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a b s t r a c t
As a common chelating agent, ethylenediaminetetraacetic acid (EDTA) can form stable chelates with 
toxic metals. Such metal–EDTA complexes are of chemical stability, which poses a challenge to their 
removal from contaminated water/wastewater. In this study, simultaneous removal of toxic heavy 
metal thallium (Tl) and EDTA using the Fenton process was investigated for the first time. Influencing 
factors including the molar ratio of [Fe2+]/[H2O2], H2O2 dosage, pH and reaction time on the removal 
performance of Tl and EDTA were examined. Over 98% of Tl and 62% of total organic carbon (TOC) 
can be removed under optimized conditions: [Fe2+] of 21.6 mM, [H2O2] of 54.0 mM, reaction pH of 2.5, 
reaction time of 5 h and flocculation pH of 10.0. After treatment, an increase in ammonium nitrogen 
was clearly observed, which was mainly due to the cleavage of C–N and N–N bonds of EDTA. The 
single-factor experiments and the analyses of FT-IR, SEM-EDS and X-ray photoelectron spectroscopy 
spectra reveal that the removal of Tl and EDTA was mainly attributed to the synergistic effects of 
Fenton oxidation, surface complexation, coagulation, precipitation and co-precipitation. The findings 
of this study indicate that the Fenton process is a facile, effective and promising technique for Tl and 
EDTA removal from water/wastewater.
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1. Introduction

Water contamination due to the release of metal ions and 
organic contaminants from industries has become a world-
wide environmental problem. Thallium (Tl) is well known 
to be an extremely toxic heavy metal [1,2], and it is more 
poisonous than many other heavy metals such as cadmium 
(Cd), zinc (Zn) and lead (Pb) [3,4]. Exposure to Tl could 

result in hair loss, muscle atrophy, kidney damage and even 
death [5]. The toxicity of Tl on the organisms is substantially 
remarkable even at a low concentration [6,7]. Wastewater 
containing Tl was mainly generated from alloy manufac-
turing, mining process [8] and the industrial application of 
pigments and dyes [1,9]. The release of Tl-containing waste-
water into the natural environment poses significant risks 
to human health. To minimize Tl pollution impacts, China 
adopts a stringent maximum contaminant level for drinking 
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water, namely 0.1 μg L–1, which is 20 times lower than that 
established by the U.S. Environmental Protection Agency 
[9,10]. However, the removal technology of Tl is much less 
studied in comparison with the As, Cd, Hg and Pb [11,12]. 
It is urgent to develop effective Tl removal techniques for 
water/wastewater [13].

Ethylenediaminetetraacetic acid (EDTA) is a strong 
chelating agent widely used in many industries such as met-
allurgy, mining and electroplating [14–16]. EDTA becomes a 
potential danger when it forms extremely stable complexes 
with toxic heavy metals, and such metal–EDTA chelates are 
commonly of high mobility, chemical stability and recalci-
trant nature. Once wastewater is polluted with both Tl and 
EDTA, it may cause significant environmental problems. 
In addition, metal–EDTA chelates would complicate the 
treatment of contaminated waters by reducing the removal 
efficiency of heavy metals [17,18]. Simultaneous removal of 
heavy metals and organic pollutants in wastewater stream 
can not only protect the environment but also prevent the 
exposure of toxic contaminants to human. Therefore, the 
effective removal of both Tl and EDTA prior to discharge is 
of vital importance.

Currently, common methods such as ion exchange and 
precipitation [19] are invalid in treating metal–EDTA due 
to its high stability and mobility. A number of techniques 
such as photocatalysis [20], microelectrolysis [21], ozo-
nation [16] and other combined technologies have been 
developed to remove metal–organic chelates from aqueous 
medium. Although these treatment methods are effective 
in some cases, they are largely hindered due to relatively 
high cost, complex process, chemical toxicity and poor 
selectivity. Advanced oxidation processes (AOPs) using 
strong oxidants have potential to reliably and effectively 
remove EDTA and its metallic complexes from aqueous 
solution [22]. Among the AOPs, the Fenton process has 
attracted growing attention because of its high efficiency 
in degradation of refractory organic pollutants in aqueous 
media [22–24]. Fenton’s reagents can generate strong oxi-
dants such as hydroxyl radical (•OH), which can degrade a 
wide variety of organic and inorganic contaminants [25,26] 
(Eq. (1)). Hydroxyl radical is well known to be a strong oxi-
dant with a standard oxidation potential of 2.8 V, which can 
effectively destroy organics and eventually degrade them 
into CO2 and H2O (Eqs. (2) and (3)) [27].

Fe H O Fe OH OH2
2 2

3+ + • −+ → + +  (1)

RH OH R H O+ → +• •
2  (2)

R O ROO CO H O• ++ → → +2 2 2  (3)

The Fenton process is a mature wastewater treatment 
technique showing the advantages of simple operation, 
strong oxidability and high efficiency [28,29]. The Fenton 
process has been widely employed in the treatment of var-
ious types of wastewater streams, such as landfill leachate 
[30], phenol wastewater [31] and dyeing effluents [32–35]. 
The strong oxidant of •OH is non-selective reactive oxygen 
species for the rapid degradation of organic contaminants 

[18], thus it might have potential to degrade the Tl–EDTA 
complexes via Fenton process. Additionally, the coagulation 
process that occurs in the latter phase of the Fenton process, 
may probably contribute to an enhanced removal of Tl. It is 
known that Tl(III) is much more easily precipitated and then 
removed from aqueous medium than Tl(I) [36]. The key in 
this study is to break down the bonds between metals and 
organics in the complexes, after that, aqueous Tl can be oxi-
dized and precipitated and then removed via the coagulation 
by iron hydroxide; while EDTA can be degraded via oxida-
tion by •OH. Researchers have used the Fenton’s reagents 
to successfully achieve effective treatment of metal–organic 
complexes [20,21]. However, to the best of our knowledge, 
little information is available on using the Fenton process for 
the treatment of Tl–EDTA. The feasibility and mechanism of 
the Fenton process for simultaneous removal of Tl and EDTA 
from wastewater stream are of great interest.

In this study, we first and successfully applied the 
Fenton process to effectively remove Tl and EDTA from 
aqueous solution. The removal performance of Tl and 
EDTA was studied under different experimental conditions 
(e.g., the molar ratio of [Fe2+]/[H2O2], H2O2 dosage, pH, 
EDTA/Tl molar ratio and reaction time). Scanning electron 
microscope equipped-energy dispersive spectrum (SEM-
EDS), Fourier-transform infrared spectroscopy (FT-IR) 
and X-ray photoelectron spectroscopy (XPS) were used to 
unravel the mechanism of efficient removal of Tl and EDTA 
via the Fenton process.

2. Materials and methods

2.1. Reagents and solutions

All reagents used were of analytical grade and used as 
received from the suppliers. The TlNO3 was purchased from 
Sigma-Aldrich, USA. The other reagents were purchased 
from Guangzhou chemical reagent factory, China. All the 
solutions were prepared with deionized water. Aqueous 
stock solutions of Tl(I) and EDTA of 1,000 mg L–1 were pre-
pared by dissolving the appropriate amount of TlNO3 and 
EDTA(C10H14N2O8Na2·2H2O) in deionized water, respec-
tively. The working solutions of 50 μM Tl(I) and 500 μM 
EDTA were prepared daily by serial dilution.

2.2. Experimental procedures

All the Fenton reactions were performed in a series of 
50 mL beakers with 40 mL mimic wastewater stream contain-
ing Tl(I) and EDTA. The typical Fenton treatment includes 
two stages, namely, the initial oxidation and the latter coag-
ulation. In the oxidation stage, a given amount of Fe2+ and 
H2O2 were added into the mimic wastewater under con-
tinuous magnetic stirring for a given reaction time. Then 
in the coagulation stage, after oxidation, the solution pH 
was adjusted to a designated value and was sustained for 
another 30 min. Take the experiments on the effect of dos-
age of Fenton’s reagents, for example, first, a designated 
amount of Fe2+ and H2O2 were added, then the initial pH for 
the reaction was adjusted to 3.5 with diluted H2SO4 or NaOH 
aqueous solution. After 2 h reaction, the value of final pH 
was adjusted to 11.0 by adding a certain amount of Ca(OH)2. 
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Then the solution was stirred for 30 min to maintain the final 
pH at 11.0. At the end, 10 mL supernatant was withdrawn 
and filtrated with 0.45 μm pore size filter. Finally, 0.1 mL 
HNO3 solution was added for preservation and made ready 
for analysis. The experiments on other influencing factors 
were almost analogous to the above example. All the exper-
iments were repeated three times under identical conditions 
and the data are presented as the mean values and standard 
deviation of the as-obtained results. For all the samples, the 
removal performance of Tl and total organic carbon (TOC) 
was examined.

To gain more insights into the role of various factors in 
the oxidation/coagulation for simultaneous removal of Tl 
and EDTA, a batch of single-factor tests (seven runs in total) 
in which the reaction pH, Fe2+ dose, H2O2 dose and coagu-
lation pH was deliberately designed. Reaction pH of 3.5 
and reaction time of 2 h were used. Other factors such as 
Fe2+ dose, H2O2 dose and flocculation pH were considered 
or not to confirm their role in the removal of Tl and organ-
ics. The details on the reaction conditions and experimental 
results are given in Table 1.

2.3. Analytical methods

The concentration of Tl was measured by a flame atomic 
absorption spectrometry (Thermo Scientific, USA). A TOC 
analyzer (liqui TOC II, Elementar) was used to determine the 
concentration of TOC in the aqueous solution. The removal 
efficiency η (%) of Tl and TOC was calculated from the 
following equation:

η =
−( )

×
C C
C

e0

0

100%  (4)

where C0 and Ce (mg L–1) are Tl (or TOC) concentrations at 
initial and at equilibrium, respectively.

The concentration of NO3–N and NH3–N was determined 
by an UV–Vis spectrophotometer (UV 752, China) to under-
stand the fate of nitrogen species during the Fenton process. 
FT-IR spectra were recorded on a Tensor27 FT-IR meter 
(Bruker, Germany) to obtain the information of chemical 
bonds of the precipitates. For FT-IR test, the precipitates were 
pelletized with an appropriate amount of dried KBr powder. 
SEM images and EDS analyses were taken by a JSM-7001F 

(JEOL, Japan) microscope to observe the microstructures 
and morphologies of the precipitates. XPS was conducted 
using a monochromatic Al Kα radiation (1,486.6 eV) to 
provide chemical state information of the elements of the 
collected precipitates. All binding energies were referenced 
to C 1s peak at 284.6 eV [37]. The software XPSPEAK4.1 was 
used to fit all the XPS spectra.

3. Results and discussion

3.1. Dosage of the Fenton’s reagents ([Fe2+]/[H2O2])

In the Fenton process, the dosage of H2O2 and Fe2+ is one 
of the most critical parameters that significantly affect the 
operation cost as well as the efficacy [28]. As can be seen 
from Fig. 1a, by increasing the dosage of Fe2+ (fixed molar 
ratio of [Fe2+]/[H2O2] is 0.4) from 3.6 to 7.2 mM, the removal 
efficiency of Tl increased from 76.4% to 93.4%. When the 
dosage of Fe2+ reached 21.6 mM, the Tl removal was 99.2%, 
which is 6% higher than that of Fe2+ dosage at 7.2 mM. Upon 
the Fe2+ dosage exceeding 21.6 mM, the Tl removal remains 
at a high level (≥99.2%), indicating that the Fenton process 
can effectively remove Tl from aqueous solution when a suit-
able dosage of Fenton’s reagents was used. It is noted that 
some TOC removal (i.e., 31%–45%) can also be achieved, 
implying that organic pollutants were partially degraded 
due to the generation of •OH. Furthermore, sufficient iron 
hydroxide would be generated in-situ [38] so that Tl was 
able to be effectively removed by coagulation process. Tl is 
reported to be captured by iron hydroxides when the solu-
tion pH is above 10 [39]. Our experimental results are in 
line with that report. The obtained desirable results demon-
strate the effectiveness of the Fenton process to remove both 
Tl and EDTA from aqueous solutions. It should be noted 
that excess addition of the Fenton’s reagents will generate 
a great amount of Fe-bearing sludge [40]. Therefore, from 
the economic and environmental aspects, the Fe2+ dosage of 
21.6 mM and H2O2 concentration of 54.0 mM were consid-
ered as optimum dosage for the treatment of Tl and EDTA in 
the wastewater stream in this study.

3.2. Effect of H2O2 dosage

Fig. 1b shows the removal of Tl and TOC by the Fenton 
process with the addition of different amounts of H2O2. The 

Table 1
Results of the single-factor tests on the Fenton process for Tl and EDTA removal

Group Tl EDTA Fe2+ H2O2 Reaction Flocculation Tl TOC 
(μM) (μM) (mM) (mM) pH pH removal (%) removal (%)

1 50 500 0 0 3.5 Unadjusted 2.12 0.63
2 50 500 0 54.0 3.5 Unadjusted 10.75 5.25
3 50 500 21.6 0 3.5 Unadjusted 12.30 2.92
4 50 500 0 0 3.5 11.0 44.73 2.03
5 50 500 0 54.0 3.5 11.0 48.20 6.25
6 50 500 21.6 54.0 3.5 Unadjusted 60.86 78.14
7 50 500 21.6 54.0 3.5 11.0 98.99 39.37
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variation in the dosage of H2O2 was of little effect on the 
removal of Tl. In the absence of H2O2, the iron hydroxides 
exhibited strong affinity to Tl(I), which is consistent with the 
previous report [36]. Upon the increase in H2O2 dosage from 
0.0 to 215.8 mM, the Tl removal efficiency only increased 4% 
(from 95.5% to 99.5%; Fig. 1b). This implies that the removal 

of Tl is mainly due to surface complexation, followed by 
the oxidation, precipitation, coagulation and co-precipita-
tion [39]. On the other hand, the dosage of H2O2 shows a 
great impact on the degradation of TOC [41], as evidenced 
by substantial increases in the removal of TOC (Fig. 1b). 
The higher amount of H2O2 dosed, the more •OH generated. 
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Fig. 1. Removal of Tl and EDTA by the Fenton process: effects of (a) Fe2+ dosage, (b) H2O2 concentration, (c) EDTA/Tl molar ratio, 
(d) reaction pH, (e) reaction time and (f) flocculation pH. Error bars represent standard deviation value (n = 3).
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Such that the organic contaminants were more effectively 
oxidized and then degraded [42]. At high dosage of H2O2, 
the excess H2O2 in the system acted as a scavenger of •OH 
[29], producing HO2

•
 (Eqs. (5) and (6)) which is less reactive 

than •OH [43,44], thus lowering the oxidation efficiency. The 
highest TOC removal efficiency was only 56.1% even the 
H2O2 dosage was as high as to 215.8 mM, suggesting that 
overdose of H2O2 is unnecessary.

• •+ → +OH H O HO H O2 2 2 2  (5)

• •+ →OH HO H O+ O2 2 2  (6)

3.3. Effect of EDTA/Tl molar ratio

The effect of EDTA/Tl molar ratio on the decomplexation 
of Tl complexes by the Fenton process was investigated. 
When the molar ratio of EDTA/Tl was lower than 1, nearly 
complete removal of Tl and TOC was achieved (Fig. 1c). The 
variation in the Tl removal was insignificant when the molar 
ratio of EDTA/Tl was below 15, suggesting that the organic 
matter concentration was of little impact on Tl removal at 
this range of EDTA/Tl molar ratio. When the molar ratio of 
EDTA/Tl increased from 15 to 50, the Tl removal efficiency 
only declined by 10%. The effective removal of Tl is ascribed 
to the synergistic effects of surface complexation, oxidation, 
precipitation and coagulation [36]. The TOC removal just 
slightly decreased by 1.5% (from 44.5% to 43.0%) when the 
molar ratio of EDTA/Tl increased from 5 to 50, further imply-
ing that an acceptable degradation efficiency of TOC by the 
Fenton process can be maintained [29]. To fully degrade the 
target organic pollutants, it generally requires more input 
of oxidants or extension of reaction time because most of 
organic macromolecular compounds were first decomposed 
into small-molecule intermediate products. The TOC removal 
efficiency cannot be efficiently removed at high molar 
ratios of EDTA/Tl likely due to insufficient •OH for oxidation 
of the excess amount of EDTA in the reaction system.

3.4. Effect of reaction pH

The reaction pH is one of the most important processing 
parameters for the Fenton process [45] since it can signifi-
cantly affect the decomposition rate of H2O2 and the specia-
tion of Fe in aqueous solution, as well as the activities of the 
substrates and oxidants [28]. The pH directly affects the pro-
duction rate of •OH and the oxidation mechanism. As can be 
seen from Fig. 1d, the reaction pH exerts significant effects 
on the removal of TOC. At low pH (from 2.0 to 3.0), the gen-
eration of •OH is favorable and therefore the oxidation of Tl 
and degradation of EDTA are of effectiveness. A maximum 
TOC removal efficiency of 70.4% was observed at pH 2.5, 
which is in good agreement with the results of other stud-
ies on the oxidation of organic compounds in wastewater 
stream [28,46]. However, with the increase in the reaction 
pH value, the generation of •OH tended to be inhibited 
markedly because of the less effective interaction between 
Fe2+ and H2O2. When the reaction pH was higher than 3.5, 
more Fe2+ would get converted into Fe3+ and then react with 
OH– to form Fe(OH)3 precipitate, which would reduce the 

catalytic activity of the Fenton system [38]. While the pH was 
higher than 5.0, H2O2 would decompose into H2O and O2 and 
therefore produce less amount of •OH. As a result, it could 
further impair the efficacy of the Fenton system [29,47]. The 
standard redox potential of •OH was reported to be 2.8 V in 
acid solution and 1.8 V in neutral solution [48], suggesting 
the reaction rate of the Fenton process was much more rapid 
in acidic medium than in neutral or in alkaline medium. 
The increment in TOC removal efficiency observed as pH 
decreased further provides the evidence on the enhanced 
TOC removal under classic acidic pH conditions.

3.5. Effect of reaction time

Fig. 1e shows the effect of reaction time on the 
removal efficiencies of Tl and TOC in the reaction system. 
About 97.7% of Tl was removed at a reaction time of 0.5 h. 
By prolonging the reaction time, the removal efficiency 
of Tl remained at a high level (Fig. 1e), indicating that  
the Fenton process is efficient on the removal of Tl from 
aqueous solution even within a short treatment time. The 
enhancement due to extending reaction time was very lim-
ited, as the surface complexation and oxidation have nearly 
reached a saturation point. Nonetheless, for the removal of 
EDTA, the reaction time should be extended as an increase 
in TOC removal was observed. The removal efficiency of 
TOC increased from 40.9% to 57.2% when the reaction time 
prolonged from 0.5 to 5 h, indicating that the intermedi-
ates of EDTA were further degraded as reaction time was 
extended [28]. In order to achieve a higher degree of miner-
alization of organic pollutants, extending the reaction time 
is an alternative. It should be noted that the degradation of 
TOC by the Fenton process can be well described by pseu-
do-first-order kinetic model (R2 of 0.96, shown in Fig. S1), 
which is consistent with previous study [49].

3.6. Effect of flocculation pH

As shown in Fig. 1f, the flocculation pH affects remark-
ably on the removal of Tl and TOC. As the flocculation pH 
increased, Tl was increasingly removed while the TOC 
removal progressively decreased. It has been reported that 
iron hydroxides can strongly adsorb Tl under alkaline con-
ditions (pH > 10) [36,39], which has been further confirmed 
in our study. Theoretical calculation has implied that only 
a combination of strong oxidation and high pH can lead to 
oxidation of Tl(I) to Tl2O3 [50]. The observation of enhanced 
removal performance of Tl at a higher pH in this study is 
consistent with the aforementioned theoretical calculation. 
However, when the flocculation pH was increased from 2 
to 12, the removal efficiency of TOC decreased by 26.2%. It 
is likely that the inhibition of •OH generation under high 
pH levels resulted in the decline in TOC removal (by ~40%). 
Another explanation is that the intermediates of the EDTA 
is negatively charged, which is effectively adsorbed at acidic 
conditions but poorly adsorbed at alkaline environment to 
the iron hydroxide colloids.

3.7. Roles of single-factor on Tl and EDTA removal

A series of experiments were performed to examine 
the roles of single-factor on the removal of Tl and EDTA 
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(Table 1). In Groups 1, 2 and 3, the removal of Tl and TOC 
were poor, because Tl and EDTA cannot be well removed 
without hydroxyl radicals formed via the Fenton’s reagents. 
Furthermore, the pH in these three groups was not adjusted 
for coagulation. The small amount of TOC removed in Group 
2 was most likely due to the limited oxidative degradation 
by H2O2 itself, the small amount of Tl removed in Group 3 
might be due to the coagulation and surface complexation 
by Fe(II)/Fe(III) colloids [51]. In Groups 4 and 5, the Fenton 
reaction was not successfully triggered because of the lack of 
Fenton’s reagents, the resulted removal of Tl was more than 
40%. This is because that the elevation of pH and the addi-
tion of Ca(OH)2 powder can contribute to a low removal of 
Tl via coagulation or precipitation. Compared with the high 
Tl removal under high pH with iron hydroxides, the Ca(OH)2 
colloids have much lower affinity to Tl than the Fe(III) col-
loids. In Groups 6 and 7, conventional Fenton process was 
applied. However, the flocculation pH was adjusted to alka-
line only in Group 7. The TOC removal efficiency of Group 6 
(78.1%) was much superior in comparison with that of Group 
7 (39.4%). While the removal efficiency of Tl is much lower in 
Group 6 than that in Group 7. Such phenomenon is consistent 
with the results obtained in the experiment about the effect of 
flocculation pH (Section 3.6). These tests can provide import-
ant information in the Fenton process that the iron hydrox-
ides and alkaline condition (pH > 10) are vital for Tl removal, 
and that the addition of H2O2 is essentially important to the 
oxidation and degradation of EDTA. In addition, the results 
from Group 6 further indicate that most of the intermediates 
of the EDTA might be negatively charged, which is effectively 
adsorbed at acidic conditions.

3.8. Fenton degradation of organic pollutant

In the blank group, the content of ammonia nitrogen 
was 0.36 mg L–1, while a much higher content of 14.8 mg L–1 
(1.06 mmol L–1) in the experimental group was observed. 
The concentration of EDTA in the system was 0.5 mM and 
the theoretical concentration of ammonia nitrogen should 
be 1 mM. The detected concentration of ammonia nitrogen 
was very close to the theoretical value, suggesting that almost 
all the nitrogen bonds have been broken down. Most of the 
organic macromolecular compounds tended to be oxidized 
into small-molecule organic compounds by the Fenton reac-
tion. The •OH generated in the Fenton process can lead to 
the breakdown of the bonds between EDTA and Tl, leading 
to the breakage and degradation of EDTA [38]. The C–C and 
C–N bonds of the main chain of EDTA were destroyed and 
dehydrogenated to produce small-molecule intermediates 
(Fig. 2). After that, due to the instability of these interme-
diates and strong oxidizing property of •OH, some of them 
could be further oxidized and eventually converted into CO2 
and H2O [52,53]. In the early stage of the Fenton process, the 
oxidative oxygen species such as H2O2, •O2 and •OH were 
produced and present in a high concentration, thus the oxi-
dation rate was generally very fast. However, the amount of 
these oxidative components would gradually decrease as the 
reaction proceeded. As a result, the oxidation capacity of the 
reaction system tended to decline, resulting in incomplete 
degradation of large-molecular organic matters in the reac-
tion system. The incomplete degradation would produce a 

number of intermediates such as formic acid, oxalic acid and 
other small-molecules organic matter in the solution [49]. 
Previous study shows that the •OH is relatively difficult to 
degrade the small-molecules organic including organic acids 
[54], which explains the high residual TOC concentration 
in the effluent.

3.9. Mechanism of Tl and TOC removal by Fenton process

The morphology and composition of the precipitates 
were examined, in order to gain more insights into the deg-
radation mechanism. The blank group (Fig. 3a) shows 
that the resulted precipitates of the Fenton process were 
nanoparticles of irregular spheres, and the XRD results con-
firm that the mineral phase of these precipitates is FeOOH 
(PDF no. 29–3713), shown in Fig. S2. The surface structure 
of the precipitates in blank group was porous. While after 
Fenton reaction with Tl–EDTA, the voids between the par-
ticles were filled up and the surface became quite smooth 
(Fig. 3b). It is most likely because the Tl is adsorbed onto 
the iron hydroxides and oxidatively precipitated under the 
alkaline condition [55]. Meanwhile, EDTA was degraded 
into small-molecule organic compounds. Some of these 
small-molecule organic compounds interacted with floccu-
lation precipitates and were finally removed via coagulation 
and adsorption [56]. Others were further degraded into H2O 
and CO2. The EDS spectra show that Tl was successfully 
adsorbed onto the precipitates since the Tl content remark-
ably increased in the experimental group (Fig. 4). In addi-
tion, the elemental mapping of the precipitates of the Fenton 
system has been provided (Fig. S3), and Tl can be obviously 
found after Fenton reaction (Fig. S3e).

Compared with the blank group, the experimental group 
showed a significant change in the FT-IR spectra (Fig. 5a). 
The wide (3,810–3,315 cm–1) and maximum adsorption 

  

Fig. 2. Structure of (a) EDTA and (b) metal–EDTA complex.

  

Fig. 3. SEM images for the precipitates of the Fenton process 
(Insets are the enlargement for the samples with higher 
magnification): (a) the blank and (b) experimental group.
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peaks at 3,437 cm–1 might indicate the presence of adsorp-
tion H2O onto the precipitates and the O–H group stretching 
vibration in water molecules [57]. The absorption peaks of 
O–H bonds around 2,361 cm–1 suggest that the interstitial H 
atoms were bonded with oxygen atoms for the O–H stretch 
modes [58]. A broad peak was observed at 1,400 cm–1, which 

was ascribed to CO3
2– ions, showing the presence of car-

bonate [59]. The weak band at 1,127 cm–1 was assigned to 
the FeOOH. The peak at 916 cm–1 was related to the C–O 
stretching vibration. The peak at 615 cm–1 was attributed to 
–COO groups [60], indicating that the low molecular weight 
acids onto the precipitates.

 

0 2 4 6 8 10 12 14 16 18 20
0

2000

4000

6000

8000

Experimental group

TlTlTlTl

Tl

N
 

C

O

Fe

Fe

Fe
In

te
ns

ity

KeV
0 2 4 6 8 10 12 14 16 18 20

0

2000

4000

6000

8000

10000

Blank group

TlTlTlTl
Tl

N
  

C

O

Fe

Fe

Fe

In
te

ns
ity

KeV

(a) (b)

Fig. 4. EDS spectra for the precipitates of the Fenton process: (a) the blank and (b) the experimental group.
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In the XPS spectra (Fig. 5b), the Tl absorption peaks 
appeared after the Fenton reaction, confirming that Tl was 
successfully captured onto the precipitates. After the Fenton 
treatment, the peaks of Tl 4f appeared (Fig. 5c). According 
to the method reported by Young et al. [61], the proportion 
of Tl(I) to Tl(III) in this study was 1.00:1.61 which indicates 
that 61.9% of Tl(I) was oxidized. Therefore, Tl(I) partially 
oxidized to Tl(III) and then precipitated as Tl2O3, this is one 
of the main mechanisms for Tl removal [3]. Because Tl(III) 
is unstable and prone to be slowly reduced to Tl(I) [62], the 
proportion of Tl(III) formed after the reaction was likely 
higher than the values revealed by the XPS analyses [36]. For 
the C1s XPS spectra, compared with the control group, the 
experimental group contained four sub-peaks (Fig. 5d). The 
first peak from sp2 hybridized carbons centered at 284.6 eV 
coincided with that of elemental carbon species. The peaks 
located at 285.2 and 285.3 eV were attributed to sp3 hybrid-
ized diamond-like carbons and associated with the pres-
ence of C–C/C–H groups [63]. A peak near 288.6 eV in blank 
group was attributed to –O–C=O [64]. The other peaks at 
286.5 and 287.8 eV were indicative of oxygen-bonded carbon 
[63] and a carbonate (CO3

2–) species [65], respectively. It can 
be verified that the degradation intermediates of EDTA were 
adsorbed on the precipitates after oxidative degradation in 
the Fenton system.

The degradation of Tl–EDTA was sketched in Figs. 6 
and Eq. (7). Under the oxidation by •OH, Tl–EDTA was destroyed 
to be Tl and EDTA. Afterward, the chemical bonds (C–C and 
C–N) of EDTA were prone to cleave, producing low molec-
ular weight (LMW) acids which were not qualitatively and 
quantitatively determined in this study. The derivatives for 
EDTA degradation in effluent are of interest and need further 
investigation. Due to the strong oxidability of •OH, some of 
them are finally degrading into CO2 and H2O, which is con-
sistent with the findings of the previous reports [16,49,66]. 
Most Tl(I) was oxidized into Tl(III), which is then tensely 
precipitated as Tl2O3 or adsorbed onto the iron hydroxides 
[67]. As a result, Tl is effectively removed from wastewater 
through the synergistic effects of surface complexation, oxi-
dation, coagulation, precipitation and co-precipitation. The 
Fe(III) species of Fe(OH)3 and FeOOH may also capture the 
Tl precipitates and the organic intermediates from aqueous 
solution [68].

TI EDTA OH LMW acids CO H O TII/III III+ → + + +•
2 2

 (7)

Note that the LMW acids represent oxalic, propionic and 
iminodiacetic acids [49].

4. Conclusions

This study is the first report to demonstrate the effective 
treatment of Tl–EDTA complexes from wastewater using 
the Fenton process. The Fenton process can effectively and 
simultaneously remove Tl and the EDTA. Under the studied 
conditions, the optimum experimental conditions are [Fe2+] 
of 21.6 mM, [H2O2] of 54.0 mM, reaction pH of 2.5, reaction 
time of 5 h and flocculation pH of 10.0. Hydroxyl radicals 
are responsible for the degradation of Tl–EDTA complexes, 
and the liberated Tl ions are efficiently removed via oxida-
tion, surface complexation, coagulation, precipitation and 
co-precipitation. TOC removal is mainly attributed to the 
strong oxidation capability of hydroxyl radicals. The degra-
dation pathway of ETDA by hydroxyl radical is interesting 
and additional investigations are needed to further identify 
the intermediates. The Fenton process could be a promising 
technology for the effective removal of both ETDA and toxic 
Tl from wastewater.
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Fig. S3. Elemental mapping of the precipitates of the Fenton system: ((a) and (b)) Fe and O elemental mapping of blank group, 
((c)–(e)) Fe, O and Tl elemental mapping of experimental group.
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