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a b s t r a c t
Membrane fouling significantly affects membrane performance, but cleaning and replacement 
schedules are often set at regular time intervals, regardless of the extent of deterioration in performance. 
The aim of this study is to develop an improved prediction model for membrane fouling in the seawater 
reverse osmosis (SWRO) process using a hybrid machine learning approach. A Kalman filter (KF) was 
combined with either an artificial neural network (ANN) or a support vector machine (SVM)—a family 
of machine learning models—in series. The performance of these integrated models was evaluated 
with training and testing data sets compiled from the Fujairah SWRO plant over a period of 18 months. 
Our findings showed that the SVM alone provided, on average, slightly better prediction of membrane 
resistance (an indirect indicator of membrane fouling) than a single ANN during training and testing 
sets. However, hybrid machine learning methods consistently outperformed any single model, with 
the combination of the KF and SVM exhibiting better performance than that of the KF and ANN, except 
for one special case in which the accuracy of a single SVM already exceeded 0.8 for both Nash–Sutcliffe 
model efficiency and R2. Taken together, our results demonstrated that the hybrid machine learning 
approach not only enhanced the prediction ability of membrane resistance in classical fouling and 
machine learning models, but could also be used to adjust cleaning and replacement schedules correctly 
in response to progressive deterioration in membrane performance during operation.

Keywords:  Hybrid model; Reverse osmosis; Kalman filter; Artificial neural network; Support vector 
machine; Membrane maintenance

1. Introduction

While freshwater demand is increasing due to climate
change, population growth, and industrialization, it is hard 
to meet the increased needs using limited conventional water 
resources such as rivers, lakes, and groundwater. Seawater, 

as an alternative water resource, provides an opportunity to 
solve such an imbalance between water demand and supply 
[1]. Out of available desalination technologies, reverse osmo-
sis (RO) is widely adopted for producing freshwater [2], 
applying high pressure to a semipermeable RO membrane 
to purify seawater. The high-pressure pump employed in RO 
systems, in general, consumes a large portion of the energy 
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required in the process [3]. Accordingly, a lot of research 
efforts have been devoted to reduce energy consumption, 
including the influence of membrane performance on energy 
reduction [4,5], efficiency and types of energy recovery 
devices [3,6], and membrane fouling control strategies [7].

One of the most important elements in reducing energy 
consumption is fouling control. When foulants are deposited 
in the membrane, operating pressures must be increased to 
meet the designed permeate flow, which leads to an increase 
in energy consumption. Appropriate membrane cleaning 
and replacement are needed to avoid or reduce the extent of 
membrane fouling, thereby decreasing energy consumption 
required in the RO process. Prediction of membrane fouling 
on time, therefore, plays an important role in not only 
improving performance of the RO membrane, but also 
reducing irrelevant membrane cleaning and replacement 
schedules performed regularly during the operation.

Either index-based approach or numerical simulation is 
adopted for predicting membrane fouling. The index-based 
approach refers to generating an indicator that corresponds to 
the scaling and fouling potential of feedwater from steady state 
operating data in a small test plant. The Langelier Saturation 
Index (LSI) was developed to analyze the degree of scaling, 
and the Stiff and Davis Saturation Index value was 
proposed as a modification of the LSI [8]. The silt density 
index and modified fouling index (MFI) are used to predict 
the degree of colloidal fouling potential [9], and index values 
such as the MFI-ultrafiltration and the crossflow sampler-
modified foul-ing index have been developed to overcome 
the limitations of earlier methods [10,11]. However, 
because these indices were developed from steady state 
conditions, such indices had a limitation in assessing the 
progress deterioration of membrane fouling observed 
during the operation [12].

In contrast, numerical simulation adopted transport 
theory and statistical equations in predicting membrane 
fouling at discrete and continuous time intervals. The 
resistance-in-series model assesses membrane fouling as 
a resistance to solution passage; the model works with a 
solution–diffusion model to simulate the effect of membrane 
fouling in the RO process [13,14]. As a statistical approach, the 
nonlinear recursive least squares method has been employed 
to estimate membrane resistance and the friction coefficient
in the RO process [15]. Machine learning algorithms have 
also   been  used  to  develop  advanced   membrane  fouling 

prediction models. Out of them, artificial neural networks 
(ANN) were frequently adopted in predicting membrane 
fouling in various types of water treatment processes [16–18].

The objective of this study is to present a prediction method 
for membrane fouling in the RO process. In this study, a Kalman 
filter (KF) is employed to reduce noise in the operating data. 
Two machine learning models—an ANN and a support vector 
machine (SVM)—are used to construct models based on oper-
ational data. A KF and the machine learning models are then 
combined in series as a hybrid model. Fujairah desalination 
operational data is used to test the prediction performance of the 
single and hybrid machine learning models. The specific objec-
tives of this study are (1) to propose a noise reduction method 
as a data pre-processing step for machine learning algorithms, 
(2) to compare the prediction performance of single and hybrid
machine learning models based on simulation results, and (3)
to suggest prediction accuracy enhancement methods for mem-
brane fouling. We hope the proposed methodology will be used 
to determine or adjust appropriate cleaning and replacement
times for RO membranes during the operation.

2. Materials and methods

2.1. Operational data in real plant

Table 1 presents the operational data at the feed, 
permeate, and brine sides from the Fujairah seawater reverse 
osmosis (SWRO) plant, obtained during an 18-month moni-
toring period from January 2005 to June 2006. As shown in 
the table, the Fujairah SWRO plant was found to receive feed-
water with fluctuating temperatures (23°C–36°C) and total 
dissolved solid (TDS) concentrations (35,000–40,000 mg/L). 
However, feed pressure at the SWRO plant was almost 
always in the constant pressure mode, while its recovery 
rate was steadily maintained at around 43%. The SWRO 
plant also produced the intended permeated water qual-
ity, although the TDS concentration fluctuated significantly 
between 339 and 978 mg/L. This operational data was used 
as input to both classical fouling and machine learning mod-
els, in addition to the KF algorithm, described in detail in the 
following three sections. It is noted that the operational data 
of Fujairah plant was previously used to simulate the long-
term fouling model for the reverse osmosis process [14] and 
to estimate membrane fouling in the reverse osmosis process 
[15].

Table 1
Summary statistics of observed data during operation of the Fujairah SWRO plant over 18 months

Side Parameters N Range Mean

Feed Temperature (Tf), °C 522 23–36 29
Pressure (Pf), bar 522 66–68 67
Flow rate (Qf), m3/h 522 1,052–1,117 1,066
TDS concentration (Cf), mg/L 522 34,920–39,538 36,985

Permeate Pressure (Pp), bar 522 4–13 8
Flow rate (Qp), m3/h 522 452–480 458
Recovery, % 522 43–44 43
TDS concentration (Cp), mg/L 522 339–978 474

Brine Pressure (Pb), bar 522 63–66 64
Flow rate (Qb), m3/h 522 600–637 608

TDS, Total dissolved solids.
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2.2. Membrane fouling and resistance

We used membrane resistance to indicate the extent 
of fouling occurring along the membrane surface. This is 
because the accumulation of membrane foulants over time 
results in an increase in membrane resistance. Membrane 
resistance was calculated in two ways—both with and with-
out the properties of the membrane materials. The first 
method was adopted to explain how membrane resistance 
changed in response to progressive fouling of the mem-
brane. Total membrane resistance Rtot,m(t) can be expressed 
as follows:

R t R R tm m atot , ( )( ) = +  (1)

where Rm and Ra indicate the intrinsic and variable mem-
brane resistances (fluctuating with the degree of membrane 
fouling), respectively. Ra is estimated by the following equa-
tion [13]:

R t k v da fp

t

( ) = ( )∫
0

τ τ  (2)

where kfp is the fouling potential of feedwater, which is 
dependent on raw water quality. τ is used as a dummy vari-
able for integration. Note that kfp, which is calculated using 
the Fujairah plant operational data, is a fixed constant value 
during the simulation.

The second method stems from membrane transport the-
ory. The equation for membrane resistance was originally 
developed to calculate permeate flow rate in the membrane. 
Total membrane resistance Rtot(t) is determined by the fol-
lowing equation:

R t
p t t
v ttot ( ) =

∆ ( ) − ∆ ( )
( )

π
 (3)

where Δp(t) and Δπ(t) are transmembrane pressure and 
osmotic pressure differences, respectively, at time t. v(t) indi-
cates permeate flow rate at time t in the RO process [13]. Note 
that the simple term membrane resistance is used, instead of 
total membrane resistance, for the remainder of this paper.

2.3. Prediction algorithm for membrane resistance

2.3.1. KF algorithm

The KF algorithm is a recursive data processing method for 
a linear system with noise [19,20], consisting of two steps. The 
first step is prediction of data using mathematical equations in 
time variance form; prediction results are used to update the 
measurement. The second step is correction of data; at this step, 
weights for sensor data and prediction results are calculated 
based on statistical theory, and the weightings are then applied 
to each term to estimate data by reducing noise. These sequen-
tial calculations are conducted at every time point, making the 
KF algorithm a recursive process. Membrane resistance was set 
as a system variable to be estimated using the KF algorithm, 

but using xt in place of Rt to distinguish membrane resistance 
from error covariance of measurement R in this section. The KF 
estimation procedure uses the following equations [21]:

x Ax But t t




−
− −= +1 1  (4)

P AP A Qt t
T−

−= +1  (5)

K P H HP H Rt t
T

t
T= +( )− − −1

 (6)

x x K z H xt t t t t



= + −− −( )  (7)

P P K HPt t t t= −− −  (8)

where Eqs. (4) and (5) are employed in the prediction step, 
and Eqs. (6)–(8) are utilized in the correction step. In Eq. (4), 
the prediction result of the system variable is calculated. In 
Eq. 7, the system variable is estimated, depending on the 
weightings for the prediction result and the measurement 
value zt. Kt is the Kalman gain at time step t, and H is the 
parameter expressing the relationship between the observed 
and calculated data. Pt is the error covariance, and Q is the 
error covariance matrix of noise for the process.

2.3.2. Artificial neural network

An ANN is a machine learning algorithm, which is 
widely used to predict time-series data [16,17,19,22]. The 
prediction process consists of two sequential phases—the 
training phase and the test phase. In the training phase, 
weightings that minimize error between the observed and 
predicted values are calculated by continuous repetition of 
feedforward and back propagation. Feedforward is a set of 
calculations establishing a relationship between parameters 
in the input and output layers. Weightings in each layer are 
modified in back propagation to reduce the mean squared 
error (MSE) between the observed and predicted target 
outputs. Forecast performance for the test data is assessed, 
and the weightings in the algorithm are adjusted to increase 
prediction accuracy in the test phase.

In this study, we employed an ANN structure with three 
layers: an input layer with D inputs, a hidden layer with M 
neurons, and an output layer with K outputs. The inputs and 
outputs for the hidden layer have the following mathemati-
cal relationship [23]:

z w x bj
i

D

h ji i h j= +








⋅

=
∑ϕ

0
0, ,  (9)

where zj refers to the output from the hidden layer and xi 
refers to the input of the ANN. wh,ji and bh,j0 are the connection 
weighting and bias for the hidden layer, respectively. 
ϕ represents the activation function of the hidden layer, and 
the prediction result for the activation function σ is calculated 
using following equation [23]:
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y x w w z bk
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where yk(x, w) is the predicted target output corresponding 
to the input x and weight w for the k-th output. Subscript o in 
both the connection weighting and bias indicates the output 
layer. Lastly, the MSE is calculated as follows:

E w
N

y x w t
n

N

n n( ) = ( )−
=
∑

1
1

2
,  (11)

where E is the MSE, N is the number of input vectors, and tn is 
the target output value matching to xn. Fig. 1(a) shows infor-
mation about the ANN structure used in this study. Each 
input layer has 8 inputs (temperature for feed; flow rate for 
brine and permeate; pressure for feed, brine, and permeate; 
and concentration for feed and permeate). Each hidden layer 
has M neurons, as determined by the optimization algorithm, 
and each output layer has one neuron (membrane resistance).

2.3.3. Support vector machine

An SVM is a supervised learning algorithm used in 
regression analysis [22,24,25]. The basic idea of an SVM 
is to find a function, f, fitting the following mathematical 
equation [26]:

f x w x b( ) = +,  (12)

where the 〈 〉 operator indicates the dot product. w is 
determined by solving a convex optimization problem:

minimize

subject to

1
2

2
w

y w x b
w x b y
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
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



,
,

ε

ε

 (13)

where yi is the target output corresponding to input xi. 
Constraints for the optimization problem mean that the differ-
ence between yi and f is in the range from –ε to +ε. However, 
Eq. (12) can only be used in linear regression analysis; this 
linear model is extended to nonlinear regression analysis 
by employing the mapping function ϕ and kernel k. (xi) 
represents the mapping xi from input space to feature space. 
The weighting for the SVM is changed to the following form:

w x
i

N

i i i= −( )
=
∑

1

α α φ* ( )  (14)

where α is the Lagrange multiplier. An asterisk indicates the 
difference between above the regression line and below the 
regression line in the feature space. The generalized form 
of the equation is created by substituting Eq. (14) into (12) 
and introducing the kernel k x x x xi i, , ( )( ) = 〈 ( ) 〉φ φ . Either linear 
or nonlinear regression can be conducted, depending on the 
kernel function. Fig. 1(b) illustrates the SVM model structure 
used in this study. Inputs are the parameters given in Table 1. 
Support vectors and the kernel function form the relationship 
between the inputs and output.

f x k x x b
i

N

i i i( ) = −( ) ( ) +
=
∑

1

α α* ,  (15)

2.3.4. Hybrid algorithm

The term hybrid algorithm indicates a combined algo-
rithm of the KF and one of the machine learning methods 
[19]. The KF algorithm processes operational data to reduce 
noise; that data is then used to train and test the machine 
learning algorithms. Noise contained in sensor data can often 
affect prediction accuracy; a training algorithm that learns 
from data with noise as if it were normal data could produce 
invalid forecast results. The forecast accuracy of the machine 
leaning algorithms is therefore modified by employing the 
KF. Note that KF-ANN and KF-SVM are used to indicate 
hybrid algorithms using the KF—ANN with KF and SVM 
with KF, respectively.

3. Results and discussion

3.1. Prediction of membrane resistance from classical methods

Fig. 2 illustrates calculation results for membrane 
resistance using SWRO plant operational data and the 
prediction results for membrane resistance using classi-
cal forecast methods. The calculated membrane resistance 

(a)

(b)

Fig. 1. Structure of the two different types of machine learning 
algorithm employed in this study: (a) ANN and (b) SVM (refer 
Table 1 for more detailed information on input parameters).
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contains uncertainty from the sensor data. The predicted 
result of the membrane resistance using the fouling model 
is based on the equation presented in Section 2.2 and reflects 
the increasing trend of the operational data. However, actual 
values are not predictable using the model. Estimation results 
from the KF show a reduction of noise in the membrane 
resistance during the monitoring periods. The KF follows 
the fluctuation of data during the initial 100 d of plant oper-
ations; after 300 d of plant operations, membrane cleaning 
was conducted, and peak error is observed at that time due to 
misreading of sensors during the membrane-cleaning period.

3.2. Prediction of membrane resistance from single machine 
learning algorithm

Figs. 3(a) and (b) show a 14-d forecast for membrane 
resistance using the ANN and SVM, respectively. In the 
training phase for the ANN, there are two sections where the 
difference between the predicted value and the actual value is 
large. The first section is for the initial 50 d; the second is from 
150 to 300 d, when the membrane resistance monotonically 
increases. In the second section, the ANN predicts the 
membrane resistance as higher than the actual value.

In the training phase for the SVM, it correctly predicts 
the actual value and follows the trend of the data. In the test 
phase, both of the machine learning algorithms are unable 
to accurately predict actual values. The ANN predicts noise 
with a more magnified value than from the operational data. 
The SVM is able to follow the variation of the data; however, it 
predicts membrane resistance as lower than the actual value. 
The forecast accuracies in terms of Nash–Sutcliffe model 
Efficiency (NSE) and coefficient of determination (R2) for the 
single machine learning algorithms are shown in Table 2. The 
NSE value is 0.45 for the ANN and 0.46 for the SVM. When 
comparing R2 values, the SVM (R2 = 0.76) is 1.5 times more 
accurate than the ANN (R2 = 0.5). The prediction accuracy 
of the test phase is significantly lower than for the training 
phase.

3.3. Prediction of membrane resistance from hybrid machine 
learning algorithms

Figs. 4(a) and (b) represent the 14-d forecasts of 
membrane resistance using KF-ANN and KF-SVM, 
respectively. Both hybrid algorithms fail to predict 

Fig. 2. Membrane resistance estimated from the KF (solid blue 
line) and fouling (dotted red line) models during the operation 
of the Fujairah SWRO plant over 18 months. Observations are 
indicated by discrete black points.

Table 2
Performance comparison of the ANN and SVM in predicting membrane resistance in terms of the NSE and coefficient of 
determination (R2)

Forecasting level Forecasting method NSE R2

Training Test Training Test

7 d ANN 0.84 0.48 0.84 0.76
SVM 0.93 0.42 0.94 0.84

14 d ANN 0.71 0.45 0.76 0.50
SVM 0.86 0.46 0.86 0.76

7 d KF-ANN 0.85 0.73 0.88 0.82
KF-SVM 0.94 0.77 0.96 0.89

14 d KF-ANN 0.78 0.63 0.82 0.75
KF-SVM 0.85 0.72 0.88 0.82

(a)

(b)

Fig. 3. 14-d forecast of membrane resistance during the 
operational period of 522 d obtained from the (a) ANN and 
(b) SVM.
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fluctuations in the initial 50 d of operations. However, the 
remainder of the data in the training and test phases is pre-
dicted well. KF-ANN predicts membrane resistance with a 
reduced gap between predicted and observed values in the 
operational period from 150 to 300 d. The effect of the KF on 
the machine learning algorithm in the 14-d forecast is shown 
in Fig. 5. From the figure it can be seen that the value of 
the NSE in the test step increases from 0.4 to 0.6 and 0.7 for 
KF-ANN and KF-SVM, respectively, by applying KF. The R2 
value increases by 0.2, when comparing ANN with KF-ANN. 
The implementation of the KF also affects prediction accuracy 
according to changes in prediction level. When the machine 
learning algorithm is used alone, the NSE value is 0.42–0.46, 
irrespective of the algorithm. However, the influence of pre-
diction level on accuracy is reduced by using the KF, although 
the prediction level changes from 7 to 14 d. In the case of the 
ANN, the variation of the prediction accuracy decreases to 
within 0.1, even when the forecast period is doubled.

4. Conclusions

In this study, membrane resistance is predicted using 
classical methods, single machine learning models, and 

(a) (b)

(c)
(d)

Fig. 5. Performance comparison of single (i.e., ANN and SVM) and hybrid machine learning algorithms (i.e., KF-ANN and KF-SVM) 
evaluated using operational data from the Fujairah SWRO plant (N = 522). (a) and (b) are the accuracies computed in terms of NSE 
during the training and test steps, respectively. (c) and (d) are the accuracies estimated with respect to R2 during the training and test 
steps, respectively.

(a)

(b)

Fig. 4. 14-d forecast of membrane resistance during the operational 
period of 522 d obtained from (a) KF-ANN and (b) KF-SVM. 
Note that KF-(machine learning algorithm) indicates a hybrid 
method that combines a Kalman filter and a machine learning 
algorithm in series.
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hybrid machine learning models. The ANN and SVM models 
are employed to predict membrane fouling. In the hybrid 
models, a KF is applied to decrease noise in the membrane 
resistance data. Performance of the models is compared in 
terms of prediction accuracy, depending on model type and 
forecast limits. From this study, the following conclusions 
can be drawn:

(1) When the membrane fouling model is used to predict 
membrane resistance, only the increasing trend of mem-
brane resistance is predictable.

(2) Single machine learning algorithms can predict mem-
brane resistance with only low accuracy due to noise 
in the data. Prediction performance of the algorithm 
decreases when the prediction level is changed.

(3) Hybrid machine learning algorithms can predict 
membrane resistance with higher accuracy than any 
single machine learning algorithm. The prediction 
accuracy remains high, although the prediction level is 
changed. The KF-SVM model shows higher prediction 
accuracy for plant operational data at each forecasting 
level.

(4) It appears that membrane fouling prediction models can 
be utilized to create early warning systems for membrane 
fouling.
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