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a b s t r a c t

In this study, the biosorption process were optimized and compared for the first time in terms of 
their accuracy and predictive ability for the sorption of Cu(II) ions onto date palm (Phoenix dactylif-
era L.) seeds used as an agricultural waste product by using four models, multi-linear regression 
(MLR), full factorial design with center points (FFD), Box-Behnken design (BBD) and central com-
posite design (CCD). The responses were evaluated based on the regression equations formulated 
according to the results of the analyses of models. It was found that MLR and FFD models had a 
lower predictive capability than response surface methodologies (RSM).

Keywords:  Biosorption; Box-Behnken design (BBD); Central composite design (CCD); Full factorial 
design (FFD); Multi linear regression (MLR)

1. Introduction

Heavy metals that accumulate in soil, water, and air 
environments pose a significant hazard to living things that 
use or live in the environment by contamination through 
food and water. This accumulation causes various diseases, 
as well as biological and genetic disorders [1]. In certain sys-
tems, the mechanism of heavy metals varies depending on 
their concentration. They are only toxic when they exceed a 
certain limit. On the other hand, the activity of heavy metals 
is not only affected by their concentration in living bodies, 
but it is also dependent on the structure of the metal ion 
and living specimen, such as solubility, chemical structure, 
redox and complex forming capability, body uptake, fre-
quency in the environment, and local pH [2]. Copper is a 
heavy metal which has a high toxic effect and spreads into 
the environment through the wastewater from various 
industries, such as metal cleaning and plating baths, refin-
eries, paper and pulp, fertilizer, and wood preservatives [3]. 
Divalent copper (Cu(II)) is carcinogenic and is deposited in 
the liver, causing several symptoms, such as headache, nau-
sea, vomiting, respiratory difficulty, and abdominal pain, as 

well as failure of the liver and kidneys. It can even result in 
gastrointestinal bleeding if excess amount is ingested [4]. 
To prevent health-related problems, the maximum contam-
inant level of copper was determined by the Environmental 
Protection Agency as 1.5 mg/l or 1.5 ppm [5]. 

In the treatment of wastewater, adsorption/biosorp-
tion presents as a feasible, easy-to-operate and economical 
alternative to traditional methods, such as precipitation, 
membrane filtration, electrolyte or liquid extraction, elec-
trodialysis, and reversed osmosis since it utilizes adsor-
bents with a lower cost and causes less sludge disposal 
problems [6].

In the literature, numerous applications of sorption 
have been successfully implemented to solve environmen-
tal problems related to the removal of Cu(II) ions from 
wastewater. Many of these solutions are based on experi-
mental designs that aim to provide optimum heavy metal 
removal both economically and in a shorter time. Algal and 
microbial biomass and agricultural waste products have 
been effectively used as adsorbents to remove Cu(II) from 
aqueous solutions; e.g., Carica papayaL. [6], Penicillium [7], 
Trametes versicolor [8], Ulva fasciata[9], Enteromorpha prolif-
era [10], Bacillus brevis [11], Trichoderma viride[12], clay [13], 
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pumice [14], chitosan [15], rice husk [16], rice straw [17], 
chestnut shell [18], coconut tree sawdust, eggshell, sugar-
cane bagasse [19], Durian tree sawdust, coconut coir; oil 
palm empty fruit bunch [20], orange peel [21], almond shell 
[22], kenaf fiber [23], olive stone [24], coconut shell, coconut 
husk, sawdust, Moringa oleifera seeds [25], and sunflower 
shells [26].

In the present study, the sorption process was first opti-
mized using the MLR, FFD with center points, BBD and 
CCD models, and then the accuracy and predicting capabil-
ities of these models for Cu(II) ion sorption were assessed 
and compared using the seeds of date palm as an agricul-
tural waste product. For all the methods, regression equa-
tions were also formulated to demonstrate the effect of key 
parameters.

2. Experimental

2.1. Material 

The chemical content and physical characteristics of 
the palm kernel on a dry-weight basis were determined in 
a previous study as follows; 22.61% carbohydrate, 6.43% 
lipid, 54.35% fiber, 0.97% ash, 4.94% protein, 10.70% mois-
ture, 0.03% Ca, 0.12% P, 0.08% Mg and 1.68 kcal/g energy 
[27]. Furthermore, according to the Fourier Transform Infra-
red (FTIR) spectra, the functional groups were identified as 
hydroxyl, carboxyl and carboxylate [27].

Copper sulfate (CuSO4; AR grade) was used to prepare 
a stock solution of Cu(II) (1.0 g/l) in deionized water. The 
5–100 mg/l Cu (II) solutions used in the experiments were 
prepared by diluting from this stock solution. The chem-
icals that were used were of analytical reagent grade. All 
glassware was washed with dilute HNO3 and rinsed with 
deionized water.

2.2. Batch sorption studies

Experiments on the biosorption of the aqueous solution 
of Cu(II) ions with palm seeds were performed according to 
the experimental designs of the models used. The solutions 
were prepared at an appropriate pH (2–6), initial Cu(II) 
concentrations (5 to 100 mg/l) and amount of adsorbent 
ranging from 0.050 to 0.500 g depending on the conditions 
of each experiment. For batch experiments, 50 ml of Cu(II) 
solution was magnetically stirred at 20°C at 300 rpm until 
equilibrium time were achieved, which were determined 
as 60 min in preliminary studies. To remove the biosorbent 
from the solution, centrifuging (Elektromag M815P model) 
was performed at 1000 rpm for 5 min, followed by filtering 
with a Whatman paper (No. 42). A flame atomic absorption 
spectrophotometer (Perkin Elmer model AAnalyst 800) was 
used to analyze the amount of Cu(II) ion that remained in 
the supernatant. The absorbance was found to be linear for 
1–5 mg/l of standard Cu(II) solutions and the correlation 
coefficient was calculated as 0.999. The amount of sorbed-
Cu(II) (qe, mg/g) and sorption efficiency of Cu(II) (R, %) 
were calculated by the following equations:
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Me e( / ) ( )= − ×0  (1)
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−
×0

0
100  (2)

where Co and Ce are the initial and equilibrium concentra-
tions of Cu(II) ion (mg/l), respectively; V refers to the vol-
ume of the Cu(II) solution (l); and W indicates the mass of 
the seed sample (g). 

2.3. Optimization methods

In the present study, MLR, FFD with center points, BBD 
and CCD were used to determine the optimum process condi-
tions in a sorption process. Tests were performed to investigate 
the factors, pH, initial Cu(II) ion concentration and biosorbent 
mass, affecting Cu(II) sorption onto date palm seeds.

The coefficients in a model equation are generally deter-
mined by an MLR analysis, which models the relationship 
between experimental and response variables based on the 
following equation for a given number of p observations:

yi = βo + β1x1 + β2x2 + ... + βpxp + ε (3)

where yi indicates the predicted response; βo is the intercept 
of the plane, the β1 and β2 parameters are the partial regres-
sion coefficients; xi(i = 1,…,p) are experimental variables; 
and ε is a random or an unexplained error [27,28]. 

In the conventional one-variable-at-a-time (OVAT) 
approach, 20 experiments are performed with the MLR 
analysis to evaluate the statistical significance of the effect 
of initial Cu(II) ion concentration, biosorbent mass and pH 
on the sorption process. 

Factorial designs are particularly important in exper-
iments that involve multiple factors in terms of provid-
ing data about the cooperative effect of each factor on the 
response. A 2k design is usually preferred in early stages of 
an experiment when it is possible to investigate several fac-
tors. This design gives the minimum number of runs with 
k number of factors that can be studied in an FFD. Since 
there are only two levels for each factor, we expected that 
the response would be approximately linear in the selected 
ranges [29]. Generally, the curvilinear effect on the response 
is so strong that the first-order model (even with the inter-
action term) is not adequate. In order to evaluate the curvi-
linear effect, there is a need for a polynomial function with 
quadratic terms. In this instance, the experimental design 
assumes that all the variables have at least three factors [30]. 

In a 2k FFD, each factor level is investigated to test all the 
combinations based on the following regression equation: 

y x x xi i ij i
i j

k

j
i

k
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∑∑β β β ε0

11

 (4)

where y is the response; xi  and xj refer to the coded vari-
ables; βs indicate the regression coefficients; and ε is a ran-
dom error. We used a 2-level FFD to evaluate the statistical 
significance of the effect and interactions of pH (X1), initial 
Cu(II) ion concentration (X2), and biosorbent mass (X3) 
and curvature on the batch sorption process. The levels of 
experimental factors chosen for FFD were coded as −1 and 
+1, respectively (Table 1). 23 experiments were performed 
for eight runs (in duplicate). The experiments were carried 
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out by selecting factor levels according to the data obtained 
from preliminary experiments. Furthermore, the curvature 
was assessed using a center points. 

If the curvature is statistically significant (P < 0.05) at the 
5% probability level, special designs, such as BBD and CCD 
that allow the use of second-order models are required. The 
actual values of the factors were selected as −1, 0 and +1 
for the coded values in BBD and as –α (–1.68), −1, 0, +1 and 
+α (+1.68) for those in CCD (Table 1). The following sec-
ond-order polynomial equation was used to identify all the 
possible interactions of the selected factors obtained from 
the models:

y x x x xi i ii i ij i
i j

k

j
i

k

i

k

= + + + +
≤ ≤==
∑∑∑β β β β ε0

2

111

 (5)

where x1, x2, . . .. xk are the input variables with an impact on 
the response y; β0, βi (i = 1, 2, . . .. k); βii and βij (i = 1,2, . . .. k; j 
= 1,2, . . .. k) refer to the intercept, linear, quadratic and inter-
action constant coefficients, respectively; and ε is a random 
error. The selected independent variables Xi were coded as 
xi based on the following relationship:

xi = (Xi – Xo)/Δx (6)

where Xo is the uncoded value of Xi at the center and Δx 
represents the step change [29]. 

3. Results and discussion

The data were analyzed using the coefficients of deter-
mination (R2), response surface plots, and analysis of vari-
ance (ANOVA) in the Minitab 16 Statistical Software. The F 
and probability (P) values were estimated using the coded 
values obtained from the models with the former being the 
ratio of the mean square of the parameter to that of the error 
term and the latter being obtained from the F distribution. 

The P value is defined as the smallest level of significance 
that results in the rejection of a null hypothesis [31]. At 5% 
significance, a regression model is accepted when either the 
F value is higher than the corresponding F critical value or 
the P value is lower than 0.05. The F critical values based on 
the degrees of freedom of the model were taken from the lit-
erature [29]. Each variable term in the model was evaluated 
in terms of their degree of significance based on the size of 
their regression coefficient. A higher regression coefficient 
of a variable term generally indicates that the term is more 
significant [32]. 

The R2value is defined as the ratio of the variability in 
the data “explained” by the ANOVA model. Suitable in 0 
≤ R2 ≤ 1 range, but larger values are more desirable. Other 
statics similar to R2 are also displayed in the output. The 
“adjusted” R2 is a variation of ordinary R2 statistics reflect-
ing the number of factors in the model. It may be a use-
ful statistic to assess the effect of increasing or decreasing 
the number of model terms for more complex experiments 
with various design factors. Before accepting ANOVA’s 
results, the adequacy of the recommended model should 
be checked. As before, the residue analysis is the primary 
diagnostic tool [29].

A very useful procedure is to generate a normal prob-
ability plot to control the assumption of normality. In 
ANOVA, it is more efficient (and simpler) to do so with 
residues. If the emphasize error distribution is normal, 
the plot will look like a straight line. When visualizing the 
straight line, give more importance to the central values   
of the plot than to the extremes. The general impression 
from examining this display is that the error distribution 
is approximately normal. The residuals plots to determine 
the deviation and express in terms of percent deviation. 
The residual plots show whether the residues are in normal 
distribution or not. If residues do not show normal distri-
bution, the reliability of P values obtained from ANOVA 
decreases. To verify the assumptions, it is tested whether 
the distribution of residues is normal and whether resi-
dues have changed [29]. 

Table 1 
The levels of experimental factors chosen for FFD, BBD and CCD

Factors Symbols Levels of factors (FFD)

–1 +1

Initial pH X1 2.5 5.5
Initial Cu(II) concentration, Co (mg/l) X2 20 80
Biosorbent mass, m (mg) X3 100 400

Factors Symbols Levels of factors (BBD)

–1 0 +1

Initial pH X1 2 4 6
Initial Cu(II) concentration, Co (mg/l) X2 20 60 100
Biosorbent mass, m (mg) X3 50 275 500

Factors Symbols Levels of factors (CCD)

–α(–1.68) –1 0 +1 +α(+1.68)

Initial pH X1 2 3 4 5 6
Initial Cu(II) concentration, Co (mg/l) X2 20 36 60 84 100
Biosorbent mass, m (mg) X3 50 141 275 409 500
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In addition, the statistical analyses of models are also 
performed by adding significance parameters such as vari-
ance inflation factor (VIF) for multicollinearity, and root 
mean square error (RMSE) is used to measure the differ-
ences between values predicted by a model and the values 
observed.

Multicollinearity, also called collinearity, is usually 
occurs when two or more predictive variables are asso-
ciated in applied models. Models with collinearity have 
predictors with lower precision that cause problems in 
testing hypotheses and estimating [33]. Variance inflation 
factors (VIFs) quantify the severity of multicollinearity in 
an ordinary least squares regression analysis, and are used 
to detect multicollinearity among predictors. VIF can be 
calculated through the following formula to check for the 
multicollinearity between explanatory variables:

VIF R adj= − ( )( )1 1 2/  (7)

If VIF = 1, there is no correlation, if VIF is more than 5 
but less than 10, there is moderate correlation and if VIF is 
greater than 10, there is high correlation. The common rule 
of thumb is that VIF should be less than 3 [34].

RMSE is the square scoring rule that measures the average 
size of the error and is calculated by taking the square root 
of the mean squared errors between the estimation and the 
actual observation [Eq. (8)]. RMSE increases as the variance 
associated with the frequency distribution of the error mag-
nitudes increases. The lower values of RMSE are better [35].

RMSE
n
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=
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1

2


 (8)

where yj is observed values and ýj is modelled values.

Response surface plots provide a better understanding of 
how each variable affects and interacts with the response. Each 
plot visualizes the effect of two variables within the selected 
range with a third variable being kept at a specific value. 

3.1. MLR

According to ANOVA results summarized in Table 2, 
the models were fitted for qe and R with adjusted-R2 of 
88.26% and 70.02%, and standard deviations of 0.57 and 
14.64, respectively. There was a low correlation between 
the observed results and predicted values. In addition, the 
models were not able to account for 11.74% and 29.98% 
(residuals) of the total variation. 

The following regression equations obtained from MLR 
model show the relationship between the factors and the 
responses as qe and R.

qe (mg/g) = –1.28 + 0.78 pH + 0.02 Co – 6.35 m (9)

R (%) = –26.00 + 16.17 pH – 0.64 Co + 5.50 m   (10)

A graphical presentation of the models are given in 
Fig. 1. The response surface graphs in Fig. 1 show that the 
MLR model can represent only the linear effects of all fac-
tors on the sorption process.

3.2. FFD

FFD is assumed that there is a linear relationship when 
examining two levels of factors. However, this assump-
tion is incorrect if the relationship between two points is 
curvilinear. It is very useful to investigate the curvature in 
experimental designs. In doing so, 3-level instead of 2 full 
factorial is not used. By adding midpoints in 2k designs, the 

Table 2
ANOVA for (a) qe (mg/g) and (b) R (%) based on MLR at coded units

(a)

Source df Sum of squares Mean squares F-value P-value VIF

Regression 3 22.859 7.6198 23.56 0.001
  pH 1 6.643 6.6428 20.54 0.004 1.35
  Co (mg/l) 1 3.362 5.5949 10.39 0.018 1.31
  m (g) 1 5.595 3.3615 17.30 0.006 1.24
Error 6 1.940 0.3234
Total 9 24.800

S = 0.57 R-Sq = 92.18% R-Sq(pred) = 65.37% R-Sq(adj) = 88.26%

(b)

Source df Sum of squares Mean squares F-value P-value VIF

Regression 3 5145.01 1715.00 8.01 0.016
pH 1 1829.31 2829.31 13.21 0.011 1.35
Co (mg/l) 1 2984.74 2984.74 13.93 0.010 1.31
m (g) 1 4.20 4.20 0.02 0.893 1.24

Error 6 1285.40 214.23
Total 9 6430.41

S = 14.64 R-Sq = 80.01% R-Sq(pred) = 47.26% R-Sq(adj) = 70.02%
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number of experiments is designed with fewer experiments 
than 3 levels. The points used to test the system for curva-
ture are called as center points. 

ANOVA results of FFD with center points in Table 3 
show that the effects and interactions of all experimental 
factors were indicated to be highly significant (P < 0.05) for 
the sorbed amounts of Cu(II) (qe) and sorption efficiency (R), 
at 5% probability. In Table 3b, P-value indicates that 3-way 
interactions are significant. Therefore, the lower-level inter-
actions were not excluded from the model. In Table 3, the 
curvature seemed to be an important factor, which means 
that the linear model was not sufficient for this region and 
a higher-order model was required. The presence of curva-
ture indicates that the experiment region may be close to 
the optimum.

The adjusted-R2 values with standard deviations as 
indicators of good fit of the models were calculated as 
99.98%±0.04 and 99.22%±1.77 for qe and R, respectively. 

Only 0.02% for qe and 0.78% for R of the total variation 
could not be explained. 

qe (mg/g) = –5.50 + 2.07 pH + 1.24Co – 2.48 m  
                     + 0.35 pH*Co – 0.91 pH*m – 0.55 Co*m 

(11)

R(%) = 42.51 + 16.32 pH – 7.91 Co + 1.94 m – 3.49 pH*Co (12)

There was a high correlation between the experimen-
tal results and the predicted values by Eqs. (11) and (12). 
In FFD models, the center points were ignored to draw the 
response surface plots. According to response surface plots 
Fig. 3, the sorbed amounts of Cu(II) increase linearly as pH 
and Co increase, and decreases as m increases. The sorption 
efficiency increase with increasing pH and m, decreases 
with increasing Co.

The normal probability plot of residuals is shown in 
Fig. 4. The residual plots show that the residual is normally 
distributed.
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Fig. 1. Response surface plot based on (a) qe and (b) R for MLR.
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Fig. 2. Probabilitiy plots based on (a) qe and (b) R for MLR.
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3.3. BBD

Table 4 presents the ANOVA results with the predicted 
F and P values for qe and R. In the BBD models, at the 
5% probability level, the linear effects of experimental fac-
tors and the square interactions indicating curvature were 
determined to be statistically significant (P < 0.05) for the 
sorbed amounts of Cu(II) (qe) and sorption efficiency (R). 
The BBD results were evaluated according to adjusted-R2 

values obtained from ANOVA analyses and response sur-
face plots.

According to the results, the following regression 
models were developed, giving the relationship between 
the responses (qe and R) and all the variable terms in coded 
units:

qe (mg/g) = 8.13 + 2.48 pH + 4.37 Co – 6.53 m  
– 6.22 pH2 + 4.20 m2 – 5.61 Co*m 

(13)

R (%) = 64.84 + 23.19 pH – 10.52Co + 10.32 m  
–30.59 pH2 – 9.83 m2 – 7.97 pH*Co + 13.43 pH*m 

(14)

Table 3
ANOVA for (a) qe (mg/g) and (b) R (%) based on FFD with center points at coded units

(a)

Source df Sum of squares Mean squares F-value P-value VIF

Model 8 243.832 30.4791 298.58 0.000
  Linear 3 191.418 63.8061 625.05 0.000
    pH 1 68.683 68.6827 672.82 0.000 1.00
    Co 1 24.676 24.6761 241.73 0.000 1.00
    m 1 98.060 98.0595 960.60 0.000 1.00
  2-Way Interactions 3 19.927 6.6424 65.07 0.000 1.00
    pH*Co 1 1.925 1.9252 18.86 0.000 1.00
    pH*m 1 13.195 13.1951 129.26 0.000 1.00
    Co*m 1 4.807 4.8071 47.09 0.000 1.00
  3-Way Interactions 1 0.030 0.0298 0.29 0.596
    pH*Co*m 1 0.030 0.0298 0.29 0.596 1.00
  Curvature 1 32.457 32.4572 317.95 0.000
Error 19 1.940 0.1021     
Total 27 245.772       

Values for the model with significant coefficients
S = 0.32R-Sq = 99.21%R-Sq(pred) = 98.88%R-Sq(adj) = 97.19%
Values for the reduced model with significant coefficients
S = 0.04R-Sq = 99.99%R-Sq(pred) = 99.96%R-Sq(adj) = 99.98%

(b)

Source df Sum of squares Mean squares F-value P-value VIF

Model 8 10850.7 1356.34 431.80 0.000
  Linear 3 5320.2 1773.40 564.57 0.000
    pH 1 4259.5 4259.52 1356.05 0.000 1.00

    Co 1 1000.8 1000.77 318.60 0.000 1.00
    m 1 59.9 59.91 19.07 0.000 1.00
  2-Way Interactions 3 200.3 66.78 21.26 0.000
    pH*Co 1 194.6 194.60 61.95 0.000 1.00

    pH*m 1 4.6 4.64 1.48 0.239 1.00
    Co*m 1 1.1 1.09 0.35 0.562 1.00

  3-Way Interactions 1 13.8 13.84 4.41 0.049
    pH*Co*m 1 13.8 13.84 4.41 0.049 1.00
  Curvature 1 5316.3 5316.33 1692.49 0.000
Error 19 59.7 3.14     
Total 27 10910.4       

Values for the model with significant coefficients
S = 1.77R-Sq = 99.45%R-Sq(pred) = 98.48%R-Sq(adj) = 99.22%
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In Eqs. (13) and (14), the positive signs of coefficients for 
the main effects and interactions of factors demonstrate their 
synergistic effect on qe and R, while the negative signs denote 
their antagonistic effects. Based on their effect on qe and R the 
order of decreasing significance of each variable term were as 
follows; m ~ pH2 > m2 ~ Co > pH and pH2 > pH > pH*m > Co ~ 
m > m2 > pH*Co, respectively. According to qe and R, ANOVA 
results showed that the most important variables for the bio-
sorption process were sorbent amount and pH, respectively. 
These observations are confirmed by the response surface 
plots presented in Fig. 5. The high similarity between the 
experimental results and the predicted values by Eqs. (13) 
and (14) show a good fit of the BBD model, with the adjust-
ed-R2 of 95.69% and 99.43% the standard deviation being 1.66 
and 2.06. In addition, the probability plots for qe and R indi-
cated that these models explained 95.69% and 99.43% of the 
total variation, respectively. 

The residual plots in Fig. 6 shows that the residues are 
normally distributed.

3.4. Central composite design (CCD)

Table 5 presents the results of ANOVA with F and P val-
ues estimated by CCD for qe and R. At the 5% probability 
level, the linear and square coefficients were found to be 
highly significant (P < 0.05), except for 2-way interaction.

The relationship between the responses and the factors 
can be presented using the coded variables as follows: 

qe (mg/g) = 7.77 + 2.01 pH + 1.45 Co – 4.30 m  
                     – 2.05 pH2 – 1.15 Co

2 + 2.10 m2 (15)

R (%) = 70.62 + 16.88 pH – 9.36 Co + 3.27 m  
              – 14.93 pH2 – 2.19 Co

2 – 7.68 m2 – 3.49 pH*Co (16)

The experimental results were highly correlated with 
the values predicted by Eqs. (15) and (16). Furthermore, the 
adjusted-R2 of 97.67% and 99.96% for qe and R confirmed 
that the model was a good fit, respectively. The percentage 
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Fig. 3. Response surface plot based on (a) qe and (b) R for FFD.
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of residuals was only 2.33% and 0.04% for qe and R, respec-
tively. The significance of each variable term regarding their 
effect on qe and R were in the following decreasing order: m 
> m2 ~ pH ~ pH2 > Co > Co2 and pH > pH2 > Co > m2 > pH*Co 

> m > Co2, respectively. The response surfaces were plotted 
to visualize the effects of three factors on qe and R (Fig. 7). 
According to the results, when the sorption improved at the 

pH range of 2 to 4, decreases after pH 4. In Fig. 8, the resid-
uals show normal distribution.

3.5. Comparison of models

Screening methods, in particular the two-level FFD, 
are used to determine the factors with a significant effect 

Table 4
ANOVA for (a) qe (mg/g) and (b) R (%) based on BBD at coded units

(a)
Source df Sum of squares Mean squares F-value P-value VIF
Model 9 1849.67 205.519 6.55 0.000
  Linear 3 1086.77 362.257 11.54 0.000
    pH 1 98.03 98.029 3.12 0.092 1.00
    Co (mg/l) 1 305.61 305.608 9.74 0.005 1.00
    m (g) 1 683.13 683.134 21.76 0.000 1.00
  Square 3 498.10 166.035 5.29 0.008
    pH*pH 1 267.49 267.488 8.52 0.008 1.01
    Co (mg/l)*Co (mg/l) 1 49.94 49.943 1.59 0.222 1.01
    m(g)*m(g) 1 142.83 142.830 4.55 0.045 1.01
  2-Way Interaction 3 264.80 88.266 2.81 0.066
    pH*Co(mg/l) 1 10.65 10.654 0.34 0.567 1.00
    pH*m(g) 1 2.65 2.650 0.08 0.774 1.00
    Co(mg/l)*m(g) 1 251.49 251.493 8.01 0.010 1.00
Error 20 627.74 31.387
  Lack-of-Fit 3 360.92 120.308 7.67 0.002
  Pure Error 17 266.82 15.695
Total 29 2477.41
Values for the model with significant coefficients
S = 5.60   R-Sq = 74.66%R-Sq(pred) = 35.14%R-Sq(adj) = 63.26%
Values for the reduced model with significant coefficients
S = 1.66R-Sq = 96.58%R-Sq(pred) = 94.24%R-Sq(adj) = 95.69%
(b)
Source df Sum of squares Mean squares F-value P-value VIF
Model 9 21510.6 2390.06 36.74 0.000
  Linear 3 12079.5 4026.49 61.90 0.000
    pH 1 8604.2 8604.19 132.27 0.000 1.00
    Co (mg/l) 1 1770.9 1770.94 27.22 0.000 1.00
    m (g) 1 1704.3 1704.35 26.20 0.000 1.00
  Square 3 7388.7 2462.91 37.86 0.000
    pH*pH 1 6930.9 6930.86 106.55 0.000 1.01
    Co (mg/l)*Co(mg/l) 1 3.1 3.13 0.05 0.829 1.01
    m(g)*m(g) 1 720.6 720.60 11.08 0.003 1.01
  2-Way Interaction 3 2042.4 680.79 10.47 0.000
    pH*Co(mg/l) 1 508.7 508.73 7.82 0.011 1.00
    pH*m(g) 1 1443.6 1443.64 22.19 0.000 1.00
    Co(mg/l)*m(g) 1 90.0 90.01 1.38 0.253 1.00
Error 20 1301.0 65.05
  Lack-of-Fit 3 477.5 159.17 3.29 0.046
  Pure Error 17 823.5 48.44
Total 29 22811.6
Values for the model with significant coefficients
S = 8.07R-Sq = 94.30%R-Sq(pred) = 85.44%R-Sq(adj) = 91.73%
Values for the reduced model with significant coefficients
S = 2.06 R-Sq = 99.57%R-Sq(pred) = 99.28%R-Sq(adj) = 99.43%
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on a response and the level of that significance. RSM are 
multivariable techniques that fit mathematically with 
a response function on the selected experimental region 
examined in the theoretical design. Among these designs, 
CCD and BBD are commonly preferred [36]. The former 
is based on FFD (N= 2k), in which center points, axial or 
start points are represented by a star allowing the esti-
mation of the curvature BBD; however, it is not directly 
based on an FFD in terms of using center points rather 
than corner points [36]. This design is limited to cases, in 
which the experimenter is not interested in predicting the 
response at extreme points (corners of the cube) [36]. BBD 
requires fewer experiments (N = 2k(k–1)+Co) than CCD 
(N= 2k+2k+Co) but covers a slightly smaller experimental 
region (N: experimental points, k: number of variables and 
Co: number of center points) [37,38].

In this study, the accuracy and the predicting capabil-
ity of MLR, FFD with center points, BBD and CCD for the 
sorption of Cu(II) ions were evaluated and compared. The 

difference in adjusted R2 and RMSE values between the 
experimental and predicted responses were used to assess 
and compare the accuracy of the models (Table 6). Among 
the models, CCD model had capable of best estimation due 
to high R2 and low RMSE values for the biosorption pro-
cess. This was also confirmed by the results given in Table 7 
for comparison of experimental and predicted results from 
models under random conditions. Except for MLR, the 
adjusted R2 values of all the models were greater than 95% 
and were very close to the R2 values. It confirms that the 
RSM models were highly significant, and the relationship 
between the experimental and predicted responses was 
quite good. Due to their R2 values being greater than 0.800; 
FFD, BBD and CCD models had a better performance than 
MLR model [39,40]. In addition, the RSM models have the 
advantage of identifying relationships and developing an 
efficient regression model with a considerably lower num-
ber of data compared to MLR. Furthermore, in MLR model, 
the effects of parameters on a response may not be linear 
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Fig. 5. Response surface plot based on (a) qe and (b) R for BBD.
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[41]. RSM providing more flexibility and having greater 
capability is considered to be more effective in modeling 
non-linearity. For all models, the normal probability plots 
of the residuals indicate linearity between the experimen-
tal results and the predicted results by the model. Also, the 

tested VIF values to control the multicollinearity show that 
there is no perfect linear relationship between the explana-
tory variables and the predictive variables. That is, there is 
no correlation because VIF values are equal to 1 in applied 
models, except for MLR.

Table 5
ANOVA for (a) qe (mg/g) and (b) R (%) based on CCD at coded units

(a)
Source df Sum of squares Mean squares F-value P-value VIF

Model 9 1010.07 112.230 17.94 0.000
  Linear 3 675.22 225.074 35.97 0.000
    pH 1 110.58 110.577 17.67 0.000 1.00
    Co (mg/l) 1 57.43 57.427 9.18 0.005 1.00
    m (g) 1 507.22 507.220 81.07 0.000 1.00
  Square 3 314.89 104.963 16.78 0.000
    pH*pH 1 121.30 121.304 19.39 0.000 1.02
    Co (mg/l)*Co (mg/l) 1 38.41 38.411 6.14 0.019 1.02
    m (g)*m (g) 1 126.84 126.839 20.27 0.000 1.02
  2-Way Interaction 3 19.95 6.651 1.06 0.379
    pH*Co (mg/l) 1 1.92 1.916 0.31 0.584 1.00
    pH*m (g) 1 13.21 13.209 2.11 0.157 1.00
    Co (mg/l)*m (g) 1 4.83 4.828 0.77 0.387 1.00
Error 30 187.70 6.257
  Lack-of-Fit 5 185.58 37.116 438.19 0.000
  Pure Error 25 2.12 0.085
Total 39 1197.77

Values for the model with significant coefficients
S = 2.50 R-Sq = 84.33%R-Sq(pred) = 66.43% R-Sq(adj) = 79.63%
Values for the reduced model with significant coefficients
S = 0.78R-Sq = 98.02%R-Sq(pred) = 97.28% R-Sq(adj) = 97.67%

(b)

Source df Sum of squares Mean squares F-value P-value VIF

Model 9 18215.5 2023.95 88.65 0.000
  Linear 3 10468.6 3489.53 152.85 0.000
    pH 1 7782.6 7782.56 340.89 0.000 1.00
    Co (mg/l) 1 2394.1 2394.09 104.86 0.000 1.00
    m (g) 1 291.9 291.93 12.79 0.001 1.00
  Square 3 7546.5 2515.51 110.18 0.000
    pH*pH 1 6428.7 6428.73 281.59 0.000 1.02
    Co (mg/l)*Co (mg/l) 1 137.6 137.62 6.03 0.020 1.02
    m (g)*m (g) 1 1699.1 1699.14 74.42 0.000 1.02
  2-Way Interaction 3 200.4 66.81 2.93 0.050
    pH*Co (mg/l) 1 194.7 194.66 8.53 0.007 1.00
    pH*m (g) 1 4.7 4.66 0.20 0.655 1.00
    Co (mg/l)*m (g) 1 1.1 1.09 0.05 0.828 1.00
Error 30 684.9 22.83
  Lack-of-Fit 5 616.5 123.30 45.06 0.000
  Pure Error 25 68.4 2.74
Total 39 18900.4

Values for the model with significant coefficients
S = 4.78 R-Sq = 96.38%R-Sq(pred) = 92.35%R-Sq(adj) = 95.29%
Values for the reduced model with significant coefficients
S = 0.42 R-Sq = 99.97%R-Sq(pred) = 99.95%R-Sq(adj) = 99.96%
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4. Conclusions

In this study, MLR, FFD with center points, BBD and 
CCD models were used to develop a function to model and 
optimize three experimental parameters that affect the bio-
sorption process. The accuracy and predicting capability of 
these models were compared for qe and R as response. The 
results showed that RSM models performed better than the 
MLR and FFD models in predicting of qe and R. However, 
the FFD model with center points was found to be feasible 

for identifying the relationship between variables that affect 
curvature. In RSM models, the existence of square and two-
way interactions of the parameters and the magnitude of 
the coefficients in the model equations indicate that the 
nonlinear effect is more effective. Also, RSM is important in 
modern research since they require less process time. Con-
trary to the classical univariate methods, which take time 
to investigate the response of each factor since all other fac-
tor need to be kept at a constant level, RSM presents a rela-
tively simple and effective solution for independent factors. 

Table 6
Comparison of the models performance

Parameters qe (mg/g) R (%)

MLR FFD BBD CCD MLR FFD BBD CCD

RMSE 0.2584 0.0034 0.2673 0.1346 2.0948 0.0800 0.1083 0.0130
R-Sq 0.9218 0.9999 0.9658 0.9902 0.8001 0.9965 0.9957 0.9997
R-Sq(adj) 0.8826 0.9998 0.9569 0.9767 0.7002 0.9952 0.9943 0.9996
S 0.5687 0.0575 1.6583 0.7776 14.637 1.3340 2.0576 0.4240
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Fig. 7. Response surface plot based on (a) qe and (b) R for CCD.
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In addition, while experimental design techniques take into 
account all the factors and possible interactions, univariate 
methods fail to account for the interaction effects between 
the factors.

Symbols

P — Probability value
R-Sq — Coefficient of determination
R-Sq(adj) — Adjusted coefficient of determination
R-Sq(pred) — Predicted coefficient of determination
S (sigma) — Standard deviation
F — Calculated test statistic
α (alpha) — Significance level in hypothesis test
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