protection. The groundwater resource system is influenced 
by multiple factors such as temperature, precipitation, evapotranspiration, surface water recharge 
and groundwater discharge, it is characterized by randomness and non-stationary. The empirical 
mode decomposition (EMD) can decompose the signal into sub-signals of different frequencies and 
can reduce the non-stationary of the original signal, the Elman neural network (ENN) has strong 
nonlinear approximation ability. Based on the characteristics of the above two methods, the EMD-
Elman coupling forecasting model was constructed and applied to groundwater depth forecasting in 
People’s Victory Canal Irrigation District. The results show that EMD-Elman model has better fore-
casting effect and lower forecasting error and is better than single back propagation neural network 
model and ENN model. Furthermore, under human over-exploitation, the forecasting accuracy of the 
EMD-Elman model will be slightly reduced, but the forecasting effect is still in the acceptable range. 
This research has an important guiding value on revealing People’s Victory Canal Irrigation District 
of groundwater dynamic change rule and provide a new way for groundwater depth forecasting.
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1. Introduction

The accurate forecasting of groundwater depth pro-
vides an important theoretical foundation for the rational 
allocation of groundwater in the future irrigated areas. The 
variation of groundwater depth is a complex hydrologi-
cal process, there are many factors influence groundwater 
depth variation such as groundwater pumping, rainfall and 
topographic conditions [1]. Foreign scholars have done a lot 
of research on the complex series of groundwater depth and 
have achieved some fruitful results. Zhang et al. [2] used grey 
self-memory model, radial basis function neural network 
and adaptive neuro fuzzy inference system model to fore-
cast groundwater depth of unconfined aquifers in Jilin city. 
Choi et al. [3] used period-dividing algorithm and response 

surface methodology to forecast and estimate groundwa-
ter levels in Sangchun watershed in Eastern South Korea. 
Mohanty et al. [4] used artificial neural network to forecast 
weekly groundwater levels at multiple sites. Mahallawi 
et al. [5] used generalized regression neural network and 
linear network to forecast groundwater nitrate pollution in 
rural areas. Maiti and Tiwari [6] used three kinds of neural 
networks to forecast underground water level in Dindigul, 
India. Scholars in China also realized substantial accom-
plishment in groundwater depth forecasting methodology. 
Yu et al. [7] used hybrid-wavelet artificial intelligence mod-
els to forecast monthly groundwater depth in extreme arid 
regions, Northwest China. Yang et al. [8] used time series 
model to predict the dynamic variation of groundwater in 
Jilin province. Sheng et al. [9] used gray memory model to 
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forecast the groundwater depth in Xinjiang. Li et al. [10] 
used a self-memory model to forecast groundwater depth in 
Shanxi Jinzhong.

As the variation of groundwater depth is not within a 
fixed movement cycle and presents the characteristics of 
multiple time scales and local fluctuations, how to deal 
with the non-linear and non-stationary groundwater depth 
data becomes the key to forecasting of groundwater depth. 
Elman neural network (ENN) has a strong independent 
learning adaptability and generalization ability. It is widely 
used in the nonlinear time series forecasting model [11]. 
Empirical mode decomposition (EMD) [12] can separate 
the low frequency and high frequency part of the signal, 
thus reducing the non-stationarity of the sequence. Based 
on the above two methods, the paper mainly forecast the 
intrinsic modal function (IMF) components of groundwa-
ter depth and also analyze whether the forecasting error of 
IMF components would influence the forecasting error of 
groundwater depth.

To the best of our knowledge, although the neural 
network has been applied in forecasting of groundwater 
depth [13,14]. However, it is rare to combine EMD method 
and ENN to build a coupling forecasting model of ground-
water depth, especially the establishment of different 
frequency sub-signal forecasting model of groundwater 
depth is rare. Based on this, the EMD-Elman coupling fore-
casting model was constructed and applied to groundwa-
ter depth forecasting in People’s Victory Canal Irrigation 
District. Furthermore, the paper also discusses whether the 
forecasting accuracy of these model changes under human 
over-exploitation. This study is of great significance to guide 
the scientific management of agricultural water in irrigation 
district.

2. Research method

2.1. The theory of EMD

EMD was first proposed by Huang et al. [12], it is powerful 
and adaptive in analyzing the complex nonlinear signal. 
The signal of EMD is composed of IMFs and residual [15].

In essence, the EMD method is to decompose the non-
linear and non-stationary signals step by step so as to 
obtain some IMF components and residual of different fre-
quency domain information, so that the decomposed IMF 
components have obvious physical background.

By applying EMD decomposition to the ground water 
depth series, the non-stationarity and volatility of the 
sequence are reduced and form a series of time series with 
little mutual impact. This provides a stable series for the 
forecasting of ENN. Thus, the complex groundwater depth 
forecasting can be transformed into the sum of forecasting 
value of several IMF components and residual, the forecast-
ing error of groundwater depth series is determined by these 
IMF components and residual.

An IMF resulting from the EMD decomposition should 
satisfy two conditions: (1) in the whole data series, the num-
ber of extreme points and the number of zeros must be the 
same or no more than one; (2) at any time, the envelope mean 
defined by the signal of local maximum and minimum is 
zero.

When apply the EMD algorithm to a given groundwater 
depth series x(t), the procedure to extract the IMF component 
are shown below:

•	 Find out the extreme points of the groundwater depth 
series x(t).

•	 Use cubic spline curve to connect all the local maximum 
and minimum points to form upper envelope (Sup(t)) and 
lower envelope (Slow(t)) and calculate the mean value of 
Sup(t) and Slow(t).
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•	 Assume h(t) is the difference between the groundwater 
depth sequence x(t) and m(t),

h t x t m t( ) = ( ) − ( )  (2)

•	 Verify whether h(t) meets the definition of IMF compo-
nents [16], if do not, repeat the steps (1)–(3), until hi(t)is an 
IMF component and define this IMF component as IMF(t).

•	 Repeat steps (1)—(4) to get the n IMF components and 
the corresponding residual.

r t x t ti( ) = ( ) − ( )IMF  (3)

where imfi(t) is newly acquired IMF component.

•	 Stop the sifting process until the residue function becomes 
a monotonic function where no more IMF can be 
extracted [17].

The relationship between the IMF components and the 
original signal can be represented as follows:
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2.2. Elman neural network

The ENN was proposed by Elman [18]. It is a feedback 
neural network composed of four layers, which are input 
layer, hidden layer, receiver layer and output layer respec-
tively, as shown in Fig. 1. There are adjustable weights 
connecting each two neighboring layers. Generally, it is 
considered as a special kind of feed-forward neural network 
with additional memory neurons and local feedback [19]. 
Compared with back propagation neural network (BPNN), 
the Elman network adds one layer in the hidden layer as the 
delay operator to implement the system memory, it makes 
the system has the ability to adapt to the time-varying and 
widely used in various fields [20–24]. The Elman network 
structure is shown in Fig. 1.

The input vector u(k–1) is r-dimensional vector and 
u(k–1) = [u1(k–1), u2(k–1), . . . , ur(k–1)]T, the output vector y is 
the m-dimensional vector and y(k) = [y1(k), y2(k), . . . , ym(k)]T, xc 
is n-dimensional feedback state vector, w3(k) is the connection 
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weight of the hidden layer to the output layer, w2(k) is the 
connection weight of the input layer to the hidden layer 
and w1(k) is the connection weight of the hidden layer to the 
context layer. The ENN mathematical model is shown in the 
following Eqs. (5)–(7).

y k g w x k( ) = ( )( )2  (5)

x k f w x k w u kc( ) = ( ) + −( )( )( )2 2 1  (6)

x k x k ax kc c( ) = −( ) + −( )1 1  (7)

where g() is the activation function of the output neuron. It 
is a linear combination of hidden layers. f() is the activation 
function of the hidden layer neurons, which is commonly 
defined as f(x) = 1/(1 + e–x). a is the self-connected feedback 
gain	factor	and	0	≤	a	≤	1.	The	ENN	adopts	BPNN	algorithm	to	
carry out weight correction, the error of network is as follows:

E w y w ŷ wk k
k

n

( ) = ( ) − ( )( )
=
∑

2

1
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where ŷk(w) is the target output vector and yk(w) is the output 
vector of object.

2.3. The coupling model of EMD-Elman

The procedure of the EMD-Elman coupling model are as 
follows:

•	 Use EMD method to decompose groundwater depth data 
into several IMF components and one residual.

•	 Standardize the IMF components and one residual.

If the input data ranges have large difference, the net-
work may exist big forecasting error, so the raw ground-
water depth data must standardized and keep it in the range 
of [0,1], the normalized formula is defined as follows:

y
x x
x x

=
−
−

min

max min

 (9)

where x represents original value. xmax and xmin represent the 
maximum value and minimum value of original data.

•	 Use the ENN to forecast the IMF components and the 
residual.

•	 Add up the forecasting value of IMF components and 
residual and convert it into the forecasting value of 
groundwater depth.

•	 Compare with the original value and calculate the 
relative error.

δ =
−

×
a b
a

100%  (10)

where a represents the original value and b represents 
forecasting value.

 

Fig. 1. ENN architecture.

Fig. 2. The location of irrigation district and observation well.
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3. Case study

3.1. Study area and data sources

3.1.1. Study area

The People’s Victory Canal Irrigation District is located 
in North Henan province, it is the first large-scale irrigation 
district in the Yellow River since the foundation of new china. 
The total control area of the irrigation district is 1,486.84 km2, 
mainly irrigating Xinxiang, Anyang, Jiaozuo region (Fig. 2).

3.1.2. Data sources

The data used in this paper come from the measured 
data in the observation Wells of People’s Victory Canal 
Irrigation District from 1993–2013, the observation Wells 
data came from the People’s Victory Canal Irrigation District 
administration in Henan province.

As can be seen from Fig. 3, the groundwater depth in the 
People’s Victory Canal Irrigation District showed a rising 
trend in 1993–2013, which with certain volatility, and the 
volatility is inconsistent, it also proves that the groundwater 
depth is uncertain and unstable, this also reflects from the 
side that it is reasonable to choose the EMD method.

3.2. The EMD decomposition

According to the procedure of EMD decomposition, the 
decomposition result of groundwater depth is shown in Fig. 4.

As can be seen from Fig. 4, the groundwater depth 
series is decomposed into five IMF components and one 
corresponding residual. The first IMF component has the 
greatest volatility, with the highest frequency and shortest 

 

Fig. 3. The groundwater depth curve of the People’s Victory 
Canal Irrigation District from 1993 to 2013.

 

 

Fig. 4. The result of EMD decomposition.
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wavelength. But for other IMF components, the amplitude 
gradually decreases and the frequency decreases. This shows 
that after EMD decomposition, the fluctuation and non- 
stationary of sequence are greatly reduced. Furthermore, 
EMD decomposition itself is to decompose a series of signals 
into sub-signals of different frequencies, on this basis, to ana-
lyze the contribution of sub-signals of different frequencies 
to the signal. It can be understood that whether the fore-
casting error of a certain IMF component will influence the 
forecasting error of the groundwater depth sequence.

3.3. The construction of coupling model

Take the IMF components and residual data from the 
1993–2011 years as the train sample, the IMF components 

and residual data of the 2012–2013 years as the test sample. 
The paper adopts the method of rolling prediction, which use 
the ith month in nineteen consecutive years’ data to forecast 
the ith month of the twenty year’s data.

The related parameters of ENN are set as follows:
Through a large number of repeated tests, the number 

of hidden layer nodes is determined as 10, the hidden layer 
neuron transfer function is tansig, the output layer neuron 
transfer function is purelin, the network training function is 
the traingdx, the iteration number is 1,000, the accuracy of 
the network is 10–2. The forecasting effect of IMF components 
and residual are as shown in Fig. 5.

As can be seen from Fig. 5, the forecasting effect of IMF1 
component is slightly poor, this is because IMF1 component 
is relatively low in stationarity. However, the forecasting 

    

  (a) The forecasting result of IMF1               (b) The forecasting result of IMF2 

   

(c) The forecasting result of IMF3              (d) The forecasting result of IMF4 

    

(e) The forecasting result of IMF5              (f) The forecasting result of residual   
Fig. 5. The prediction result of IMF1~residual.
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effect of IMF2–residual is getting better and better, this 
indirectly indicates that, after EMD decomposition, the 
fluctuation and non-stationary of groundwater depth series 
decrease gradually. Furthermore, as can be seen from the 
abscissa of Fig. 5, residual accounts for a large proportion, 
its forecasting error will influence the forecasting error of 
groundwater depth. IMF1 component is relatively low in 
stationarity, its forecasting error is relatively large, but it will 
not have a great impact on the overall forecast error due to 
its small proportion.

As can be seen from Table 1, the maximum, minimum 
and mean value of the forecasting relative error of IMF1 
component are maximum, the values are 435.58%, 11.42% 

and 118.14%, respectively. This is because the IMF1 compo-
nent has relatively low stationarity, leading to a large fore-
casting error. On the contrary, the maximum, minimum and 
mean value of the relative error of residual is minimum. 
The values are 0.54%, 0.27% and 0.45%, respectively. This is 
because the residual has relatively high stationarity, leading 
to a small forecasting error.

As can be seen from Table 2, the maximum, minimum 
and average relative errors are 5.87%, 0.02% and 1.47%, 
respectively, the forecasting relative error of EMD-Elman 
model is small and the forecasting accuracy is high.

As can be seen from Fig. 6, the forecasting value of 
groundwater depth in the People’s Victory Canal Irrigation 

Table 1
The forecasting relative error of IMF1 ~ residual

IMF The maximum value of the forecasting 
relative error (%)

The minimum value of the forecasting 
relative error (%)

The mean value of the forecasting 
relative error (%)

IMF1 435.58 11.42 118.14
IMF2 350.83 0.36 41.83
IMF3 91.36 0.25 9.98
IMF4 124.53 1.23 16.32
IMF5 1.49 0.46 0.71
Residual 0.54 0.27 0.45

Table 2
The forecasting error of groundwater depth in people’s victory irrigation district from 2012 to 2013

Year Month True value (m) Forecasting value (m) Absolute error Relative error of forecasting (%)

2012 1 6.03 6.08 0.05 0.84
2 6.21 6.2 –0.01 0.14
3 6.4 6.39 –0.01 0.08
4 6.49 6.54 0.05 0.8
5 6.6 6.66 0.06 0.95
6 6.83 6.72 –0.11 1.59
7 6.6 6.68 0.08 1.21
8 6.52 6.63 0.11 1.74
9 6.48 6.57 0.09 1.37
10 6.56 6.61 0.05 0.83
11 6.57 6.46 –0.11 1.74
12 6.59 6.24 –0.35 5.37

2013 1 5.96 5.96 0 0.02
2 5.86 6.04 0.18 3.08
3 6.06 6.17 0.11 1.85
4 6.3 6.67 0.37 5.87
5 6.71 6.81 0.1 1.47
6 6.96 7.04 0.08 1.14
7 6.78 6.88 0.1 1.48
8 6.62 6.64 0.02 0.27
9 6.8 6.65 –0.15 2.28
10 6.8 6.77 –0.03 0.45
11 6.92 6.89 –0.03 0.38
12 6.87 6.85 –0.02 0.31
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District from 2012 to 2013 is basically consistent with the true 
value, and the fitting degree of the model is relatively high.

There are many factors involved in the variation of 
groundwater depth, and the influencing factors are different 
each year. Therefore, the paper analyzes the seasonal varia-
tion of groundwater depth.

Groundwater depth in spring and summer tends to rise, 
the reasons can be explained below: in spring, wheat needs 
more water for irrigation. During the growing stage of wheat, 
there are three stages that require irrigation, they are sowing–
jointing, jointing–heading, and heading–ripening, during this 
period, the irrigation water demand is larger. Furthermore, 
when wheat leaves turn green, irrigation water needs to 
increase. However, to the best of our knowledge, there is less 
rain in Henan province in January to June, this leads to poor 
runoff recharge conditions, the villager people have to pump 
a lot of groundwater for irrigation, so the groundwater depth 
in April–June showed an increasing trend.

Groundwater depth in autumn tends to decrease. In my 
opinion, on the one hand, after summer, with the increase of 

rainfall in summer and the decrease of human exploitation, 
the groundwater is replenished and the groundwater level 
begins to rise. In July and August, there was a large amount 
of precipitation, and crops requiring irrigation were depen-
dent on rainfall and canal irrigation. Some crops were mature 
and did not need irrigation. On the other hand, the rainfall 
infiltration replenishment during flood season is higher than 
that during non-flood season, this also lead to a downward 
trend in groundwater depth from July to August and an 
upward trend from January to June.

The groundwater depth in November and January tends 
to decrease, this is due to more snow and less evaporation 
consumption, as well as the freezing of soil, resulting in 
a decrease in groundwater depth.

3.4. Comparison with other models

To compare the forecasting effect of the EMD-Elman cou-
pling model with other single neural network models, the 
forecasting errors of the three models were made, as shown 
in Table 3.

As can be seen from Table 3, the EMD-Elman model 
has a higher qualified rate and a lower relative error and 
is superior to single BPNN and ENN model, furthermore, 
the forecasting effect of EMD-Elman model is relatively sta-
ble compared with BPNN and ENN model. This shows that 
EMD-Elman coupling model is feasible for groundwater 
depth forecasting.

4. Discussion

The variation of groundwater depth mainly depends on 
precipitation, temperature, human exploitation, topography 
and landform, geological structure, etc. The most influ-
encing factors are precipitation and artificial exploitation. 
Precipitation, as the main source of groundwater recharge, 

 

Fig. 6. The forecasting result of value of groundwater depth in 
people’s victory irrigation district from 2012 to 2013.

Table 3
Forecasting error of other models

Year Month The relative error 
of EMD-Elman 
coupling model (%)

The relative 
error of ENN 
model (%)

The relative 
error of 
BPNN 
model (%)

Year Month The relative error 
of EMD-Elman 
coupling model (%)

The relative 
error of ENN 
model (%)

The relative 
error of 
BPNN 
model (%)

2012 1 0.84 1.95 2.56 2013 1 0.02 4.33 2.23
2 0.14 2.98 12.65 2 3.08 6.29 13.3
3 0.08 7.19 4.32 3 1.85 0.72 0.86
4 0.80 8.61 14.80 4 5.87 4.22 3.43
5 0.95 9.49 7.97 5 1.47 11.54 8.76
6 1.59 11.53 8.01 6 1.14 15.52 10.6
7 1.21 6.85 12.19 7 1.48 11.23 8.86
8 1.74 4.00 2.78 8 0.27 6.33 5.89
9 1.37 3.24 5.31 9 2.28 7.18 6.68
10 0.83 3.99 15.44 10 0.45 6.06 14.25
11 1.74 4.50 8.25 11 0.38 7.29 6.73
12 5.37 5.46 2.33 12 0.31 7.32 6.57

The qualified rate of EMD-Elman coupling model 100%.
The qualified rate of Elman model 83.77%
The qualified rate of BPNN model 70.83%
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greatly influences groundwater depth, especially shallow 
groundwater. But human exploitation is the main way of 
groundwater consumption. So in the case of serious human 
over-exploitation, whether the forecasting accuracy of the 
EMD-Elman model will change, the model analyses the con-
dition of human over-exploitation again.

Suppose the serious over-exploitation occurred in April–
June of 2012–2013, Therefore, compared with normal condi-
tion, the groundwater depth in April–June is bound to increase, 
it is assumed that groundwater depth increases by 1 m.

To make the analytical process clearer and easier to 
understand, the IMF components in the two cases were made, 
as shown in Fig. 7.

As can be seen from Fig. 7, compared with normal con-
dition, the IMF components under human over-exploitation 
has significant fluctuations and changes. For IMF5 and 
residual, the difference value between the two cases is about 
0.6; For IMF1–IMF4, it occupies a small proportion in the 
groundwater depth series, the difference value between the 
two cases is less.

  

(a) Decomposition result of IMF1         (b) Decomposition result of IMF2 

 

(c) Decomposition result of IMF3
              

(d) Decomposition result of IMF4 

   

(e) Decomposition result of IMF5       (f) Decomposition result of Residual 

Fig. 7. The IMF components and residual in two cases.
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In order to verify whether the forecasting accuracy of EMD-
Elman model will change under human over-exploitation, 
the forecasting effect of IMF components and residual were 
made again as shown in Fig. 8.

As can be seen from Fig. 8, under human over-exploitation, 
the forecasting effect of IMF1 is poor. For the IMF2–residual, 
the forecasting effect of the EMD-Elman model is well, this 
is because IMF2–residual is becoming more and more stable. 
Furthermore, even under human over-exploitation, EMD can 
still decompose the complex groundwater depth series into 

the IMF1 component with a small proportion and the residual 
with a large proportion. IMF1 component is relatively low in 
stationarity, the residual is relatively high in stationarity, this 
explains that in Figs. 5 and 8, the forecasting effect of IMF1 
is poor and the forecasting effect of residual is great, but the 
forecasting error of IMF1 does not influence the forecasting 
effect of groundwater depth.

In order to reflect the change of the relative error of the 
model under human over-exploitation and normal condition 
more intuitively, Table 4 was made.

   

(a) The forecasting result of IMF1               (b) The forecasting result of IMF2 

  

(c) The forecasting result of IMF3              (d) The forecasting result of IMF4 

  

(e) The forecasting result of IMF5              (f) The forecasting result of Residual 

Fig. 8. The forecasting result of IMF1-Residual under human over-exploitation.
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As can be seen from Table 4, under human over-exploitation, 
the forecasting effect of the model is worse than normal 
condition, the average relative error and relative errors are 
slightly higher than normal condition. This can be considered 
normal, because under human over-exploitation, the ground-
water depth data were disturbed and fluctuated greatly. 
Furthermore, the variation of groundwater depth itself is 
a complex process, which is greatly influenced by various 
uncertain factors, this is bound to influence the forecasting 
error of the model.

In short, under human over-exploitation, the forecast-
ing accuracy of the model will be slightly reduced, but the 
relative error is within a reasonable range, the forecasting 
effect of the EMD-Elman model is still feasible.

5. Conclusions

By forecasting the groundwater depth in the People’s 
Victory Canal Irrigation District, the following conclusions 
can be drawn.

•	 Through EMD decomposition, the randomness and 
non-stationary of groundwater depth series are reduced, 
which provides a good condition for the forecasting of 
EMD-Elman coupling model. The relative prediction 

error of the EMD-Elman coupling model is less than 
5.87%, the model has higher accuracy and is better than 
BPNN model and ENN model. Furthermore, under human 
over-exploitation, the forecasting accuracy of the EMD-
Elman model will be slightly reduced, but the forecasting 
effect is still feasible. The EMD-Elman model provides a 
new method for forecasting of groundwater depth.

•	 EMD decomposition was applied in groundwater depth 
series, then the ENN was used to forecast the IMF1–resid-
ual, which solved the problem that some high-frequency 
catastrophe data could not be learned well by using the 
Elman network directly. Compared with the traditional 
ENN model and BPNN model, the EMD-Elman model 
can reflect the real change of the groundwater depth 
series in frequency domain in detail.

•	 The EMD-Elman coupling model established in this 
paper also has some reference value to other aspects 
forecasting. Through EMD decomposition, the complete 
signal is decomposed into several IMF components and 
residual, the forecasting value of the complete signal is 
equal to the sum of the forecasting value of IMF compo-
nents and the forecasting value of residual. Even though 
some of IMF components forecasting error are fairly 
large, however, it is likely that this component is a small 
part of the signal, even if its forecasting error is large, 

Table 4
Comparison of forecasting indexes of groundwater depth under two conditions

Human over-exploitation Normal condition

True value 
(m)

Forecasting 
value (m)

Absolute 
error

Relative 
error (%)

Average relative 
error (%)

True 
value (m)

Forecasting 
value (m)

Absolute 
error

Relative 
error (%)

Average relative 
error (%)

6.03 5.96 –0.07 1.12

5.29

6.03 6.08 0.05 0.84

1.47

6.21 5.99 –0.22 3.59 6.21 6.20 –0.01 0.14
6.40 6.23 –0.17 2.70 6.4 6.39 –0.01 0.08
7.49 6.92 –0.57 7.61 6.49 6.54 0.05 0.80
7.60 7.91 0.31 4.10 6.6 6.66 0.06 0.95
7.83 7.84 0.01 0.15 6.83 6.72 –0.11 1.59
6.60 6.96 0.36 5.49 6.6 6.68 0.08 1.21
6.52 6.52 0.00 0.04 6.52 6.63 0.11 1.74
6.48 6.27 –0.21 3.18 6.48 6.57 0.09 1.37
6.56 5.83 –0.73 11.19 6.56 6.61 0.05 0.83
6.57 5.51 –1.06 16.12 6.57 6.46 –0.11 1.74
6.59 5.39 –1.20 18.25 6.59 6.24 –0.35 5.37
5.96 5.59 –0.37 6.14 5.96 5.96 0.00 0.02
5.86 6.29 0.43 7.36 5.86 6.04 0.18 3.08
6.06 6.52 0.46 7.53 6.06 6.17 0.11 1.85
7.30 7.07 –0.23 3.21 6.3 6.67 0.37 5.87
7.71 7.76 0.05 0.62 6.71 6.81 0.10 1.47
7.96 7.55 –0.41 5.18 6.96 7.04 0.08 1.14
6.78 7.15 0.37 5.45 6.78 6.88 0.10 1.48
6.62 6.66 0.04 0.60 6.62 6.64 0.02 0.27
6.80 6.49 –0.31 4.60 6.8 6.65 –0.15 2.28
6.80 6.82 0.02 0.33 6.8 6.77 –0.03 0.45
6.92 6.46 –0.46 6.67 6.92 6.89 –0.03 0.38
6.87 6.48 –0.39 5.73 6.87 6.85 –0.02 0.31
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it will not have a great impact on the overall forecasting 
error, when the forecasting values of IMF components 
and residual are converted into the forecasting value of 
the complete signal, the forecasting error of the complete 
signal will weaken.

•	 Although the forecasting accuracy of the EMD-Elman 
coupling model is higher, the model also has some 
shortcomings, such as the artificial setting of network 
parameters. Furthermore, this paper does only short-
term forecasting without long-term forecasting, the fore-
casting model does not take into account the physical 
mechanism of groundwater depth change. All these 
require further research and in depth discussion.
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