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a b s t r a c t

Reverse osmosis (RO) and nanofiltration (NF) membranes in spiral wound configurations have been 
widely used in food processing ranging from dairy to fruit juice for concentration, purification and 
recovering valuable components. In this work, intelligent systems, i.e., back-propagation artificial neural 
network (BPNN), radial basis function (RBF), fuzzy inference system (FIS) and adaptive Neuro-fuzzy 
inference system (ANFIS) were employed to predict the water flux and solute rejection of RO and NF 
membrane during concentration of licorice solution. To develop the intelligent systems, normalized 
membrane type, temperature, pressure, pH and cross-flow velocity are taken as inputs while normalized 
permeate flux and rejection are as outputs of the models. The proposed intelligent systems have been 
compared based on statistical parameters of the coefficient of determination (R2) and the mean absolute 
error (MAE). The results indicate that the ANFIS model is more accurate and reliable compared to the 
BPNN, RBF and FIS approaches. It was found that the predictions using ANFIS model were usually in 
good agreement with the experimental data, showing the R2 values within the range of 0.932–0.997 and 
the MAE values in the range of 0.01–1.7%. On the basis of comparison among the results obtained from 
this investigation, it is suggested that the ANFIS model could be potentially utilized to forecast the rejec-
tion and permeate flux of membrane during the concentration process of a licorice solution.

Keywords:  NF and RO membranes; Backpropagation neural network (BPNN); Concentration; Fuzzy 
inference system (FIS); Radial basis function (RBF); Adaptive neuro-fuzzy inference 
 system (ANFIS); Licorice solution

1. Introduction

Licorice (Glycyrrhiza glabra L.) is one of the most popu-
lar herbal plants in many countries such as Iran and China. 

Triterpene glycosides and flavonoids are the main active 
ingredients of licorice. These compounds exhibit various 
types of pharmacological activity such as antimicrobial, 
anti-allergic, antihepatocarcinogenic, anti-inflammatory, 
antiatherogenic, etc. [1–5]. 
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The conventional concentration techniques - vacuum 
distillation and evaporation that are employed today have 
some disadvantages, including the use of high tempera-
tures, toxic solvents and high energy consumption. Addi-
tionally, the heat treatment can alter the characteristics of 
compounds such as the flavour and sensory characteristics 
[6]. The use of membrane concentration techniques has 
become more and more important in the food and beverage 
industry due to unique advantages, namely low tempera-
tures, lack of phase change and low energy consumption 
[7–9]. Concentration of licorice aqueous solutions by tra-
ditional evaporation processes is being replaced by nano-
filtration (NF) and reverse osmosis (RO) based membrane 
processes [10]. However, the membrane technologies are 
unsuitable for the concentrations normally higher than 
25–30° Brix. This is because when the juice concentration 
is increased significantly, the osmotic pressure becomes 
equal to the hydraulic pressure, causing no flux produced. 
Another key disadvantage of membrane technology is the 
fouling that causes a decline in flux and therefore a loss in 
process yield over time. It is necessary to mention that the 
key advantage of thermal evaporation is the concentration 
of the liquid food up to 65° Brix [11,12].

In general, the permeate flux and rejection are consid-
ered as the main indicators of membrane process perfor-
mance which significantly affect the cost of treatment. In 
most of the cases, the membrane characteristics, fluid prop-
erties, physicochemical properties of solute and operation 
conditions are main factors determining flux and rejection. 
Therefore, the study of solute rejection and permation flux 
are needed for the design and evaluation of a new mem-
brane process for industrial scale separation [13,14]. There 
are various mathematical models to simulate mass transfer, 
flux decline and solute rejection of fruit juice and wastewa-
ter using membrane technologies [15–17]. Curcio et al. [18]
for instance studied transport phenomena in membrane for 
the process of licorice solutions concentration. They used 
the numerical solution of partial differential equations by a 
finite element technique for the non-Newtonian behavior of 
licorice solutions. The proposed model correlates the influ-
ence of flow rate, concentration, membrane hydraulic per-
meability, fluid rheological and trans-membrane pressure 
on the permeate flux decline and solute rejection.

Each of conventional models (mathematical equations) 
based on physical concepts has its own limitations. Typi-
cally, the equations employed are often complex and need 
some experimental data to determine the system param-
eters. In addition, each equation is only valid for certain 
food process under specific operating conditions and most 
of these models are obtained by means of a steady state 
hypothesis. Because of this, the predictions of these models 
are not always satisfactory [19,20].

Intelligent system models such as artificial neural net-
work (ANN), fuzzy logic (FL) and adaptive Neuro-fuzzy 
inference system (ANFIS) can be applied as an alternative 
to mathematical models for determining complex connec-
tions between many inputs and outputs [21–23]. Recentlly, 
artificial neural network has been utilized as a powerful 
modeling tool in membrane technology [24–26]. There are 
several researchers who studied the applicability of ANN 
and ANFIS to describe membrane filtration. Nandi et al. 
[14]used low cost ceramic microfiltration membrane in 

the oily wastewater treatment. They developed an artifi-
cial neural network model and the cake filtration model to 
forecast permeate flux and concluded that the ANN model 
performs better than the cake filtration model for the pre-
diction of permeate flux with lower error values.

Aydiner et al. [27] on the other hand investigated the 
ability of ANN and Koltuniewicz’s method to model flux 
decline in crossflow microfiltration of a mixture contain-
ing phosphate and fly ash under various conditions, i.e., 
phosphate concentration, fly ash dosage, trans-membrane 
pressure and membrane type. The results of ANN models 
showed that they are able to simulate the decline of perme-
ate flux at a high precision from experimental conditions. 
Yangali-Quintanilla et al. [28] applied ANN models based 
on the quantitative structure-activity relationship (QSAR) 
to forecast the rejection of natural organic compounds using 
polyamide RO and NF membranes. They defined the QSAR 
equation using principal component analysis and multiple 
linear regression as a function of solute properties, mem-
brane characteristics and operating conditions. The results 
indicated that the predicted and experimental rejections 
could be modeled with good correlations.

Artificial neural network models have also been suc-
cessfully applied to predict different aspects of membrane 
filtration. Some of the examples include simulating the 
batch ultrafiltration performance of mosambi juice and 
synthetic fruit juice [20], fouling of membrane during cross-
flow microfiltration [29], process optimization of seawater 
RO desalination plant [30], predicting NF membrane foul-
ing [31], using electrodialysis for lead ions separation from 
wastewater [32] and prediction of microfiltration mem-
brane fouling [33].

Fuzzy inference system (FIS) has been utilized to solve 
the nonlinearity problem. It is considered to have low math-
ematical equation requirements. FIS has been successfully 
applied to model membrane processes [34]. Madaeni and 
Kurdian [13] used hybrid genetic algorithm and fuzzy logic 
for modeling and virus removal optimization from water 
using dead-end microfiltration process. The parameters 
of flux and rejection were experimentally achieved under 
various conditions compared with those obtained through 
fuzzy logic. The results showed that fuzzy logic simulates 
flux and rejection within an acceptable error range. Rahma-
nian et al. [35] applied fuzzy logic for removal of lead ions 
from aqueous solutions by micellar-enhanced ultrafiltra-
tion. They claimed that the fuzzy logic model is simpler and 
easier than the mathematical modeling for the description 
of the relationships among the different conditions and the 
permeate flux and rejection. The results indicated that there 
is a very good agreement between the predicted values 
achieved from the fuzzy model and the actual data.

Adaptive neuro-fuzzy inference (ANFIS) that combines 
fuzzy logic and ANN is able to train from the data based on 
the characteristics of the input and output, and create mem-
bership functions and rules through learning from the data 
by the ANN. The accuracy of modeling using the fuzzy logic 
can be greatly enhanced [36,37]. Vural et al. [19] employed 
ANFIS to model performance of a proton exchange mem-
brane fuel cell under different operating conditions. The 
results displayed very good agreement between the actual 
data and those forecasted by ANFIS model. Sargolzaei et al. 
[38] employed back propagation artificial neural network 
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(BPNN), radial basis function (RBF) and ANFIS to predict 
permeate flux and starch rejection from wastewater by a 
polyethersulfone membrane. Their results demonstrated 
that the ANFIS provides a better prediction than RBF and 
BPNN models. 

In this work, intelligent systems (BPNN, RBF, FL and 
ANFIS) are utilized to model performance of cross-flow NF 
and RO process for concentrating licorice aqueous solutions 
and to predict permeate flux and rejection under various 
operating conditions.

2. Materials and methods

2.1. Experimental data

The experimental data which has been applied to train 
and test intelligent models, explanation of the schematic 
diagram and membrane specifications can be found in our 
previous research [10]. We performed different experimen-
tal trials with membranes having a surface area of 0.002 m2. 
The cross-flow velocity, trans-membrane pressure, pH and 
temperature were varied during experiment in the range of 
0.5–3.2 m/s, 6–14 bar, 3–11 and 25–45°C, respectively.

2.2. Theory of ANN 

ANN is a simplified model of the human brain. The 
neural network can be used to model nonlinear systems 
by establishing the relation between input and output vari-
ables via a training data set. The following equation can be 
applied to the training process.

y w x bj
k

n

jk k j= +
=

∑
1

 (1)

where xk shows the input, n is the input node number, wjk is 
the weight from kth to jth neruons, and bj is the jth neuron 
bias. The output yj is attained via adjusting weights wjk in 
the networks [33].

Connections among neurons for various layers and 
within layers are significant in the construction of a ANN. 
Feed forward neural network is the most common and most 
widely applied models among abundant practical applica-
tions [39,40]. After a neuron receives the input, it does its 
function and produces a single output transferring its out-
put to all of the neurons. In the feed forward network, a lin-
ear or nonlinear transfer function sends the neuronoutputs 
of the first layer to the neurons of the second layer. One of 
the pivotal factors which tally inputs with outputs in differ-
ent ways is transfer function [20]. Three types of the most 
commonly applied transfer functions are the sigmoid, lin-
ear and hyperbolic tangent function. The transfer functions 
are as follows [32]:
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The selection of the number of hidden layers and the 
number of neurons per each hidden layer can change the 
complexity of the ANN model. The determination of the 
number of layers and neurons is complicated as they depend 
on certain problem and are performed through trial and 
error approach. With too few neurons, the ANN may not to 
be able to figure out the problem and with a large number 
of neurons it may lead to overfitting [41,42].Overfitting is 
one of the problems that taking place during neural network 
training. Even though the error on the training set is driven 
to a very small value, when new data are shown to the net-
work the error is relatively large. The ANN has memorized 
the learning data set, but it has not trained to generalize to 
new observation and will not give precise predictions. Early 
stopping and regularization are two methods that used to 
avoid overfitting and raising generalization.

In early stopping methods the total data is split into 
three subsets: training, validation and testing subsets. Train-
ing set is used to determine weights and biases of network. 
During training process, the error on the validation set is 
recorded. The validation error ordinarily diminishes during 
the initial subset of training, as does the training set error. 
Nevertheless, the validation would usually start to increase 
when error the network begin to memorize the data. The 
train stops, and the weights and biases at the minimum of 
the validation error are relapsed when the validation error 
broaden for a specified number of repetition.

2.2.1. Training of ANN

The neural network toolbox in Matlab7(R2009a) was 
applied to simulate the experimental data. The total data 
were divided into three sets for modeling of flux and rejec-
tion. Both sets contain 34 data. Total 34 data of each set 
were split into three subsets. 70% of samples were applied 
to learning and 12% of data were employed to validation 
and 18% of data, which has not been employed in the train-
ing process, were utilized for generalization. Each data set 
consists of five inputs: type of membrane (RO and NF), 
trans-membrane pressure (bar), feed temperature (°C), 
cross flow velocity (m/s), and pH. The network outputs 
are permeate flux (L/m2·h) and rejection (%), respectively. 
Two different ANN architectures (BPNN and RBF struc-
tures) were established for simulation permeate flux and 
rejection during RO and NF of licorice aqueous solutions 
concentration.

2.2.2. BPNN architecture

A BPNN model with single and double hidden layer 
was employed. The trial and error method was used to 
appointed the hidden layers neurons. The optimal network 
architecture of a typical BPNN is shown in Fig. 1. The Lev-
enburg-Marquardt (LM) method was applied as the back 
propagation algorithm to amend the learning rate and sta-
bility of the back propagation algorithm for seeking the 
minimum mean absolute errors (MAE) between experi-
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mental data and predicted values. The change rate of con-
nection weights during training is displayed by learning 
rate. The choice of a training rate is of essential importance 
to find the local minimum error [20]. In the present work, 
the learning rate of 0.2 was selected because a lower value 
enhances the convergence time and high oscillations in 
error were noticed at higher training rates. The weights for 
each input and iterations (10000) were randomly initialized. 
The BPNN applied in this work is based on the following 
equation:

y F W F W Xk jk
m

j
ij i

n

i
= × 
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where yk is the output value, F is the transfer function, Wjk 
is the connection weight between the hidden layer and the 
output layer, Wij is the connection weight between the input 
layer and the hidden layer and Xi is the input value of the 
network.

2.2.3. RBF architecture

Fig. 2 displays a schematic diagram for a radial basis 
function neural network (RBFNN). The RBFNN was pre-
sented by many researchers [22,23,43–45] and appears a 
better alternative to BPNN as RBFNN supplies easier ini-
tialization, faster learning procedure, and more stable per-
formance [43]. The RBFNN has a feed forward architecture. 
However, the BPNN is one of the most widely applied 
ANN models in many research papers. The basic construc-
ture of an RBFNN normally is composed of three layers: 
(a) the input layer, (b) the hidden layer and (c) the output 
layer. RBFNN can prevail over some of the BPNN problems 
using the non-linearity in the transfer functions of the hid-
den layer neurons [46]. Diversity of hidden layer is the main 
difference in working between RBFNN and BPNN. Instead 
of the weighted sum of the input vector applied in BPNN, 
the distance between the input and the center is used in 

the RBFNN training process [43]. Normally, Gaussian basis 
functions and linear transfer functions are used in the hid-
den layer and in the output layer, respectively. The Gauss-
ian transfer function for the RBFN is shown in the following 
equation:
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where ∅j is the nonlinear function of unit j, x and µ are 
the input and the center of RBF unit, respectively. σj is 
the spread of the Gaussian basis function. The neurons of 
output layer lead to the weighted inputs and results are 
obtained through a linear combination, which is of a similar 
structure to that of the BPNN [46]:

ŷ w R x bi i
m

i
= ( ) +

=∑ 2
1
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where ŷ is the RBFNN predicted result, b2 is the bias in the 
output layer and wi is the optimized connection weight 
obtained by using the learning process [44].

2.3. Fuzzy inference system and ANFIS models

Fuzzy modeling is the puissant method to catch relation-
ship between input and output in nonlinear systems. Fuzzy 
modeling is one of the most powerful models to acquire 
relationship of input-output in complex nonlinear systems. 
Logical operation, membership function and if-then rules 
are deducted from fuzzy systems. Fig. 3 exhibits an FIS that 
contains fuzzy rules, fuzzifier, defuzzifier and fuzzy infer-
ence engine. In the fuzzy logic (FL) applications, the fuzzy 
rule (if- then rules) has played a central role. Fuzzy is linguis-
tic variable which values are words rather than numbers. A 
fuzzy rule has the form, of if x is A then y is B, where A and 
B are linguistic values defined by fuzzy sets on universes 
of discourse X and Y, respectively. The fuzzy labels set are 

Fig. 1. A typical architecture of BPNN model.
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demonstrated by database adequate membership functions. 
The premise or antecedent is the if-part of a fuzzy if-then 
rule, while the consequent or conclusion is the then-part 
of the rule. The fuzzy logic operators which consist of the 
fuzzy intersection or conjunction (AND), fuzzy complement 
(NOT) and fuzzy union or disjunction (OR) would resolve 
the antecedent to a single number between zero and 1, if 
there are multiple hypotheses [13]. Fuzzifier module con-
verted the real numbers of input into fuzzy sets. The “If X” 
is the discourse universe and its elements are determined by 
x, then a fuzzy set A in X is indicated by a membership func-
tion µA(x) which takes values between 0 and 1. The Gaussian 
membership function as expressed in the following equation 
is obtained via various membership functions:

µ σ
A

X X

X e( ) =
− −





* 2

  (8)

where σ, x* are parameters of function. The mean of defuzzi-
fication consists of centriod, bisector, smallest of maxima 
(SOM), largest of maxima (LOM) and the mean of maxima 
(MOM). The most typical defuzzifier designates the gravity 
center method in which the gravity center of the fuzzy set 
is calculated and projected to the x-axis to gain a non-fuzzy 
output real number region [47].

Fig. 4 displays the FIS structure. The Mamdani (Max-
Min) [48] and Takagi-Sugeno model [49] are two common 
kinds of fuzzy inference systems. The consequences of the 
rules of Mamdani models are fuzzy sets, which include lin-
guistic information into the model, while the output mem-

bership functions of the Takagi-Sugeno model is constant or 
linear functions.

Adaptive neuro-fuzzy inference system (ANFIS) is a 
combination of FIS and ANN. FIS and ANN are two sup-
plementary methods. The incorporation of artificial neural 
network with learning ability and FIS with decision making 
ability can be used to construct a flexible intelligent system. 
Therefore, the combination of both artificial neural network 
and fuzzy inference system can improve system perfor-
mance without interference of operators [50]. The advan-
tage of this technique has led many researchers to apply 
the ANFIS architecture to model nonlinear functions to rec-
ognize nonlinear parameters as well as to forecast desired 
result logically [51]. The ANFIS structure shown in Fig. 5i 
indicates total layers of the system and the dependency of 
ANFIS rules on the variables.

2.4. Normalization of data

Normalization is an alteration process by which inputs 
and output vectors are scaled to a defined numerical range. 
Because of very small or very large data, normalization of 
data was used to avoid of numerical overfitting [20,38]. 
Therefore, data were scaled through the following equation:

X
X X

X Xi norm,
min

max min
=

−
−

 (9)

where Xi, norm, Xmin and Xmax are the normalized, minimum 
and maximum values of X, respectively.

Fig. 2. An architecture of RBF model.

Fig. 3. A schematic of FIS.
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2.5. Selection of optimal architecture

To obtain the optimum model, various structures were 
evaluated and the prediction performances of the various 
architectures were compared using the coefficient of deter-
mination (R2) of the linear regression line between the pre-
dicted value and the desired output and the mean absolute 
error (MAE). The coefficient of determination and error 
functions are as follows:

MAE
N

y yprd i i
i

N

= −( )
=
∑1

1
, exp,  (10)

R

y y

y y

prd i i
i
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2
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1

2

1
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=
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∑

∑

, exp,

,
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Fig. 4. An architecture of FIS model.

Fig. 5. The architecture of the ANFIS model.
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where yprd,i, yexp,i, N and ym were the predicted value, the 
experimental value, the number of data and the average of 
the experimental value.

3. Results and discussion

The present research aimed to consider the ability of 
intelligent system models to forecast the permeate flux and 
rejection of membrane as a function of feed pH, membrane 
type (reverse osmosis and nanofiltration), transmembrane 
pressure, feed temperature and cross flow velocity. The 
results were divided into 3 parts. The results of RBF and 
BPNN models were elucidated in the first part. In the sec-
ond part, the results of FIS model has been indicated. In the 
third part, the results of ANFIS model were demonstrated.

3.1. BPNN and RBF models

Fig. 6 shows the complexity of dependency on input/
output data. Figs. 6A-B display input vectors and Figs. 6C-D 
indicate output vectors. The various structures of RBF and 
BPNN models have been used and their results are summa-
rized in Table 1. It may be seen from Table 1 that the struc-
ture with 5 neurons gives simultaneously the best R2 and 
MAE values for both training and testing sets. The existence 
of five inputs and two outputs make the training and pre-
diction procedure very complicated. As indicated in Table 1, 
the coefficient of determination for training and testing data 

set could not be better than 0.95 and 0.86, respectively. Fig. 
7 displays the plot of the actual values of the normalized 
rejection and permeate flux of training and testing data sets 
against the values of normalized rejection and permeate 
flux predicted with a 5 hidden layers neurons structure. 
This indicates a good agreement between the simulated 
and the actual data. Fig. 8 demonstrates actual values of the 
normalized rejection and permeate flux against calculated 
values with best RBF model (spread constant of 10). The 
equation that achieved from the ANN model is considered 
as the objective function. This equation correlates the inputs 
with output and can be specified as follows: 

ANN output=Purelin(w2*tansig(w1*[x(1);x(2);x(3);x(4); 
x(5)]+b1)+b2)   (12)

where x(1), x(2), x(3), x(4) and x(5) show the inputs, w1 and 
b1 are the weight and bias of the hidden layer, while the 
w2 and b2 are the weight and bias of output layers. Table 2 
presents the weight and bias values of each layer that deter-
mined from the optimum ANN structure. 

3.2. FIS and ANFIS models

In this study, Sugeno model is used in FIS model. Fig. 9 
shows a membership function (Gaussian) of input variable 
in the used model. For the input parameters nine mem-
bership functions VL, L, VMO, MO, M, I, VI, H, VH are 

 

 

Fig. 6. The complexity of several experimental data relationships, (A)-(B) input dataset vectors, (C)-(D) output dataset vectors.
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applied. They are very low, low, very moderate, moderate, 
medium, increase, very increase, high, very high, respec-
tively. In this investigation, the fuzzy reasoning results 
of outputs are obtained by the aggregation operation of 
fuzzy sets of inputs and are designed fuzzy rules, where 
max aggregation method, the fuzzy implication operator 
defined by min and to gain a crisp output from the aggrega-
tion fuzzy result, whatever the defuzzification methods are 
utilized. Fig. 10 indicates the experimental data compared 
with the prediction of the permeate flux and rejection of the 
FIS model for training and testing data sets.

The accuracy and ability of a FIS tool for forecasting 
concentration licorice using RO and NF membrane per-
formance was examined with experimental data shown in 
Table 2. It is found that the results from the presented FIS 
model are in agreement with experimental data.

As mentioned early, the ANFIS is a hybrid of neural 
network topology together with fuzzy logic, therefore, it 
is applied as a robust approach to simulate rejection and 

Table 1 
The results of various structures of BPNN and RBF models

BPNN

Rejection (%)Flux (L/m2·h)Hidden layer neurons

TestingTrainingTestingTraining

MAER2MAER2MAER2MAER2

0.0980.520.700.600.0060.870.0040.862
0.0030.930.0240.860.1390.250.0580.693
0.0310.820.0620.630.2310.620.2890.204
0.0010.940.0260.950.0260.830.0110.865
0.0540.770.1040.700.1350.360.1550.326
0.0520.890.0230.940.0780.820.0150.7110
0.0330.990.0420.760.0630.660.0470.7915
0.1350.870.1420.720.0620.920.0860.7220
0.0150.930.6800.770.1050.330.3780.632,1 (2 in 1st layer, 1 in 2nd layer)
0.0120.990.0360.910.0170.220.0530.312,2 (2 in 1st layer, 2 in 2nd layer)
0.0810.930.0540.600.0240.710.1120.333,2 (3 in 1st layer, 2 in 2nd layer)
0.0500.680.0740.470.0830.190.0210.253,3 (3 in 1st layer, 3 in 2nd layer)
0.0230.670.1050.220.0570.220.0810.214,3 (4 in 1st layer, 3 in 2nd layer)
0.0340.870.0260.850.0370.580.0630.754,4 (4 in 1st layer, 4 in 2nd layer)
0.0200.970.0400.710.0300.230.0350.195,4 (5 in 1st layer, 4 in 2nd layer)
0.0150.920.0130.800.0380.660.0120.855,5 (5 in 1st layer, 5 in 2nd layer)
0.0810.820.0140.950.1200.370.0580.6710,5 (10 in 1st layer, 5 in 2nd layer)
0.0120.940.0120.850.0710.380.0510.7810,10 (10 in 1st layer, 10 in 2nd layer)
0.0130.930.0190.710.0220.620.0210.5515,10 (15 in 1st layer, 10 in 2nd layer)
0.0690.980.0690.780.0550.500.0100.8215,15 (15 in 1st layer, 15 in 2nd layer)
0.0180.940.0170.940.0300.740.0420.3320,15 (20 in 1st layer, 15 in 2nd layer)
0.0160.930.0210.890.0280.700.0510.4220,20 (20 in 1st layer, 20 in 2nd layer)

RBF
Spread constant

0.1130.463.1×10–1210.8740.231.3×10–511

0.0200.578.1×10–710.0090.211.0×10–515

0.0420.781.5×10–610.0010.602.0×10–50.9910

permeate flux based on experimental results. In this study, 
two ANFIS models were built to simulate the rejection and 
permeate flux. The Sugeno type fuzzy inference system was 
used to achieve a concise model with a minimum number 
of rules. In both ANFIS models the inputs were the mem-
brane type, pressure, temperature, pH and cross flow veloc-
ity, that Gaussian membership function with numbers of 2, 
5, 5, 5, and 9, respectively was selected for these inputs by 
developing different models and taking into consideration 
the consequent parameters. The outputs of models were the 
permeate flux and rejection that constant type membership 
function was used for these outputs during generating FIS. 
The optimization methods train the membership function 
parameters to imitate the training data set.

In the optimum method, hybrid of back propagation 
was selected as the optimization method. The hybrid opti-
mization method is a combination of least-squares and 
back-propagation gradient descent method. The hybrid 
method converges much faster since it diminishes the 
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Fig. 7. Correlation between the normalized experimental values of training and testing data sets and the predicted values using 
BPNN model (A) permeate flux (B) rejection.
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Fig. 8. Correlation between the normalized experimental values of training and testing data sets and the predicted values using the 
RBF model with a spread constant of 10 (A) permeate flux (B) rejection.
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dimension of the search space of the original back-prop-
agation approach. In this study, the hybrid optimization 
method, the epoch numbers of 100 and the error tolerance 
of training to adjust the stopping criteria for the training of 
0 were used. A regression curve is plotted in Fig. 11 between 
the normalized experimental and predicted permeate flux 
and rejection via ANFIS model for training and testing sets. 
The R2 and MAE of ANFIS model for training and testing 
sets are presented in Table 3. It can be seen that data are well 
fitted due to a high value of R2.

3.3. Comparison between models

BPNN, ANFIS, RBF and FIS models were selected to 
compare their abilities in predicting of the permeate flux 
and rejection obtained from experiments. Fig. 12 compares 
experimental results with RBF, BPNN, FIS and ANFIS fore-
casted values of testing data set using best models were 
selected. It was shown that the performance of ANFIS 

model is better than other models and a good agreement 
between the experimental data and the predicted values 
using ANFIS was observed.

4. Conclusion

The main objective of this study was to construct and 
verify the capability of the models, namely BPNN, RBF, FIS 
and ANFIS to simulate and modeling of permeate flux and 
rejection in concentration processes using RO and NF mem-
branes. The results revealed that there was a good agree-
ment between the experimental data and the predicted data 
with the proposed model under different operating condi-
tions. Therefore, it can be deduced that the ANFIS model can 
be applied as a feasible model to simulate the performance 
of the membranes under different operating conditions. By 
comparing the results obtained from the intelligent sys-
tem,it can be concluded that the processes, namely concen-

Table 2 
The weight and bias of trained ANN model

W1 W2
T b1 b2

–0.235 1.198 2.899 2.070 0.889 4.512 –0.133 –0.968 –0.8441

2.540 –0.841 2.141 –0.741 –1.284 0.601 0.1764 –0.227 0.2148

0.575 –1.021 –0.364 –1.948 –0.229 2.986 –0.505 0.6749

–0.912 –4.261 –11.75 –6.410 4.248 0.5219 –0.209 3.603

–36.57 –15.96 0.360 63.378 3.213 0.1745 –0.055 –16.86

Fig. 9. Membership function of input variables used in this work (VL: very low, L: low, VMO: very moderate, MO: moderate, M: 
medium, I: increase, VI: very increase, H: high, VH: very high).



A.R.S. Nejad et al. / Desalination and Water Treatment 145 (2019) 83–95 93

A 

 
 
 

y = 0.990x + 0.002
R² = 0.997

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ed

ic
te

d 
no

rm
al

iz
ed

 fl
ux

Experimental normalized flux

A-Training

 

y = 1.010x - 0.045
R² = 0.931

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8

Pr
ed

ic
te

d 
no

rm
al

iz
ed

 fl
ux

Experimental normalized flux

A-Testing

B 
 

 
 
 
 

 

y = 0.930x + 0.015
R² = 0.994

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ed

ic
te

d 
no

rm
al

iz
ed

 re
je

ct
io

n

Experimental normalized rejection

B-Training

y = 0.940x + 0.005
R² = 0.973

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Pr
ed

ic
te

d 
no

rm
al

iz
ed

 re
je

ct
io

n

Experimental normalized rejection

B-Testing

Fig. 10. Correlation between the normalized experimental values of training and testing data sets and the predicted values using 
FIS model (A) permeate flux (B) rejection. 
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Fig. 11. Correlation between the normalized experimental values of training and testing data sets and the predicted values using 
ANFIS model (A) permeate flux (B) rejection.
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tration with different and effective parametres, will tempt 
us to use the ANFIS systems instead of the trial and error 
method, which is both time and cost consuming.
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