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a b s t r a c t
Objective: To improve the quality of monitoring image in agricultural waters by effective methods, to 
obtain information of the pollution disaster in agricultural waters in time, to provide the necessary 
data for the disaster management and decision making of agricultural waters, and to promote the 
development of agricultural economy in this region. 
Methods: by using the monitoring and scheduling method for pollution disaster in agricultural waters 
based on INSAR, comprehensive and accurate monitoring of pollution disaster in agricultural waters 
can be conducted. SRTM3 DEM is used to eliminate baseline error in INSAR interferogram. According 
to different scattering characteristics of different ground objects in the INSAR image, the gray value 
is different, and a two-dimensional gray histogram is built to preprocess the INSAR image so as to 
avoid the false alarm in the detection of the edge of the agricultural waters. Through the monitoring 
method of ground wave spectrum, the two directions reflection ratio factor of waterbody is measured, 
and the correlation between the pollution of agricultural waters and the ground spectrum is studied, 
and the monitoring and scheduling of the pollution disaster in the agricultural waters are effectively 
carried out. 
Results: there is a significant correlation between the pollution in agricultural waters and the satellite 
reflectance spectrum on the ground, with a correlation coefficient of about 0.8. The false area which 
is not connected with the agricultural waters of the preprocessed INSAR image is almost completely 
removed by using the proposed method. The boundary of the extracted water area is well matched 
with the boundary of the actual image. The false alarm rate and the leakage rate for processing the 
agricultural waters image under different scenes are all very low, and the accuracy of the INSAR image 
extraction and calculation efficiency are better and with good robustness. The proposed method can 
reduce the strong scattering point and the speckle noise of the building, and effectively restrain the 
edge of the buildings, such as the buildings around the agricultural waters. The information of disaster 
change in agricultural waters obtained by the proposed method is relatively accurate. 
Conclusion: the proposed method can extract the image of agricultural waters and obtain the infor-
mation of the pollution disaster in agricultural waters in real time and accurately, so as to realize the 
effective monitoring and scheduling of the pollution disaster in the agricultural waters.

Keywords:  INSAR; Agricultural waters; Monitoring and scheduling of pollution disaster; Two -
dimensional gray histogram; Mathematical morphology; Spectral monitoring
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1. Introduction

Because of the need of economic development, the devel-
opment and utilization of agricultural waters is becoming 
more and more large, which leads to the increasing frequency 
of red tide, oil spill, dangerous chemicals, and leakage of 
warm water [1–4]. The occurrence of these disasters is often 
sudden. It is impossible to predict the time, location, the 
scope of the contaminated water, the migration path of the 
pollutants, the intensity of the pollution, and so on. In order 
to get the relevant information of the disaster as soon as 
possible and provide the necessary data for the timely and 
accurate decision of the managers, it is necessary to carry out 
the emergency monitoring and scheduling of the pollution 
disaster in the agricultural waters [5–8].

The INSAR technology developed in the last 10 years 
can detect the water changes in the direction of radar line 
of sight in real time by mm level precision (altitude), high 
resolution (m level in horizontal direction, 10 m level), and 
large range (above 100 × 100 km2) [9]. The technology has 
been successful in monitoring the field of large-scale surface 
deformation, such as seismic deformation and volcanism, 
and it also shows great superiority in monitoring and sched-
uling of pollution disaster in agricultural waters. At present, 
some cities have carried out some experiments and achieved 
good results. However, the measurement accuracy of INSAR 
images is affected by many factors, for example, temporal 
decorrelation reduces the quality of the image phase, the tro-
pospheric delay causes the image distortion, and the satellite 
orbit error causes the additional fringe in the image. These 
factors seriously restrict the accuracy of the INSAR image 
and its further application [10]. Therefore, the research on 
the monitoring and scheduling of the pollution disaster in 
agricultural waters based on INSAR is proposed, the INSAR 
image is optimized in depth, and the related factors of the 
pollution disaster in the agricultural waters are analyzed.

2. Materials and methods

2.1. Experimental materials

The experiment is carried out in an agricultural demon-
stration area of a coastal area. The study area is a suburb, 
surrounded by an industrial production area. There are two 
chemical plants, one cement plant, and three fuel plants 
in the industrial production area. During the past years 
2000–2010, serious damage has occurred in the area, which 
poses a threat to the agricultural economy. At present, the 
hydrological monitoring network and GPS observation point 
have been set up in the area and the surrounding area, and 
the monitoring and scheduling network for the pollution 
disaster in agricultural waters is formed. In this process, the 
INSAR technology is being applied gradually.

A total of 17 satellite INSAR images from the tested 
area are obtained, and five pairs of images with interference 
baseline less than 200 m are selected for optimization. The 
data error is reduced by using GPS station and merging 
SRTM3 DEM. SRTM3 DEM is a digital surface elevation 
model obtained by the space shuttle in the 11 d flight from 
February 11 to 22, 2000, using radar mapping technol-
ogy, which covers 80% of the surface waters between 60° 
north latitude and 54° south latitude. Phase unwrapping 

is performed by Goldstein branch cutting to interferomet-
ric phase [11]. The horizontal reference is WGS-84 reference 
ellipsoid, and the vertical datum is the EGM96 geoid of 
WGS-84. The horizontal resolution of the experimental area 
is 30 m (1″), the resolution of other regions is 90 m (3″), the 
absolute height accuracy is 20 m, and the relative elevation 
accuracy is 16 m. At present, the DEM with 90 m resolution 
(SRTM3 DEM) is the best choice for monitoring the pollution 
disaster in global agricultural waters [12].

2.2. Monitoring and scheduling method of pollution disaster in 
agricultural waters based on INSAR

2.2.1. Reduction of interferogram to tropospheric delay error 
based on GPS station

Due to the fluctuation of water vapor content in the 
troposphere, the propagation of radar microwave in the 
atmosphere will be delayed. The tropospheric delay can 
cause about 1–10 cm phase delay in interferogram, thus 
affecting the interpretation and analysis of interferograms. 
When GPS is used for precise positioning, tropospheric 
delay is regarded as the error source and noise. In GPS mete-
orology, these noises are estimated as signals. The 12 GPS 
stations in the experimental area were built and operated at 
the end of 2005, and the site distribution is shown in Fig. 1. 
Based on the continuous observation data of the 12 stations, 
the coordinate measurement and difference constraints are 
carried out in seven GPS stations with near distance. The 
experiment uses the GAMIT software to calculate the time 
series of the tropospheric delay, and the tropospheric delay 
parameters are estimated for each 30 min. Fig. 2 gives the 
time series of zenith total delay (ZTD) for each GPS station 
in February 2017. It can be seen that the ZTD can reach about 
2.34 m, and the change within 1 month can reach about 1 cm. 
Spatial resolution (station spacing) is usually dozens of km, 
and GPS is dozens of m. Therefore, it is necessary to inter-
polate the corrected INSAR interferogram of tropospheric 

 
Fig. 1. Distribution of INSAR station in experimental area.
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delay effect in the zenith tropospheric delay obtained by 
GPS. The results show that the zenith tropospheric delay 
obtained by the GPS station can improve the low frequency 
part of the tropospheric delay error, making the residual 
error of the tropospheric delay less than 5 mm.

2.2.2. Fusion of SRTM3 DEM to eliminate residual 
baseline error

The error of the satellite orbit determination will be 
transferred directly to the interference baseline, thus produc-
ing obvious additional stripes on the interferogram, which 
are known as the residual stripe of the ground effect or the 
baseline error stripe. The baseline error stripe is usually 
hyperbolic in the INSAR interferogram. If it is not elimi-
nated, it will directly affect the accuracy of the interference 
measurement, which leads to the wrong interpretation of the 
pollution disaster in the agricultural waters. According to 
the expression of the additional stripe in the interferogram, 
based on the difference result of SRTM3 DEM, the number of 
stripe of distance and azimuth is calculated by FFT, and then 
the elimination is carried out [13]. However, this method can 
only eliminate linear terms, and it is difficult to eliminate the 
nonlinear baseline error.SRTM3 DEM is used to calculate the 
nonlinear baseline error surface of the entangled phase by 
using the method of surface fitting, and it is replaced by the 
unwrapping phase [14]. This method can not only eliminate 
the large scope of the baseline error but also eliminate the 
tropospheric delay error with low frequency signal. SRTM3 
DEM is applied to the fitting of the nonlinear baseline error 
surface, and the unwrapping phase is used to instead.

2.2.3. Construction of 2D gray histogram to preprocess 
INSAR image

In the process of monitoring and scheduling of the 
pollution disaster in agricultural waters, it needs to extract 
INSAR images of waters. In a more complex INSAR image 

of agricultural waters, there are buildings and other man-
made objects besides water. Therefore, the direct application 
of edge detection operator also requires human judgment 
whether the detection result is the edge of water or buildings, 
which is not conducive to the automation of edge detection. 
Therefore, according to the different scattering character-
istics of different ground objects in the INSAR image, the 
gray value is different, and considering the influence of the 
speckle noise of the INSAR image, the INSAR image is pre-
processed by constructing the two-dimensional gray histo-
gram to suppress the speckle and the edge of the building, 
so that the false alarm of edge detection for the agricultural 
waters is avoided [15].

In high-resolution INSAR images, buildings and other 
man-made objects are mainly composed of bright lines and 
bright spots. Because of the complex surface structure and 
special materials, it is easy to form angular reflection or sec-
ond scattering, the gray scale of the man-made objects in the 
image is obviously higher than that in other areas. However, 
due to the smooth surface of the agricultural waters in INSAR 
images, the echo of the specular reflection is weak, and the 
dark areas appear in the images. Therefore, it can distinguish 
the buildings and other man-made objects from agricultural 
waters by threshold segmentation.

One-dimensional threshold segmentation is a simple 
method of segmentation. Because the method only consid-
ers the gray level of pixels, and does not make use of the 
correlation and statistical information of pixels and their 
neighborhood space, the segmentation effect of INSAR 
images is not ideal [16]. Here, we distinguish the build-
ings, agricultural waters, and noise by constructing the 
two-dimensional histogram of INSAR images. The method 
uses the pixel gray level and the neighborhood mean to 
express the two-dimensional histogram, while the pixel gray 
information and the neighborhood spatial gray information 
of the pixel are considered, and the noise resistance is greatly 
enhanced.

An image with a gray level of L is set up. The gray value 
at pixel (a0, b0) is t(a0, b0), and the average gray value of 
Z × Z neighborhood space around this point is o(a0, b0). The 
number of pixels satisfying t = i and o = j is h(i,j), and two- 
 dimensional histogram image H(t,o) is constructed. The 
two-dimensional gray histogram is as shown in Fig. 3, the 
two regions on the diagonal line I and II correspond to the 
background and the target, and the region III and IV far 
away from the diagonal correspond to the edges and noise.

Fig. 4 is the INSAR image of high-resolution agricultural 
waters to be treated. It can be seen that there are many build-
ings, with bright white strong scattering points, which have 
large-edge intensity in edge detection, causing false alarm.

The 5 × 5 window is used as the neighborhood of pix-
els, and the mean value of each pixel neighborhood in the 
INSAR image of the agricultural water area is calculated. The 
two-dimensional gray histogram of the agricultural waters is 
constructed, as shown in Fig. 5. It can be seen that the high-
lights of the histogram are almost all distributed in a strip 
near the diagonal line. According to the definition of the 
histogram, the points outside the strip are edge pixels and 
noise pixels.

Fig. 6 is a graph segmented by strip and vertical straight 
line. First, the width c of the strip is determined. The noise 
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or edge of the pixels near the diagonal area is not obvious, 
and it has little influence on the subsequent edge detection. 
The farther away from the histogram diagonal point is, the 
more obvious the noise is, and the greater the impact on sub-
sequent processing is. In order to suppress the noise better, 
the stripe width should be as small as possible, but this will 
increase the computation cost and also lose the image infor-
mation. By comprehensive consideration, 95% of the total 
number of points in the strip is as an example to get the strip 
width c.

In order to get better segmentation and speckle reduction 
effect, median filter is applied to the pixels outside the stripe. 
Median filtering is a nonlinear smoothing technique that uses 
the median of all pixel gray levels in a neighborhood space 
around a pixel to replace the pixel. While removing the noise, 
it can retain the edge information of the image [17].

In two-dimensional images, the window of the median 
filter is square, approximately circular or crisscross. In this 
case, a square window with a center 5 × 5 of the pixel point 
corresponding to a point outside the strip is selected as an 

example, and the median of the pixels in the window is 
selected and the median value is used to replace the gray 
level of the pixel.

After filtering the points outside the strip, the points in 
the area will approach the diagonal line. Then a vertical line is 
selected in the strip to segment the image. The linear abscissa 
μ is the mean value of the gray level of the whole image, and 
the pixels larger than the threshold are regarded as the man-
made objects such as the buildings, to carry out hard limiting 
processing. The intensity of the strong scattering points can 
be reduced to decrease the edge strength to prepare for the 
subsequent processing [18]. Fig. 7 is a preprocessed INSAR 
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Fig. 3. Two-dimensional gray histogram of agricultural waters.
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image, which effectively suppresses the strong scattering 
points and speckle patterns of buildings, and preserves the 
edge information of agricultural waters.

2.2.4. Enhancing edge features of INSAR image by 
mathematical morphology

After preprocessing the INSAR image, there are many 
isolated highlights in the image edge, the edge is broken 
and the features are not obvious. The edge detection results 
of INSAR image are further processed by using mathe-
matical morphology operations to remove isolated high-
lights and enhance the edge characteristics of agricultural 
waters. Mathematical morphology is widely used in digital 
image processing. It is used to measure or extract the corre-
sponding shape in the INSAR image with a certain form of 
structural element to realize the recognition or analysis of 
the specific target in the image [19]. The basic operations 
of mathematical morphology operations are expansion and 
corrosion, which are defined as follows: F is the image to 
be processed, C is the structural element, and (x,y) is the 
image coordinate:

Expansion: F C x y C x y F+ = ( ) ( )∩ ≠{ }, : , ϕ  (1)

Corrosion: F C x y C x y F! , : ,= ( ) ( ) ⊂{ }  (2)

Expansion means that after the structural element C 
translates (x,y), all points that intersection of C and F is not 
empty are made to form a set. The corrosion is to transfer the 
structural element C to (x,y), and C is contained in the set of 
all points of F. Usually the structure element selects a square 
array in which the element is 1:

C =



















1 1 1

1 1 1
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 (3)

In this paper, mathematical morphology function 
bwmorph is used to do mathematical morphology opera-
tions on INSAR images to enhance image edge features.

BW 2 = bwmorph BW operation,1, n( )  (4)

where the parameter ‘Operation’ is the morphological 
operation of INSAR images, including corrosion operation, 
expansion operation and eliminating solitary highlights, etc. 
The parameter n is the number of operations to it, and BW1 
and BW2 are the set of points after translation. After corro-
sion of the INSAR image and eliminating burrs, the isolated 
highlights in the image are removed and the expansion 
operation is carried out to enhance the edge features.

2.2.5. Monitoring and scheduling of pollution disaster in 
agricultural waters

Mathematical morphology processing of edge features 
of INSAR images can effectively extract the edge features of 
agricultural waters. On this basis, the correlation between 
the pollution of agricultural waters and the ground spec-
trum is studied so as to effectively monitor and schedule the 
pollution disaster of agricultural waters [20]. The following 
methods are used to verify it.

(i) Method of ground wave spectrum monitoring

Considering the influence of the sun and atmosphere, the 
bi-directional reflectance factor (BRF) of the water is gener-
ally measured in the field. It is obtained by monitoring the 
radiance of the reflected water and reflecting the radiance of 
the diffuse body under the same irradiation and observation 
conditions, and then obtaining the ratio [21].
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In Eq. (5), P(σi, δi, σp, δp) is the BRF of target, Mi(σi, δi, 
σp, δp) is the radiance of target reflection, and Mp(σi, δi, σp, δp) 
is the radiance of the reflected diffuse body.

In actual monitoring, a reflective reference plate is used 
instead of a fully reflected diffuse body, and a spectral instru-
ment is used to monitor the radiance of the reflection of the 
water body surface and the radiance of the reflected reference 
plate under the same irradiation and observation conditions 
[22]. Considering the linear relationship between the output 
signal value of the spectrometer and the incident radiant 
value, Eq. (2) is used to calculate P(σi, δi, σp, δp):

P
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In Eq. (6), f(σi, δi, σp, δp) is the spectral reflection ratio of 
the reflection reference plate; Ni(σi, δi) is the signal value of 
the instrument output when measuring the reflection ref-
erence plate; Np(σp, δp) is the signal value of the instrument 
output N when the target is measured.

 

Fig. 7. Preprocessed INSAR image.
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(ii) A spectral measuring instrument for water body

The reflection of the water body is generally lower 
than the land target, so it is very important to improve 
the radiative resolution and the signal-to-noise ratio of the 
instrument to identify the small spectral reflectance of the 
agricultural waters. The type VF921 surface spectrometer 
is an instrument for measuring the spectrum of ground 
objects developed by a light machine. The instrument 
uses 256 elements linear array CCD as detector, the wave-
length range is 400–1,100 nm, the spectral resolution is 6 
nm, and the sensitivity is high. The instrument can work 
continuously at 3 h, store up to 496 curves, and have inter-
faces, which can be easily connected with PC to transmit 
data. In order to make the instrument more suitable for 
the measurement of low reflection agricultural waters, the 
instrument has been improved. To detect small radiance 
changes, the method of increasing gain is adopted, and the 
increase of signal-to-noise ratio is obtained by increasing 
integration time [11].

(iii) Calibration of the measuring instrument

Calibration of sensors is a very important aspect to ensure 
the accuracy and reliability of measurement data. Before and 
after each measurement, spectral calibration and radiometric 
calibration are strictly carried out.

3. Results

3.1. Synchronous monitoring results of spectral characteristics

The agricultural waters of a city include three parts of the 
river water, the reservoir body, and the sewage water body 
[23]. The spectral characteristics curve of the synchronous 
monitoring for agricultural waters and the field surface is 
shown in Fig. 8. The results of the synchronous monitoring 
of the water quality in the agricultural waters of the city and 
the gray value of the ground satellite images are shown in 
Table 1.

3.2. Results of INSAR image preprocessing

Scene 1 is used to make the comparison test for the 
image processing of agricultural waters. The scenario 
is a 6,000 × 6,000 connected area of agricultural waters. 
Figs. 9(a)–(c) are the results of the INSAR image prepro-
cessing for Scene 1 by using the proposed method, the 
K mean clustering method the local connectivity method, 
respectively.

In order to verify the robustness of the proposed method, 
the method is further tested by using the agricultural water 
Scene 2 with different background [24–26]. The results of the 
four methods are as shown in Fig. 10, and the agricultural 
waters in this scene are divided into two non-connected 
regions by the INSAR. Figs. 10(a)–(d) are the results of 
the proposed method, the K mean clustering method, the 
local threshold method and the local connectivity method, 
respectively.

Tables 2 and 3 are the evaluation indexes for the INSAR 
image preprocessing performance of agricultural waters by 
using the four methods, respectively.
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Fig. 8. Pop characteristic curves for simultaneous monitoring of 
agricultural waters and field surfaces. (a) Reservoir, (b) river, and 
(c) sewage water body.
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Table 1
Synchronous monitoring results of agricultural water quality and gray value of satellite images

(a) Water quality monitoring data

Sampling point Water quality monitoring and analysis value/(mg L–1)

SS Oil Total phosphorus COD Chlorophyll a

A reservoir HW1–1 11 – 0.02 2.87 8.69
HW1–2 13 0.03 0.03 3.16 9.54
HW1–3 17 0.02 0.02 3.00 7.16
HW1–4 10 – 0.03 2.87 15.27
HW1–5 16 – 0.03 3.06 7.21

(b) Gray value of satellite image

Sampling point Gray value of satellite image

B1 B2 B3 B4 B5 B6 B7

A reservoir HW 132 57 57 39 24 122 10
HW 130 58 60 40 24 119 9
HW 132 58 59 40 25 123 12
HW 132 58 62 51 25 126 10
HW 129 57 58 40 24 125 9

 

 

(a) (b)

(c) (d)

Fig. 9. Experimental results of Scene 1. (a) The proposed method, (b) The K mean clustering method, (c) The local threshold method, and 
(d) The local connectivity method.
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(a) (b)

(c) (d)
Fig. 10. Experimental results of Scene 2. (a) The proposed method, (b) The K mean clustering method, (c) The local threshold method, 
and (d) The local connectivity method.

Table 2
Performance index of water extraction in Scene 1

Method False alarm rate (%) Leakage rate (%) Average offset pixel (individual) Running time (n)

This paper method 0.04 0.02 0.69 387.74
K mean clustering method 0.05 0.66 1.44 1,458.92
Local threshold method 0.08 0.06 2.82 1,675.74
Local connectivity method 1.07 0.41 1.15 2,147.09

Table 3
Performance index of water extraction in Scene 2

Method False alarm rate (%) Leakage rate (%) Average offset pixel (individual) Running time (n)

This paper method 1.19 3.04 1.28 465.28
K mean clustering method 4.59 7.63 2.37 1,522.07
Local threshold method 2.82 9.31 3.88 1,875.36
Local connectivity method 10.65 6.55 5.29 1,387.94
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3.3. Edge feature enhancement of INSAR images

Mathematical morphology is used to enhance the edge 
features of INSAR image in an agricultural water area, and 
the results are as shown in Fig. 11(a), and the results of direct 
edge detection are shown in Fig. 11(b).

3.4. Monitoring results of pollution disaster in agricultural waters

In order to verify the applicability of the proposed 
method, the validated experiment is carried out with 
measured data. The monitoring image of agricultural 
water pollution disaster in a certain area of a province is 
shown in Fig. 12. The test started in 2016 and ended in 
2017. Images were formed during the test. Figs. 12(a) and 
(b) are the INSAR image before and after the occurrence 
of the pollution disaster, respectively [27]. Fig. 12(c) is the 
enhancement area after the occurrence of a pollution disas-
ter relative to before the occurrence, and Fig. 12(d) is the 
weakened region after the occurrence of a pollution disas-
ter relative to before the occurrence, and they are all gray 
image [28]. To enhance the display effect, Fig. 12(e) is a 
pseudo-color display of the monitoring results.

4. Discussion

4.1. Discussion on the results of synchronous monitoring of 
spectral characteristics

From Fig. 8, we can see that there are two reflection 
peaks in the wave characteristics curves of the river water 
and the ground spectrum. The wavelengths are 550–700 and 
690–810 nm, respectively. By analyzing the characteristics of 

the typical spectral curves of the region, the reflectance of the 
first reflection peak is obviously positively correlated with 
SS and COD.

There are two reflection peaks in the wave characteristics 
curves of the water and ground spectrum of the reservoir, 
which are 550–570 and 680–700 nm, respectively. Through 
the analysis of the typical spectral curves of the region, the 
reflectance of the second reflection peaks is positively related 
to SS, COD, chlorophyll a, and total phosphorus.

There are two reflection peaks in the characteristic curves 
of the pollutant discharge water and the ground spectrum. 
The wavelengths are 680–700 and 800–810 nm, respectively. 
Through the characteristic analysis of the typical spectral 
curves of the region, the reflectance of the first and second 
reflection peaks is obviously positively correlated with SS, 
COD, and petroleum. The results of the synchronous mon-
itoring of agricultural waters in Table 1 show that there is 
a significant correlation between the water quality and the 
gray value of the ground satellite images, and the correlation 
coefficient is about 0.8.

According to the above analysis, there is a regular change 
between the ground spectral data and the monitoring results 
of spectral characteristics of agricultural waters. The experi-
mental results show that the pollution disaster in agricultural 
waters has a significant correlation with the satellite reflec-
tion spectrum on the ground. This conclusion has important 
practical value for monitoring and scheduling of pollution 
disaster in agricultural waters.

4.2. Discussion on the results of INSAR image preprocessing

As can be seen from Fig. 9, the images of Fig. 9(b) have 
a lot of false information obviously, the images of Figs. 9(c) 
and (d) can also clearly see a lot of interference informa-
tion, and the image clarity is not enough. The image in 
Fig. 9(a) is preprocessed by the proposed method, and it is 
obvious that the false areas which are not connected with 
agricultural waters can be removed almost completely. 
The gray line in the image is the boundary map of agri-
cultural waters. The extracted water boundary has a good 
match with the boundary of the actual image, and the 
image after processing is high and realistic, which greatly 
improves the quality of pollution monitoring and scheduling 
in agricultural waters.

From Fig. 10, it can be clearly seen that some shaded parts 
are separated from agricultural waters and are inaccurate in 
extracting waters. Apparently, the shadow part of Fig. 10(a) 
preprocessed by this method is basically removed, the pre-
cision of the extraction of water boundary is high, the over-
all effect of the image is better than the other three methods, 
which proves the robustness of the proposed method to dif-
ferent scene processing, showing that the proposed method 
can be applied to the agricultural waters of different scenes, 
pollution monitoring, and scheduling can be achieved and 
satisfactory results can be obtained.

Tables 2 and 3 show the quantitative results of four meth-
ods for image preprocessing of Scenes 1 and 2. The K mean 
clustering method reduces the false alarm rate by setting 
multiple thresholds, but it also causes the phenomenon of 
over segmentation and increases the missing detection rate. 
The local threshold method does not improve the missing 

 

 

(a)

(b)

Fig. 11. Comparison of two methods to deal with the results. 
(a) Mathematical morphology processing results, and (b) direct 
edge detection results.
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detection problem, and the false alarm rate of the local con-
nectivity method is obviously higher. The false alarm rate 
and missing detection rate of the proposed method are lower 
in different scenarios, and the contour average deviation of 
agricultural waters is the lowest, so the contour accuracy 
is higher. In addition, the operation time of the proposed 
method is relatively short. When the image is large and the 
agricultural waters are widely distributed, the method of this 
paper has significant advantages in the accuracy of INSAR 
image extraction and operation efficiency.

4.3. Discussion on the results of using mathematical morphology 
to enhance the edge features of INSAR images

The proposed method is used to enhance the edge fea-
tures of INSAR images in agricultural waters. As can be seen 
from Fig. 11, the proposed method can effectively solve the 
problem of false alarm in water edge detection when there are 
many objects such as waters and buildings in INSAR image. 
In this paper, after preprocessing the two-dimensional gray 
histogram of INSAR image, the edge feature is enhanced by 
mathematical morphology, and the strong scattering points 
and speckle noise are suppressed, and the applicable scene 
of the edge detection algorithm in agricultural waters is 
expanded. Compared with the result of edge detection with-
out edge feature processing, the proposed method can effec-
tively restrain the edge of the buildings and other objects 
around the agricultural waters and improve the monitoring 

effect of the pollution disaster in agricultural waters based 
on INSAR.

4.4. Discussion on the results of monitoring results of pollution 
disaster in agricultural waters

As shown in Fig. 12, when the pollution disaster in agri-
cultural waters did not occur, the area with no stained water 
covered in the image showed a brighter color, as shown in 
Fig. 12(a). The scattering mechanism of the object is changed 
from the original diffuse scattering to the mirror scattering 
due to the inundation of a large number of areas, which has 
changed the scattering mechanism from the original diffuse 
scattering. Therefore, the dark area of the INSAR image is 
presented, as shown in Fig. 12(b). From Figs. 12(c)–(e), it is 
known that the INSAR image extracted by the proposed 
method is distinct, and the information of the pollution disas-
ter change is relatively accurate, which can be used for moni-
toring and scheduling of the pollution disaster in agricultural 
waters.

5. Conclusion

In recent years, the development of agricultural waters 
has increased, resulting in frequent damage to agricultural 
waters. In this paper, an INSAR-based monitoring and sched-
uling method for pollution disaster in agricultural waters is 
proposed, which can conduct comprehensive and accurate 

 

 
 

(a) (b) (c)

(d) (e)

Fig. 12. Monitoring images of pollution damage in agricultural waters of a certain area. (a) Before the occurrence of pollution disasters, 
(b) After the pollution disaster, (c) Enhanced areas after pollution disasters, (d) Weakened areas after pollution disasters, and (e) Pseudo-color 
surveillance area image.
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monitoring of pollution disaster in agricultural waters. By 
preprocessing the two-dimensional gray histogram of INSAR 
image and enhancing the edge features of INSAR image 
by mathematical morphology, this method can extract the 
boundary of agricultural waters based on INSAR accurately, 
and instead of the common K mean clustering method and 
local threshold method. At the same time, through the analy-
sis of the field ground spectral monitoring specification, it is 
concluded that there is a correlation between the agricultural 
water pollution and the ground and the satellite reflection 
spectrum, and the correlation coefficient of the two is 0.8. 
This conclusion is helpful to the monitoring and scheduling 
of the pollution disaster in the agricultural waters. After the 
INSAR image preprocessing experiment, it is proved that 
the proposed method has the advantages of low false alarm 
rate, low leakage detection rate, and high precision of con-
tour processing in different agricultural waters. The results 
of the pollution disaster monitoring in agricultural waters 
can be obtained. This method can obtain accurate informa-
tion on the fluctuation of agricultural water pollution and 
improve the quality of pollution monitoring and scheduling 
in agricultural waters.
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