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a b s t r a c t
Experimental studies have shown that flux and ion rejection by nanofiltration (NF) are strongly 
influenced by feed pH. The novelty of this research is using the artificial neural network (ANN) in 
predicting ion rejection based on multiple variable experimental data for feed pH, pressure, and 
flux. With a number of independent variables affecting ion rejections, ANN is considered suitable 
compared with Spiegler–Kedem model for predicting the interrelation between variables with non-
linear dependencies in a multi-ion environment. However, Spiegler–Kedem and steric hindrance pore 
models were used for explaining effect of pH on NF flux variations. Experiments were performed to 
demonstrate reuse of de-oiled produced water (PW) at different pH with salinity similar to seawater as 
smart water for enhanced oil recovery. Flux was higher at basic pH compared with acidic feed pH and 
varied due to pH-sensitive dissociable groups, which are protonated or deprotonated with changing 
pH. An ANN structure was designed that resulted in a close agreement between ANN predictions and 
experimental data with an agreement of above 95% for all membranes. The results are presented, and 
interpreted with respect to requirements for smart water, thereby reusing PW, and simultaneously 
expanding membrane applications in the oil industry. 
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1. Introduction

Water injection is performed during oil production for 
mostly all oil reservoirs for pressure maintenance and to sus-
tain oil recovery. Amount of produced water (PW) surges as a 
producing field age and PW volume to be treated is continu-
ously increasing and with high investment for best available 
technologies.

PW composition is complex and has distinctive charac-
teristics due to organic and inorganic content that differs 
between reservoirs. The components originate from injected 
water, formation water, and chemicals including dissolved 

and dispersed organic compounds, inorganic compounds 
including heavy metals, salts, and naturally occurring radio-
active materials. 

In 2015, only 22% of total PW produced on the Norwegian 
continental shelf (NCS) were injected into formations while 
the rest was discharged to sea after treatment. PW discharges 
were 150 million standard cubic meter (scm) on NCS while oil 
production totaled 91 million scm in 2015 [1]. Environmental 
regulations and sustainable development of scarce resources 
of water are currently moving the focus towards reusing 
pre-treated PW as injection water. 
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Enhanced oil recovery (EOR) by smart water has become 
an accepted technology in the oil industry. Smart water 
is produced by adjusting the ionic composition of injected 
water that changes the established equilibrium between 
crude oil, brine, and pore surface minerals, modifying the 
wetting properties of reservoirs [2]. In carbonate reservoirs, 
seawater and modified seawater brines behave as smart 
water while low salinity brines are more efficient in sand-
stone reservoirs [2,3].

Smart water for carbonates requires high divalent 
ion concentrations (SO4

2–, Ca2+,, and Mg2+) and low mon-
ovalent ion concentrations (Na+ and Cl–). For sandstone 
reservoirs, low salinity water with total dissolved solids 
(TDS) less than 5,000 ppm and low divalent ion concen-
trations are preferred [2]. Production of smart water by 
nanofiltration (NF) membranes using seawater as feed 
for both reservoirs was discussed in our earlier paper [4]. 
Permeate is used for smart water production when oil-free 
PW is treated with NF membranes and is considered as a 
reuse of PW that simultaneously improves oil recovery and 
economics [5]. 

The objective of this research is to focus on PW reuse as 
smart water for EOR. It has been suggested that NF mem-
branes can treat oil-free diluted PW and reused for EOR in 
reservoirs [5]. However, pH of PW is one of the main chal-
lenges for treatment by membranes. pH of PW differs from 
4.3 to 10 depending on reservoirs and chemicals added [6]. 
TDS of PW vary from hundreds to 250,000 ppm [7]. 

Experiments were performed for verifying the feasibility 
of de-oiled PW and seawater co-injection into reservoirs for 
EOR or for water flooding [8]. The performance of three NF 
membranes was experimentally determined with respect to 
flux and ion rejection under a wide range of feed pH and 
pressure values. The experimental results were later used 
for predicting ion rejections at given pressure, flux, and pH 
using artificial neural network (ANN). 

A number of mathematical models predict ion trans-
port mechanisms in NF membranes. Prediction of ion rejec-
tion was performed by researchers using Spiegler–Kedem 
model [9–11] to determine the transport parameters reflec-
tion coefficient σ and solute permeability Ps [12]. However, 
these models are mathematically complex and require a 
detailed knowledge of membrane characterization and 
performance. 

ANN for predicting ion rejection offers a more attractive 
alternative to Spiegler–Kedem model and has been applied to 
predict membrane performance and fouling [13,14]. Results 
showed that proper selection of input variables and number 
of neurons with a set of training data help to optimize the 
ANN training process resulting in accurate predictions of 
membrane performance [15]. 

This research presents an experimental analysis of mem-
brane performance in terms of flux and rejection using three 
commercially available NF membranes (NF270, ESNA, and 
HYDRACoRe50) with seawater with varying pH as feed. 
Spiegler–Kedem model was used to determine the reflec-
tion coefficient and solute permeability of ions. A steric hin-
drance pore (SHP) model was used to determine the pore 
size of tested membranes. ANN was used to predict rejec-
tions as a function of pressure, pH, and flux for Cl–, Na+, 
Mg2+, and Ca2+. 

2. Theory

Treatment of oilfield PW includes processes such as sep-
arators, de-oilers, de-sanders, coagulation, media filters, and 
membranes. Effective PW treatment generally requires a 
series of pre-treatment operations to remove contaminants. 
After appropriate pre-treatment, high TDS can be removed 
from PW by reverse osmosis (RO). RO membranes have no 
pores and separation is mainly due to solution-diffusion. 
However, fouling of RO membranes at high-feed pres-
sure operation is a challenge. NF is an alternative and is a 
well-established process in separation and purification of 
solutions. NF membranes have a pore size in the range of 
1 nm and operate at feed pressure from 3 to 20 bar and have 
higher flow rate than RO and are less susceptible to fouling. 
By implementing NF membrane treatment, the energy con-
sumption will be less than that for RO and increases water 
recovery. 

Performance of NF membranes as a function of pH is 
analyzed by flux and solute rejection. Membrane charac-
teristics vary with pH [16] and variations are dependent on 
membrane material, type, and concentration of solute. Solute 
separation by NF is due to complex mechanisms including 
Donnan [17] and dielectric effects and steric hindrance. Ion 
retention is also determined by the distribution of co-ions 
between the membrane and solution according to Donnan 
equilibrium for single-salt solutions [18]. However, when 
pressure is applied across the membrane, Donnan potential 
repels co-ions and to achieve electroneutrality, counter-ions 
are also rejected. This is one of the main mechanisms during 
NF separation [19]. Ion separation also occurs due to siev-
ing (steric) effect based on size differences between ions and 
membrane pores. Hydrated ions with large size are retained 
by the membrane while ions with low hydrated radius 
permeate [19].

2.1. Spiegler–Kedem model

Solute transport through a membrane can be described 
by irreversible thermodynamics where the membrane is con-
sidered as a black box [20]. According to Speigler and Kedem 
[20], an expression for relating flux to rejection was devel-
oped when high concentration difference occurs between 
permeate and reject:
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where Robs is the observed rejection, Jv is water flux, σ is the 
reflection coefficient, and Ps is solute permeability.

The parameters σ and Ps were determined by fitting the 
experimental rejection data R as a function of flux Jv using 
a best-fit method. The transport parameter σ measures the 
degree of membrane semi-permeability. A high σ value 
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(σ ≈ 1) indicates that the solute is highly rejected by the 
membrane [12]. 

Membrane efficiency is evaluated by measuring flux Jv 
through the membrane. Flux is defined as permeate flow 
through a unit area of the membrane surface with units of 
L/m2/h and is calculated by Eq. (3) as follows:

J V
t Av = ×

 (3)

where V is the permeate volume, t is the filtration time, and A 
is the effective membrane area. 

Ion rejection R is another parameter used for investigat-
ing membrane performance and specifies the concentration 
of ions in the retentate or percentage of ions rejected by the 
membrane using Eq. (4).

R
C
C
p

f

= −1  (4)

where Cp and Cf are permeate and feed concentrations, 
respectively.

2.2. Steric hindrance pore model 

According to Nakao and Kimura [21], membrane struc-
tural parameters can be estimated using the SHP model. This 
model was successfully used by many researchers [22,23], to 
determine the pore size using neutral and charged solutes. 
The model explains transport of ions through cylindrical 
pores hindered by frictional forces and the steric effects are 
considered. According to this model, the membrane parame-
ters σ and Ps are given as:
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and

q = rs/rp (9)

D is diffusivity, Ak/Δx is the ratio of membrane porosity to 
membrane thickness, rs is the Stokes radius of the solute, and 
rp is the pore radius. SD and SF are the steric hindrance fac-
tors for diffusion and convection, respectively. Stokes radius 
of ions is used to calculate the pore radius and is shown in 
Table 1.

2.3. Limitations of membrane process-based models

Proper prediction of NF membrane performance is 
required for process design and optimization. Ion rejec-
tions are mainly predicted by Spiegler–Kedem model and 
by models based on Nernst–Plank equation. The former is 
based on a black-box approach that allows the membranes 
to be characterized based on the transport parameters such 
as reflection coefficient σ and solute permeability Ps [10,21]. 
The latter model describes ion transport in terms of effective 
membrane charge density and ratio of effective membrane 
thickness to porosity [25]. Both these models were developed 
from NF membranes physical properties and performance 
and require a detailed knowledge of the feed conditions and 
membrane type that may not be readily available. 

However, prediction of ion rejection by ANN only 
requires readily available inputs with a minimum under-
standing of the overall complexity of the membrane proper-
ties. ANN is user-friendly and suitably accurate for industrial 
design purposes. 

2.4. Artificial neural network 

ANNs are computational models that act as powerful 
tools to predict output data in complicated systems with 
several input parameters with a considerable reduction in 
time and cost. ANNs are used to process data and provide 
information using a group of integrated process units called 
neurons. ANNs are adaptive systems that could change its 
structure based on the information that flows through the 
network during the training phase. The multi-layer percep-
tron artificial neural network includes an input layer, a hid-
den layer, and an output layer. The number of input layers is 
three and consists of pH, pressure, and flux. Output values 
are four and include Cl–, Na+, Mg2+, and Ca2+ rejection.

Feedforward back propagation network type is used 
in this research. In each neuron, the sum of input values is 
weighted and the sum is transferred through a transfer func-
tion. The transfer function calculates the output from an 
input neuron. The transfer functions mainly used in ANN 
to solve regression problems are the hyperbolic tangent sig-
moid transfer function (tansig), log-sigmoid transfer function 
(logsig), and the linear transfer function (purelin). The neu-
rons can use any transfer function to create the output. The 
transfer functions generate outputs for tansig in the range of 
–1 ≤ f (Ai) ≤ +1, for logsig in the range, 0 ≤ f (Ai) ≤ 1 and for 
linear function from the range –∞ ≤ f(Ai) ≤ + ∞, where Ai is the 
net input [26]. Different number of hidden layers can be used 
and the number of neurons in each layer is varied to find the 
best ANN structure to predict ion rejection. 

Table 1
Stokes radii of ions [24]

Ions Stokes radius (nm)

Cl– 0.121
Na+ 0.184
SO4

2– 0.231
Ca2+ 0.310
Mg2+ 0.348
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The ANN inputs present the variables that have an effect 
on the predicted outputs such as pH, pressure, concentration, 
and membrane type. All these inputs are related to ion rejec-
tion, the ANN output in this research. The structure of the 
neural network used to predict ion rejection in this research 
is shown in Fig. 1. 

The output layer should have four neurons since the 
number of outputs is four. The selected training algorithm is 
Levenberg–Marquardt. There are mainly four steps involved 
in ANN modeling that include collecting the training data for 
input and output, selecting the network design, training the 
network, and network simulation. The most important phase 
of building the ANN model is network training. During the 
training phase, the data supplied will be divided into three 
sections that include the training data, validation data, and 
test data. The training process minimizes the error related to 
the deviations of the ANN predictions from the target values 
and is calculated as mean square error (MSE). The value of 
MSE is calculated using Eq. (10) [26].

MSE =
−( )

=∑ i

n

i it a
n

1

2

 (10)

where ti denotes the i-th target value, ai is the predicted value, 
and n is the number of data.

The optimum neural network structure was selected 
based on the smallest difference between the predicted val-
ues and the experimental data or in other words, the neural 
network with the least MSE and highest R2 is selected. R2 is 
the statistical coefficient of determination and a value higher 
than 0.95 is considered acceptable. 

3. Experimental methods 

3.1. NF membranes

Three commercial NF membranes were investigated in 
this study; Nitto Hydranautics ESNA, HYDRACoRe, and 
Dow Filmtec NF270. Table 2 summarizes the membrane 
specifications according to the manufacturers. ESNA and 
Filmtec NF 270 have a polyamide skin layer on a polysulfone/
polyester support layer. 

Maximum operating pressure and temperature are 41 bar 
and 45°C and the pH range is 2–11 for all three membranes. 

3.2. Experimental set-up

The experimental set-up consists of membrane mod-
ules listed in Table 2, one membrane operated at a time. 
Membranes were first stabilized by washing with pure 
water for approximately 4 h at 25°C and 10 bar. Membranes 
were operated in a cross-flow mode at room temperature 
with operating pressure of 9–18 bar. Feed seawater was pre-
treated through a 20 µm and a 5 µm cartridge filter. The 
retentate and permeate streams were returned to the feed 
tank securing identical feed concentrations. Samples from 
both streams were collected and analyzed. The membrane 
stabilization time for each experimental run at different feed 
pH was 25 min at all tested operating pressures. Flux through 
the membrane was calculated by measuring the permeate 
flow rate through the active membrane area. The flow rate 
was measured immediately after 25 min. Three trials were 
performed for each pH value and the membranes were pro-
ducing for 3 h for each trial. 

3.3. Feed solutions and analytical instruments

Experiments should be performed with de-oiled PW 
with high TDS for precise calculations. However, for ease of 
experimental analysis, the experiments were performed by 
varying the pH in seawater with ionic composition as shown 

Fig. 1. ANN configuration with five neurons in the hidden layer.

Table 2
Membrane specifications according to manufactures

Membrane Material Area, m2 Permeate flow 
rate, m3/d

ESNA Composite 
polyamide

2.3 4.9

HYDRACoRea Sulfonated 
polyethersulfone

2.3 4.2

Filmtec NF270 Composite 
polyamide

2.6 3.2

aMolecular weight cut off is 1,000 Dalton according to the 
manufactures.

Table 3
Compositions of major ions in PW and seawater in mol/L

PWa Seawaterb

HCO3- 0.013 0.002
Cl– 1.096 0.525
SO4

2– 0.001 0.024
Mg2+ 0.008 0.052
Ca2+ 0.031 0.093
Na+ 1.027 0.474
K+ 0.005 0.010
TDS (g/L) 64.96 34.1

aPW composition for Valhall field [8].
bSeawater composition from ion chromatography (IC) analysis.
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in Table 3. It was assumed that the feed seawater used for the 
experiments can be considered as diluted de-oiled PW with 
no colloids or scaling ions present. Thus, the effect of col-
loidal fouling and concentration polarization during mem-
brane performance is not considered. PW composition from 
the Valhall field in the North Sea [8] is likewise displayed to 
compare the ionic concentrations between PW and seawater. 
The ions are identical in both PW and seawater, though the 
ion concentrations differ. Scaling ions such as barium and 
strontium were not present in the feed seawater.

Experiments were carried out with pre-filtered seawater 
at 34,100 ppm TDS and conductivity of 47.3 mS/cm. pH of 
seawater was adjusted between 2.5 and 10.2 by adding ana-
lytical grade HCl and NaOH. 12 feed pH values were used: 
2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8.5, 9.2, 9.7, and 10.2. Experiments 
were also performed with normal seawater with pH 8. No 
HCl or NaOH was added at pH 8. 

Conductivity, salinity, temperature, and TDS were 
measured using TDS meter VWR collection CO3100N. 
pH was measured using VWR Phenomenal pH 1100L. 
Ion concentrations were measured using IC (Dionex ICS-
5000+ DP). 

3.4. Membrane cleaning

Suitable membrane cleaning was performed with tap 
water after each experiment. Flushing was continued until 
clean water membrane flux returned to its initial flux. pH 
and conductivity of recirculated water were continuously 
monitored to confirm that no fouling occurred on the mem-
brane. Chemical cleaning was performed using Aqua Pro 
Membrane cleaner for removal of metal hydroxides, CaCO3, 
and other types of scaling. 

4. Results and discussions

4.1. Effect of feed pH on flux or membrane permeability

Membrane performance at various feed pH values was 
interpreted by analyzing flux through the membrane. Flux 
as a function of transmembrane pressure for three NF mem-
branes is represented in several figures. Fig. 2 shows the 
effect of pH on flux with increasing operating pressure for 
ESNA.

Data presented in the graphs are average values from 
three trials. Fig. 2 shows that the lowest flux was 34 L/m2/h 
at pH 4.5 with an operating pressure of 9 bar. Below this pH, 
flux improved to 68 L/m2/h at 9 bar for pH 2.5. However, 
when comparing the membrane performance in all tested pH 
values, pore size shrinkage occurred significantly at acidic 
conditions. Highest flux was observed when normal seawater 
permeated through the membrane at pH 8. High flux was 
observed at basic pH for all pressures. Flux increased linearly 
at all individual pH with an increase in pressure confirming 
that no membrane fouling occurred during the experiments. 

Fig. 3 displays flux vs. pressure for HYDRACoRe. Low 
flux was observed at acidic pH and a major change in flux 
was not observed during the entire tested pH values. 

Flux vs. pressure for NF 270 is presented in Fig. 4. 
Minimum flux was obtained at pH 3. An increase in flux was 
observed with an increase in feed pH. 

Flux for each membrane varies with the type of feed 
water and increases with increasing pressures. Maximum 
flux was attained at pH 8 with normal seawater as feed for 
all three membranes. This confirms that these membranes are 
designed to produce maximum flux when seawater is used 
as feed. 

Highest flux was 163 L/m2/h observed for ESNA as pre-
sented in Fig. 2 and indicates more open pores for ESNA 
compared with HYDRACoRe and NF 270. ESNA and NF 

Fig. 2. Flux vs. pressure for ESNA at different pH.

Fig. 3. Flux vs. pressure for HYDRACoRe with varying pH.

Fig. 4. Flux vs. pressure for NF 270.
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270 membranes have a polyamide skin layer. However, they 
have different degrees of crosslinking that gives rise to dif-
ferent surface properties resulting in different flux and ion 
rejection pattern as a function of pH. Polyamide NF mem-
branes consist of both carboxyl group (≡COO–) and amino 
groups (≡NH3

+) and exhibit positive and negative surface 
charges depending on pH. At acidic conditions, protonation 
of amine occurs (≡NH2 → ≡NH3

+) resulting in increased pore 
size, thereby increasing flux. This explains a slight peak in 
flux in an acidic environment at pH 5 in Fig. 2. At high pH, 
polyamide membrane matrix appears to be more expanded 
due to deprotonation of carboxyl group (≡COOH → ≡COO–) 
resulting in higher flux as in the case of ESNA and NF 270. 

HYDRACoRe membranes are made of sulfonated poly-
ethersulfone and have −SO2 groups in the polymeric sulfone. 
This is quite stable due to attraction of resonating electrons 
between adjacent aromatic groups, and the presence of 
repeating phenylene rings creates steric hindrance to the 
rotation [27]. Both these characteristics lead to molecular 
immobility and wide pH tolerance [27]. Fig. 3 also confirms 
that permeability of HYDRACoRe was quite stable over the 
tested pH range, except for a slight increase in flux for nor-
mal seawater at pH 8.

4.2. Effect of feed pH on ion rejection

The retention of charged ions depends on ion valency, 
concentration, charge density, surface charge, and chemi-
cal nature of the groups present on the membrane surface. 
Individual ion concentrations at different pressures and pH 
values in reject and permeate were measured for ESNA, 
HYDRACoRe, and NF 270. An increase in ion rejection with 
an increase in pressure was observed in all samples.

4.2.1. Rejection of monovalent ions 

Different membranes showed different rejection patterns 
even with small pH changes, which could be due to differ-
ent surface characteristics of the three tested membranes. 
Figs. 5 and 6 display rejection of Cl– and Na+ at different feed 
pH values with increasing pressure for ESNA.

Figs. 5 and 6 present low ion rejections of Na+ and Cl– in 

basic environment. It was observed that when flux increased, 
ion rejection decreased. In Fig. 2, a flux minimum at pH 4.5 

was observed whereas a peak in rejection at the same pH for 
Na+ and Cl– was observed in Figs. 5 and 6. 

Figs. 7 and 8 show the rejection of Cl– and Na+ with 
HYDRACoRe. 

Na+ and Cl– rejection by HYDRACoRe show similar 
patterns. A slight decrease in flux with HYDRACoRe was 
observed at pH 4. However, a peak in monovalent ion rejec-
tions was observed at pH 4. The results confirm that Donnan 
potential influences ion rejection. In Fig. 8, at pH 4, a peak in 
Na+ rejection is observed, which could be either due to pore 

Fig. 6. Na+ rejection with varying pH for ESNA.

Fig. 7. Cl– rejection for HYDRACoRe at different feed pH.

Fig. 8. Na+ rejection at different feed pH for HYDRACoRe.Fig. 5. Cl– rejection for ESNA.
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size reduction or by repulsion by the positive charge of the 
membrane. To maintain electroneutrality at pH 4, more Cl– is 
rejected according to Fig. 7. 

Monovalent ion rejection for NF 270 is displayed in 
Figs. 9 and 10.

It has been confirmed that the isoelectric point for NF 270 
is close to pH 5 and salt rejection is minimum at pH 4 [28]. 
The performed experiments confirmed that Na+ and Cl– rejec-
tions were low at pH 4.5 for NF 270, close to the isoelectric 
point. 

4.2.2. Rejection of multivalent ions 

Figs. 11–13 present the rejection of Mg2+ for ESNA, 
HYDRACoRE and NF 270 membranes. 

Highest Mg2+ rejection was observed at the lowest tested 
pH of 2.5 for ESNA. This confirms that the membrane is 
highly positively charged at acidic conditions and positive 
charges are reduced with increasing pH values. Rejection of 
more positively charged Mg2+ resulted in permeation of more 
Na+ through the membrane to maintain electroneutrality 
between two phases of the membrane. This means low rejec-
tion of Na+ at acidic pH. This explains the comparatively low 
rejection of Na+ in Fig. 6.

Figs. 5–13 present ion rejections as a function of pH. SO4
2– 

is generally not present in PW and is not evaluated in this 

research. Results show that ion rejection by HYDRACoRe 
was less than 35% for all ions confirming that the effect of 
pH on HYDRACoRe was weak or less at all pH. Highest 
Mg2+ rejection was 98% observed at pH 2.5 for NF 270 and 
decreased to 56% at pH 10.2. There was only a slight effect 
of pressure on Mg2+ rejections for ESNA and NF 270 since 
the rejection was almost the same at all operating pressures, 
whereas a slight increase in Mg2+ rejection was observed for 
HYDRACoRe. 

Fig. 9. Cl– rejection at different feed pH for NF 270.

Fig. 10. Na+ rejection at different feed pH for NF 270.

Fig. 11. Mg2+ rejection at different feed pH for ESNA.

Fig. 12. Mg2+ rejection at different feed pH for HYDRACoRe.

Fig. 13. Mg2+ rejection at different feed pH for NF 270.
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Fig. 14 shows the rejection of Ca2+ for ESNA. The highest 
Ca2+ rejection was observed at low pH. A depression in rejec-
tion of Ca2+ was observed between pH 5 and 7. The rejection 
increased at pH 8 (normal seawater) and slightly decreased 
at pH > 8. 

During membrane performance, electrostatic repulsion 
between the membrane and cations determines ion rejec-
tion. When Na+, Ca2+, and Mg2+ are present in the feed, co-ion 
rejection competition occurs. Ions with low hydration energy 
and high mobility are prone to permeate and Na+ with lowest 
hydration free energy passes easily through the membrane 
to balance the charge on both sides. Ca2+ has higher hydra-
tion energy than Na+ but lower than Mg2+. Hence, Mg2+ will 
be rejected more than Ca2+ as confirmed by Figs. 11 and 14. 
Hydration free energy of Na+, Ca2+, and Mg2+ are –365, –1,592, 
and –1,922 kJ/mol, respectively [29]. Similar rejection for Ca2+ 
was observed for HYDRACoRe and NF 270. 

Flux and rejections at different pH values may be caused 
by several mechanisms or combination of mechanisms. These 
include change in pore size due to change in conformation of 
the cross-linked polymer structure of the membrane or mem-
brane swelling or shrinkage, difference in osmotic pressure 
due to addition of HCl or NaOH, changes in electroviscous 
effect resulting in variation in water permeability, co-ion 
and counter-ion interactions, Donnan effect, steric or sieving 
effect, convection, and diffusion.

4.2.3. Pore radius (rp) calculations using Spiegler–Kedem and 
SHP models

Characterization of the membrane physicochemical 
properties such as contact angles, surface morphologies, and 
membrane surface zeta potentials is generally measured to 
determine the variations in ion rejections and flux perme-
ation. In this research, membrane performance at different 
pH values has been analyzed by variations in rp, calculated 
using Spiegler–Kedem and SHP models where the single 
independent variable approach was used. 

The membrane transport parameters σ and Ps of each ion 
was calculated by fitting flux vs. rejection in Eqs. (1) and (2) 
for the three tested membranes. To explain the difference in 
pore size, Mg2+ is chosen as a reference since the Stokes radius 
and hydration energy of Mg2+ is highest when compared with 
other ions present in seawater and is a divalent cation and 
thus will be attracted by the membrane surface. Table 4 shows 
reflection coefficients and solute permeabilities of Mg2+ for 
the three tested membranes at all observed pH values.

Variations in pore size with pH for all membranes with 
respect to Mg2+ was calculated using SHP model by apply-
ing σ and Ps on Eqs. (5)–(9) for the three NF membranes. The 
resulted rp for the three membranes are presented in Fig. 15.

The results confirm that when pH is varied, pore size was 
reduced at acidic pH irrespective of the type of membrane, 
resulting in decreased flux and increased ion rejection. The 
original rp is assumed to be at pH 8 when normal seawater was 
used as feed since all the three NF membranes are designed 
to operate with seawater. According to Fig. 15, rp is lowest at 
pH 3 and highest at pH 8 for ESNA. When rp is lowest, flux 
is at a minimum with increased rejection. However, there is a 
deviation in flux and rejection behavior for ESNA. Minimum 
flux was observed at pH 4.5 with a peak in ion rejections at the 

same pH. While comparing the difference in pore sizes with 
pH, it should be noted that for ESNA and NF 270, the effect 
of pH was more distinct. For ESNA, rp decreased from 0.87 to 
0.42 nm while for NF 270, rp decreased from 0.5 to 0.37 nm. 

4.3. Effect of PW pH on smart water production 

Results obtained confirm that feed water with varying 
pH can be treated with NF membranes to produce permeate 
with modified ionic composition. Flux is high when feed pH 
is basic. Basic pH has the advantage of permeating more diva-
lent ions, which are advantageous for carbonate reservoirs 
and is confirmed by Figs. 11 and 13. These figures show that 
when PW feed pH was high, more Mg2+ permeated through 
the membrane. A power consumption analysis on the pro-
duction of smart water from de-oiled PW for both carbonate 
and sandstone reservoirs has previously been confirmed [5]. 

4.4. Modeling ion rejection using ANN

In this research, operating pressure, pH, and flux are 
considered as variables and used as inputs to the ANN net-
work. The number of neurons in each layer is varied for the 

Fig. 14. Ca2+ rejection observed for ESNA at different feed pH.

Table 4
Reflection coefficient and solute permeability of Mg2+ at 
varying pH

pH ESNA FilmTec HYDRACoRe
σ Ps (m/s) σ Ps (m/s) σ Ps (m/s)

2.5 0.84 3.578 × 10–6 0.98 6.258 × 10–8 0.37 6.202 × 10–6

3 0.85 6.629 × 10–6 0.98 1.181 × 10–7 0.32 5.921 × 10–6

3.5 0.68 2.177 × 10–6 0.98 1.625 × 10–7 0.36 6.038 × 10–6

4 0.70 9.823 × 10–6 0.97 2.761 × 10–7 0.33 4.319 × 10–6

4.5 0.55 4.399 × 10–6 0.97 5.053 × 10–7 0.33 6.052 × 10–6

5 0.41 6.409 × 10–6 0.90 5.96 × 10–7 0.33 5.985 × 10–6

6 0.47 5.174 × 10–6 0.86 9.053 × 10–7 0.35 7.212 × 10–6

7 0.26 8.316 × 10–6 0.75 1.363 × 10–6 0.34 8.581 × 10–6

8 0.22 1.228 × 10–5 0.67 2.088 × 10–6 0.38 1.417 × 10–5

8.5 0.24 7.763 × 10–6 0.69 1.449 × 10–6 0.29 4.383 × 10–6

9.2 0.24 7.024 × 10–6 0.73 3.059 × 10–6 0.31 5.46 × 10–6

9.7 0.24 5.666 × 10–6 0.72 3.17 × 10–6 0.28 5.312 × 10–6

10.2 0.24 7.407 × 10–6 0.65 3.038 × 10–6 0.28 4.455 × 10–6
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three NF membranes to find the best ANN structure to pre-
dict ion rejection. The hidden layer includes seven neurons 
with tan-sigmoid function. MSE calculations were performed 
after each iteration to determine the best possible output and 
performance of the neural network. Since the data were ran-
domly selected, for every set of neurons, the network was run 
several times.

Ion rejections are obtained as outputs and the input data-
set of 65 samples each for the three tested NF membranes 
were divided into three sets randomly. 70% of the dataset 
(45 samples) were regarded as train data, 15% of the dataset 
as validation, and 15% of the data set was regarded for test 
data (10 samples each). The regression plot for ESNA with 
seven neurons in the hidden layer is presented in Fig. 16. 

Fig. 16 displays the network outputs with respect to tar-
gets used for training, validation, and test. The regression plot 
shows that the R2 value is 0.996 for training, confirming that 
the neural network is well trained with 45 samples. The data 
should fall along the 45° line for a perfect fit where the ANN 
outputs are equal to the target values provided. R2 value for 
test data is also greater than 0.99, confirming that ANN pre-
dicted rejection values and experimental values are in close 
agreement, which signifies the ability of ANN in predicting 
major ion rejections if flux, pH, and pressure are available. 

In this work, seven neurons were selected with the high-
est accuracy and were compared by changing the transfer 
function between tansig, logsig, and purlin functions. To 
optimize the neural network architecture, the computations 
started with one neuron as the initial guess and the number 
of neurons was increased after calculating the MSE according 

to Eq. (10). Performance of ANN model with some selected 
network structures is presented in Table 5.

It was confirmed that tansig transfer function works best 
for predicting ion rejection compared with logsig and pure-
lin transfer functions. The optimal number of seven neurons 
in the hidden layer was chosen (marked in bold in Table 5) 
after calculating R2 and MSE for all four ions tested. A hid-
den neuron layer of 4, 5, and 6 also provided above 92% for 
ESNA and NF 270 but a neuron combination of seven pro-
vided highest R2 for all three membranes and least MSE for 
ion rejection. ANN approach is data-driven and hence is spe-
cific for a particular membrane.

5. Conclusions

ANN quantitatively predicted the ion rejection without 
using any membrane properties such as pore radius, effective 
membrane thickness, and membrane charge density. ANN is 
considered as a simple approach for multiple variables com-
pared with membrane process models. An overall agreement 
was obtained for ANN predictions and experimental results 
for all three tested NF membranes. 

A significant change in rejection was observed even with 
small pH changes. For divalent ions, a change in rejection 
was obvious between acidic and alkaline environments. Flux 
was higher in the basic environment. When flux increased 
with an increase in pH, the rejection of charged ions tends 
to decrease. Highest flux was observed for ESNA indicat-
ing a larger pore size than for HYDRACoRe and NF 270. 
A sharp decrease in Mg2+ rejection was observed in the 

Fig. 15. Variations in rp with pH on (a) ESNA, (b) HYDRACoRe, and (c) NF 270.
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basic environment for ESNA and NF 270. It was confirmed 
that pore size decreased with a decrease in feed pH using 
Spiegler–Kedem and SHP models.

Obtained results can be implemented in industrial scale-up 
for predicting water recovery and ions rejection when PW or 
other saltwater with varying pH is treated by membranes. 
These findings are crucial for optimal membrane system 

design and for a defined ion rejection as required for smart 
water production for EOR in carbonate and sandstone reser-
voirs. pH of PW can be adjusted accordingly for required ion 
composition in the permeate. For industrial PW applications, 
the ANN approach to predict NF ion rejection can be used, 
provided plant operating conditions data for selected feed 
compositions are available resulting in time and effort savings. 

Fig. 16. Regression plot between the experimental and predicted rejection values for ESNA with seven neurons in the hidden layer.

Table 5
Performance of ANN with different neuron and transfer functions

Membranes
 

No. of neurons in each layer
 

R2

 
MSE 
Cl– Na+ Mg2+ Ca2+

ESNA 4 0.989 0.00014 0.00029 0.00049 0.00096
Filmtec 4 0.97 0.00087 0.00107 0.00086 0.01466
HYDRACoRe 4 0.93 0.00024 0.00035 0.00015 0.00135
ESNA 5 0.98 0.00012 0.00026 0.00056 0.00190
Filmtec 5 0.986 0.00057 0.00068 0.00043 0.00709
HYDRACoRe 5 0.94 0.00024 0.00037 0.00011 0.00100
ESNA 7 0.995 0.00011 0.00031 0.00030 0.00053
Filmtec 7 0.992 0.00048 0.00052 0.00052 0.00393
HYDRACoRe 7 0.956 0.00022 0.00032 0.00011 0.00013
ESNA 10 0.9925 0.00014 0.00029 0.00049 0.00096
Filmtec 10 0.99 0.00038 0.00036 0.00047 0.00374
HYDRACoRe 10 0.92 0.00029 0.00036 0.00015 0.00162
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Symbols

Robs — Observed rejection
σ — Reflection coefficient
Ps — Solute permeability coefficient, m/s
Jv — Water flux, L/m2/h
V — Permeate volume, L
t — Filtration time, h
A — Effective membrane area, m2

SD, SF —  Steric hindrance factors for diffusion and 
filtration flow

D —  Diffusivity of i-th ion, m2/s
rs — Stokes radius, nm
rp — Pore radius, nm
Ak/Δx —  Ratio of membrane porosity to membrane 

thickness
Cf — Feed concentration, mg/L
Cp — Permeate concentration, mg/L
Cc — Retentate concentrations, mg/L
ti — i-th target value
ai — Predicted value
n — Number of data
R2 — Statistical coefficient of determination
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