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a b s t r a c t
In this work, a hybrid fuzzy-probabilistic approach is proposed in order to classify the hydrological 
drought. The analysis focuses on the annual cumulative discharge which is considered to be a ran-
dom variable. Based on a fuzzified version of the frequency factor method, the fitting between the 
empirical probabilities and the theoretical probability distribution is investigated with the assump-
tion of Log-Normal and Log-Pearson III. This fitting is achieved by using Tanaka’s fuzzy linear 
regression and hence, all the observed probabilities are included within the produced fuzzy band. 
Furthermore, a modified fuzzy regression model is also applied. An assumption of the mean value 
and the standard deviation regarding the log-transformed data can be simultaneously achieved 
based on the theoretical density probabilities and the sample. Based on the achieved fuzzy frequency 
factor curve, the fuzzy cumulative annual discharge which corresponds to each threshold of drought 
can be determined. In order to classify the intensity of hydrological drought, an ascending procedure 
is proposed by comparing the existing annual cumulative discharge and the fuzzified thresholds of 
the drought categories. The proposed methodology is applied in the case of the Evros River.

Keywords:  Classification of drought; Fuzzy least square regression; Fuzzy linear regression; Log-  
normal probability distribution; Log-Pearson III probability distribution; Frequency factor; 
Evros River

1. Introduction

Drought must be considered as a relative condition, 
rather than an absolute condition. It occurs in both high and 
low rainfall conditions [1]. In other words, drought occurs 
when the water availability is below the canonical values 
which very often are described by the mean value and the 
standard deviation. Several types of droughts exist, while in 
this work the hydrological drought is studied.

Mostly, the phenomenon of drought is considered through 
drought indices aiming at the estimation of drought intensive, 
however, a few of drought indices have found generalized 
application [2–4].

The Standardized Precipitation Index, known as SPI, 
seems to be the most widely-used compared with the exist-
ing simple indices to classify the drought events [5]. In brief, 
the computation of the SPI involves the fitting of gamma 
probability density function and thereafter the cumulative 
probability distribution is transformed into the standard 
normal distribution to yield the SPI [5]. The drought cate-
gories which are defined according to SPI are also used to 
other similar drought indices. Hence, starting initially from 
a probabilistic approach, many standardized drought indi-
ces as SPI [5], RDI [6], SDI [7,8] and others, conclude to an 
index which in fact, is the standardized normal variable Z.

Severity, temporal and spatial extent of drought are the 
basic magnitudes of drought phenomenon, which do not 
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have standardized distribution. For this reason, the fitting 
between the empirical probabilities of a historical sample 
and the probability density function of population is a cru-
cial point. Several probability distributions have been used 
to investigate the most proper fitting to the data by using 
statistical test of suitability. For instance, in meteorological 
drought analysis, historical sequences of precipitation have 
been adopted by Yusof [9] on assumptions of exponential, 
gamma and Weibull distributions. In another research work 
suggested by Sharma and Panu [10], the river flow data are 
assumed to follow Pearson Type III distribution in order to 
predict the return periods of hydrological drought.

Despite the fact that there are several research works 
on the characterization of drought events in a probabilistic 
and stochastic manner, the exact derivation of the proba-
bilistic structure of drought characteristics is still an open 
issue [11]. In this work, the examined hydrological variable 
is the annual cumulative discharge. First, a hybrid fuzzy 
probabilistic approach is proposed in order to improve the 
couple between the observed probabilities and the adopted 
theoretical probability distribution. Second, based on the 
widely-used standardized normal thresholds to drought, the 
corresponding (fuzzy) annual cumulative discharge thresh-
olds are determined. Third, the (crisp) observed cumulative 
annual discharge is compared with these fuzzy thresholds 
in order to classify the drought.

Compared with the work by Spiliotis et al. [12], in this 
work, the log-Pearson III probability distribution is also 
examined. In addition, a modification of the widely used 
fuzzy regression model is proposed. Finally, in order to 
check the proposed approach several additional measures of 
suitability are proposed.

2. Proposed methodology

2.1. Fundamentals of fuzzy sets and logic

A fuzzy set A on a universe set X is a mapping A:X → [0,1], 
assigning to each element x ∈ X a degree of membership 
0  ≤  A(x)  ≤  1.  The  membership  function  A(x) can be also 
presented as µA(x).

If Α  is  a  fuzzy  set,  and  any  number  α ∈ [0,1], by the 
α-cut, A[α],  and  the  strong α-cut, A[α]+, the crisp sets [13] 
are defined, respectively:

A x X A x[ ] : ( )α α= ∈ ≥{ }  (1)

A x X A x[ ] : ( )α α
α

+

( )−
= ∈ >{ } strong cut

 (2)

The 0-cut can be defined as follows:

A x X A x[ ] { : ( ) }0 0+ = ∈ >  (3)

It is worth noting that by using the α-cut concept we can 
move from the fuzzy sets to the conventional crisp mathe-
matical methodologies.

A special kind of fuzzy sets is the fuzzy numbers. In this 
work, fuzzy symmetric triangular numbers are used which 
are special kinds of fuzzy numbers. The fuzzy symmetric 
triangular numbers have the following membership function:
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in which a is the centre and w is the spread of the fuzzy 
number (Fig. 1).

2.2. Observed probabilities and the frequency factor method

Let us study an historical sample. The rank order method 
involves ordering the data from the largest hydrological 
value to the smallest hydrological value, assigning a rank of 
1 to the largest value and a rank of N to the smallest value. 
Based on the Weibull [14] empirical distribution is used to 
compute the plotting position probabilities as follows:

P Q q m
N

≥( ) =
+ 1

 (5)

Therefore, the cumulative probability of non exceedance 
probability can be determined as follows [15]:

P Q q m
N

<( ) = −
+

1
1

 (6)

Chow [16] suggested a mathematical expression for 
determining the value of a random hydrological variable 
based on the adopted probability distribution function.

Hence, a linear relationship between the examined 
hydrological variable and corresponding values of fre-
quency factor KT, which is related with the adopted theo-
retical probability distribution and the return period, can 
be determined.

V KT T= +µ σ  (7)

where μ and σ are the mean value and the standard deviation 
correspondingly, KT is the frequency factor.

A used technique in hydrology is to investigate a linear 
relation between the frequency factor and the hydrolog-
ical variable instead of the probability plot [17]. Therefore, 

 
Fig. 1. Fuzzy symmetric triangular number.
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a fuzzy linear regression model can be applied in order to 
identify the relationship between the hydrological variable, 
which is the annual cumulative streamflow VT,j in this work, 
and the frequency factor KT,j:

V a a KT j T j, ,= + 1 2  (8)

By comparing Eqs. (7) and (8), the fuzzy coefficients a�1, a�2 
can be seen as a fuzzy estimation of the mean value and the 
standard deviation, respectively. The index j denotes the 
observation of each hydrological year.

2.3. Calculation of frequency factor KT for several theoretical 
probability distributions

Let the normal theoretical probability distribution. It is 
obvious that the frequency factor KT,j in the case of a normally 
distributed variable X, is equivalent to the standardized 
normal variable ZT,j.

K ZT j T j, ,=  (9)

Let now the log-normal theoretical probability distribu-
tion. To simplify the procedure, it is well-known that in case 
of the log-normal distribution, the normal distribution with 
log-transformed data can be used instead of the log-normal 
distribution; which simply means that log-transformed data 
are implemented instead of the raw data and hence, the new 
auxiliary variable yT,j, is normally distributed:

ln , ,V yT j T j=   (10)

Subsequently, based on the standardized normal variable 
Z of the normal distribution it holds:

ln , , , ,V y y s Z ZT j T j y T j T j= = + × = + × λ ζ  (11)

In which as λ, ζ state  the mean value and the standard 
deviation of the log transformed variable y correspondingly.

Let the Pearson type III theoretical probability distribu-
tion. Pearson type III distribution is derived from Gamma 
distribution with the scale parameter α and shape parameter β 
by adding the location parameter ξ. As a result, the Pearson 
type III distribution is also called as the three parameter 
gamma [18], whom probability density function and the 
cumu lative distribution function are given as:
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According to Sakkas [19], the frequency factor KT in 
the case of Pearson type III distributed variable X [X ~ P-III 
(α,β,ξ)] can be estimated as follows:

K ZT ≅ + −( ) −
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
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3

1 12 3

λ
λ λ  (14)

The parameter λ is given by the following expression:

λ
1
6
Cs−∼  (15)

where Cs is the skewness coefficient which can be estimated as:

C a
ss 3−∼  (16)

Furthermore, a is the asymmetry of a sample which 
unbiased estimation is:
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where N is the magnitude of the historical sample.
Finally, let us consider the log-Pearson type III theoreti-

cal probability distribution. The log-Pearson type III distri-
bution of [X ~ LP-III  (αY,βY,ξY)] corresponds to the Pearson 
type III distribution if the following transformation is applied 
Y = ln(X). In other words, log-transformed data of a historical 
sample follow the Pearson type III distribution [ln(X) ~ P-III 
(αY,βY,ξY)] [18].

In this work, instead of values of the primary data, the 
new auxiliary variable yT,j is utilized as in case of the log- 
normal distribution. The frequency factor KT,j for the Pearson 
type III which depends on the probability of non-exceed-
ance and the skewness coefficient Cs,y are approximated by 
Eqs. (14)–(17).

2.4. Fuzzy regression methodology

The uncertainty because of the matching between the 
observed probabilities and the adopted theoretical proba-
bility distribution can be treated by using the fuzzy regres-
sion suggested by Tanaka [20] and hence, all the observed 
data will be included in the produced fuzzy band. The main 
points of the proposed methodology are the following:

•  Based on the observed probabilities and the adopted 
theoretical probability distribution, the frequency factor 
KT,j is determined for each pair of data.

•  Based on Eqs. (7) and (8), a fuzzy linear regression model 
is implemented in order to determine a fuzzy relation-
ship between the natural log of the cumulative discharge 
or simply the cumulative discharge and the frequency 
factor KT,j (which corresponds to a probability). In case 
of log transformed data according to Eq. (11) it holds [21]:

     y y sT j y T j T j, , ,= + × = + ×K Kλ ζ  (18)

It should be clarified that since fuzzy symmetric trian-
gular numbers are selected as fuzzy coefficients hence, the 
mean value and the standard deviation are estimated as 
fuzzy symmetric triangular numbers.

•  A modification of the well-known model of Tanaka [20] 
is applied in this article. The only difference is focused 
on the objective function. The problem of fuzzy linear 
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regression is concluded to a linear programming prob-
lem. Here, instead of the objective function of Tanaka [20] 
(which is the total spread of the produced fuzzy band), 
the use of a non-linear objective function is proposed. 
The modified model of fuzzy regression incorporates 
within the objective function both the total fuzzy spread 
and the distances between the central values and the 
observed data.

•  The suitability of the proposed model can be estimated 
based on the magnitude of the fuzziness and furthermore 
by using mathematical distance norms which incorporate 
the unbiased estimators and the fuzzy estimation of the 
mean value and the standard deviation.

Although the frequency factor KT,j (independent variable) 
and the value of random variable (dependent variable) of the 
historical sample take only crisp values, the fuzziness arises 
from the inclusion constraints that is, from the requirement 
that all the data must be included in the produced fuzzy 
band. In other words this means that the fuzziness is gen-
erated from the (expected) no identical matching between 
the theoretical probability distribution (in this article the 
log-normal and the log-Pearson type III distributions will be 
preferred) and the observed probabilities.

According to the extension principle, in case of fuzzy 
symmetric triangular numbers as coefficients, the function 
y�T,j will be also a fuzzy symmetric triangular number with the 
following centre (Yj

h=1) and width (wy,j) [13,20]:

Centre: Y Zj
h

a a T j
= = + ×1 λ ζ ,  (19)

Width: w w w Zy j T j, ,= + ×λ ζ  (20)

which as Yj
h=1, λa, ζa state the central values of the correspond-

ing variables and as wy,j, wλ, wζ the corresponding spreads are 
meant.

The concept of inclusion is used to express the inclusion 
constraints. Thus, the inclusion of a fuzzy set A to a fuzzy set 
B with the associated degree 0 ≤ h ≤ 1 is defined as follows:

A h B h  ⊆    (21)

A physical interpretation of the level h is that an obser-
vation yj is contained in the support interval of the corre-
sponding fuzzy estimate, which has a degree of membership 
greater than hj. The degree of fit of the estimated model to 
the entire data set is defined as the minimum of all these 
hj, which is denoted as h [21].

The produced fuzzy band will contain all the observed 
data:

y y yj h j
L

h j
R∈ , ,,  (22)

By taking into account the fuzzy arithmetic, for a selected 
level h, the inclusion constraints, in case that the deci-
sion variables (fuzzy coefficients) are selected to be fuzzy 
symmetric triangular numbers, are equivalent to [20,22,23]:
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Since the fuzzy regression model of Tanaka [20] is trans-
formed to a constrained optimization problem, the assess-
ment of the suitability of the model is based on the produced 
fuzzy band. Therefore, a significant small fuzzy band indi-
cates a proper approach. Thus, Tanaka [20] suggested the 
minimization of the sum of the produced fuzzy semi-spreads 
for all the data:
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where M is the number of the observed data.
Another interesting point is that Tzimopoulos et al. [24] 

applies another objective function, based on least squares 
based model of Diamond [25]:
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where the first bracket denotes the distance between the 
observed data and the left bound of the produced fuzzy band 
whilst the second bracket denotes the distance between the 
observed data and the right bound of the produced fuzzy 
band.

However, Tzimopoulos et al. [24] applied their model 
without the conclusion constraints for crisp data and thus, 
the model could not lead to fuzzy coefficients. In this work, 
the objective function of Tzimopoulos et al. [24] is applied 
together with the inclusion constraints as they hold in case 
of the Tanaka formulation (Eq. (23)). It is worth mentioning 
that the approach of Tzimopoulos et al. [24] works well in 
case of fuzzy data.

It turns out (Appendix) that the objective function given 
by Eq. (25) includes both the objective function suggested 
by Tanaka (Eq. (24)) and the distance of the central values 
with the observed data (Eq. (A6)) and this can be seen as 
an advantage of the proposed modification. Both the mea-
sures S, J can be seen also as measures of suitability. Hence, 
in general, the measures, J, S express the uncertainty of the 
produced fuzzy model.

Two additional measures are established, δ1 and δ2 which 
are related to the unbiased estimation of the mean value and 
the standard deviation compared with the assessment of the 
same quantities produced by using the fuzzy regression. The 
third criterion of suitability, δ1, examines how close is the 
estimated central values of the mean value and the standard 
deviation to the unbiased (usual statistical) estimation of the 
same variables λ� , ζ�:

δ λ λ ζ ζ1 = −( ) + −( )2 2

a a
� �  (26)
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Regarding the fourth criterion, δ2, in the nominator, a 
simple Euclidian distance is used to compare the location of 
the observed data with the fuzzy output. In the dominator, 
the observed data are compared with the use of the unbiased 
estimation of the mean value instead of the fuzzy regression. 
The proposed measure is similar to the (crisp) measure R2:

δ2

2 2 21
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where ln VT,j = yT,j is the log-transformed value of annual 
cumulative discharge of the j hydrological year and, YT,j

h=1, YR
T,j, 

YL
T,j, are the central value, the right and the left hand bound-

aries of the estimated values based on the produced fuzzy 
relationship.

3. Categorization to hydrological drought based on the 
return period

As aforementioned, the values of Z as they are presented 
in Table 1 are used to define the thresholds of several drought 
categories according to the SPI index. These values of Z 
correspond to some probability degrees. Having finished the 
fuzzy regression approach, then the values of Z described in 
Table 1 are used in order to determine the fuzzy thresholds 
of the categories.

It should be clarified that in case of the log-normal 
distribution (instead of the Gamma distribution), the nor-
malized variable Z corresponds to a log-transformed cumu-
lative discharge. The (crisp) thresholds of Table 1 lead to 
a fuzzy log-transformed cumulative discharge (based on 
Eq. (11)) which can be compared with the current (crisp) 
real log-transformed value of the cumulative discharge. 
Therefore, in this article the (fuzzy) thresholds of the annual 
cumulative discharge, ln V� k = y� k (considering the kth thresh-
old) are compared with the (crisp) observed annual cumu-
lative discharge.

In case that the log-Pearson type III probability distri-
bution is selected to be examined, a same procedure can be 
repeated. Based on Eqs. (14)–(17), the thresholds of Table 1 
[5] are used to determine the frequency factor and hence, 
the fuzzy thresholds are calculated accordingly.

Even if, there are many measures to compare fuzzy 
numbers, there are not all of them suitable to compare a 
fuzzy number with a crisp number. To address this problem, 
the reliability measure of Ganoulis [26] is adopted.

Let a system which has a resistance R� and a load L� as 
fuzzy numbers. A reliability measure or a safety margin of 
the system may be defined as being the difference between 
load and resistance. This is also a fuzzy number given by 
Ganoulis [26].

  M R L= −  (28)

Hence, Ganoulis [26] has proposed a fuzzy measure of 
risk, r, which is defined as the region of the fuzzy safety mar-
gin, where values of M�   are  negative. Mathematically,  this 
may be expressed as follows:

r
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Α similar approach is proposed by Spiliotis et al. [27] to 
achieve the comparison between the (crisp) exerted dimen-
sionless shear stress and the (fuzzy) critical dimensionless 
shear stress.

Let us return to the examined problem. Hence, the authors 
propose a measure Gj,k, to indicate the degree according to 
which of the examined hydrological year, j, has a cumula-
tive annual discharge, yj = lnVT,j greater than the examined 
fuzzy threshold of drought k, y�k = ln V�k. It may be considered 
(Fig. 2):
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For simplicity, the T– index is omitted in yj since further, 
the yj is used to check the intensity of the hydrological 
drought and not for another additional statistical analysis.

In the same way, a degree, Sj,k, according to which of the 
examined hydrological year, j, has a cumulative annual dis-
charge smaller than the examined fuzzy threshold of drought 
k can be also considered. In Fig. 2, the grey hatched area (which 
is marked with (1)) denotes the numerator whilst the dom-
inator is equal to the total area of the membership function.

Therefore for each hydrological year, the comparison is 
started from the lowest to the upper values, that is, by fol-
lowing an ascending procedure. Therefore, the comparison 
concludes to a category where based on both the proposed 
measures.

4. Implementation of the proposed methodology: 
annual cumulative streamflow time sequence

The case under investigation is the northern region of 
Prefecture Evros (Fig. 3). The annual cumulative streamflow, 
which is derived from the monthly discharges of the Evros 

Table 1
Classification of hydrological drought based on the random 
variable Z [5]

Category Description Criterion

0 Non-drought Z ≥ 0.0
1 Mild drought −1.0 ≤ Z < 0.0
2 Moderate drought −1.5 ≤ Z < −1.0
3 Severe drought −2.0 ≤ Z < −1.5
4 Extreme drought Z < −2.0
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River at Pythio’s bridge, is studied. The Evros River (Maritsa 
or Meric) is one of the largest river of Balkan Peninsula in 
terms of length, since it crosses the Bulgarian, Greek and 
Turkish borders. It rises in the Rila Mountains in Western 
Bulgaria and has its outlet in the Aegean Sea. It serves as a 
natural borderline between Greece and Turkey [28]. Its total 
watershed area is equal to 53,000 km2, while the 6% of this is 
in Greek territory.

4.1. Methodology steps

The proposed methodology is implemented using the 
following steps:

•  Based on the monthly discharges, the annual cumulative 
volumes of streamflow are calculated and then they are 
transformed to logarithmic values.

•  A choice must be made regarding the theoretical proba-
bility distribution. As aforementioned, this hypothesis is 
checked later based on the suitability measures. In our 
case, the log-transformed theoretical distribution proba-
bilities fit better to the historical sample.

•  The fuzzy linear regression model of Tanaka [20] and 
the proposed modification of the objective function are 
applied (Figs. 4 and 5) between the frequency factor KT,j 
and the log-transformed annual cumulative discharge 
yT,j, under the assumption that the observed probabilities 
follow either the log-normal distribution or the log-Pear-
son type III distribution. The produced fuzzy coefficients 
can be seen as a fuzzy assessment of the mean value and 
the standard deviation of the log-transformed data.

•  The suitability of the proposed models is checked according 
to the value of the objective function, J and the proposed 
objective function, S. These measures are related to the 

 
Fig. 2. Measure value resulting from the ratio of the hatched area to the total area in the case that it is less than 0.50 for the year 
1985–1986.

 
GCS_GGRS_1987  

Fig. 3. Case of the trans-boundary Evros River and its tributaries. The examined data are derived from Pythio’s bridge (41°21′43.51″ N 
26°37′51.67″ E) (from Angelidis et al. [28]).
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produced uncertainty. Furthermore, the measures δ1 and 
δ2 are implemented in order to compare the fuzzy solu-
tion with respect to the unbiased estimation of the mean 
value and the standard deviation.

•  Based on drought classification (Table 1), the ln of the 
annual cumulative discharge which correspond to the 
normalized variable Z equal to −2, −1.5, −1 and 0 (Table 1) 
are calculated based on the produced fuzzy relationship. 
Therefore, according to the corresponding values of Z, 
the thresholds of drought are fuzzified.

•  The observed cumulative annual discharge is com-
pared with the aforementioned fuzzified thresholds 
of drought. From a mathematical point of view, the 
observed cumulative annual discharges are crisp num-
bers whilst the thresholds are fuzzy numbers. As afore-
mentioned, the comparison starts from the lowest to 
the upper values, that is, by following an ascending 
procedure.

The results of the applied fuzzy models on assump-
tion of log-normal (LN) and log-Pearson type III (LP III) 
distributions are presented in Table 2. Hence, two types 
of probability distributions are examined and simultane-
ously two fuzzy regression models which differ only in the 
objective function.

It is worth mentioning that the fuzziness Jln decreases 
where the Log-Pearson type III distribution is adopted for 
both of the two fuzzy models, that is, the Tanaka’s model 
and the modified fuzzy regression model. Hence, the Log-
Pearson type III distribution is preferred based on the 
produced uncertainty.

Another interesting point is that based on the suitabil-
ity measures, δ1 and δ2, the modified fuzzy least square 
regression model seems more appropriate than the Tanaka’s 
model. In addition, based either on the measure J or on 
measure S, the Log-Pearson type III distribution is prom-
ised. Therefore the fuzzy solution, which is based on the 
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Fig. 4. Observations, fuzzy and conventional regression between the log transformed values of annual cumulative streamflow and the 
frequency factor KT,j = ZT,j on the assumption of log-normal distribution (a) based on Tanaka’s model and (b) based on the modified 
fuzzy regression model.
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Fig. 5. Observations, fuzzy and conventional regression between the log transformed values of annual cumulative streamflow and 
the frequency factor KT,j on the assumption of log Pearson type III distribution (a) based on Tanaka’s model and (b) based on the 
modified fuzzy regression model.
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Log-Pearson type III distribution and the least square based 
objective function, seems to be preferable. However, based 
only on measure δ2, the solution which is based on the 
log-normal probability distribution and the modified fuzzy 
regression is preferred.

In Figs. 4 and 5, the results of the fuzzy regression 
applied by the two fuzzy models are illustrated, in case of 
the log-normal and the log-Pearson type III distribution. 
In Fig. 6, a fuzzy linear regression based on Tanaka’s model 
is applied on assumption of normality in order to be obvi-
ous that the normal distribution does not provide good fit 
to the observed data due to the un-functional significant 
uncertainty of the produced fuzzy curve.

Next, the observed (crisp) cumulative annual discharge 
is compared with the aforementioned drought thresholds. 
It should be justified that in this step the fuzziness is utilized 
in order to categorize the drought. Even if crisp values of 

Z are adopted, the fuzziness appears at the corresponding 
thresholds of volumes.

From a mathematical point of view, the observed cumu-
lative annual discharges are crisp numbers whilst the thresh-
olds are fuzzy numbers. As aforementioned, the comparison 
is started from the lowest to the upper values, that is, by 
following an ascending procedure.

There are also some cases where the comparison between 
the fuzzy threshold and the crisp annual cumulative discharge 
is not precise. Hence, the following criterion is adopted in this 
analysis:

ln
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j j k j k
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In Figs. 7 and 8, the fuzzified thresholds obtained based 
on the values of Z (Table 1) and the produced fuzzy curves 
of fuzzy linear regression models are presented, in the case 
both of log-normal and log-Pearson type III distribution. 
It is observable that because of the overlapping of the fuzzy 
ln V� k values (Fig. 7), the frontiers between the categories 
are overlapped to some degree. In any case, it seems more 
reasonable to adopt fuzzy thresholds among the categories 
of drought, compared with crisp thresholds, as the conven-
tional methodology does. It is worth noting that although 
there are some cases where the comparison between the 
fuzzy threshold and the crisp annual cumulative discharge 
is not precise, in most of them, the Gj,k index has values 
which are discernibly different from 0.5.

As it is aforementioned, on the assumption of log-Pearson 
type III distribution, the thresholds of each drought category 
are fuzzified based on the produced fuzzy relationship 
between the annual cumulative discharge lnVj and the fre-
quency factor KT,j which is a function of the variable ZT,j. Thus, 
the frequency factor KT,j is calculated for the ZT values of –2, 
–1.5, –1, 0, 1, 1.5 and 2 (crisp thresholds of drought categories).

Table 2
Unbiased estimation of the mean value and standard deviation, fuzzy coefficients and suitability measures for both of two fuzzy 
regression models on the assumption of log-normal and log-Pearson type III distributions

Fuzzy regression coefficients and suitability measures Tanaka model (min J) Modified fuzzy 
regression model (minS)

LN LP ΙΙΙ LN LP ΙΙΙ

Mean value (unbiased) λ 22.80 22.80 22.80 22.80
Standard deviation (unbiased) ζ 0.44 0.44 0.44 0.44
Central value of λ λa 22.72 22.78 22.77 22.79
Spread of λ wλ 0.171 0.167 0.175 0.183
Central value of ζ ζa 0.51 0.52 0.50 0.52
Spread of ζ wζ 0.081 0.022 0.051 0.002
Total fuzziness J 4.09 3.66 4.24 3.69
Least square objective function S 3.01 1.88 2.63 1.87
Suitability measure δ1 0.11 0.09 0.07 0.08
Suitability measure δ2 0.678 0.804 0.724 0.806
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Fig. 6. Observations, fuzzy and conventional regression between 
the log transformed values of annual cumulative streamflow and 
the frequency factor KT,j on the assumption of normal distribution 
based on Tanaka’s model.
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In Table 3, the results of the classification of hydrologi-
cal drought in all cases are presented. For reasons of spatial 
organization, only the values of the Gj,k and the Sj,k–1 measures 
in the case of the log-Pearson type III distribution based on 
the modified fuzzy regression are presented.

From Table 3, it is concluded that the hydrological years 
are classified in the same drought categories in almost 
all cases. It is also pointed out that on assumption of log- 
normal distribution, based on the modified fuzzy regres-
sion model, there are two hydrological years (1987–1988 
and 1994–1995) classified as mild drought years, in contrast 

to the assumption of the Log-Pearson type III where these 
years are classified as non-drought years.

5. Concluding remarks

The uncertainty of the coupling between the observed 
probabilities and the adopted theoretical probability distri-
bution can be treated by using the fuzzy regression model of 
Tanaka [20], where all the observed data are included in the 
produced fuzzy band. By using either the log-normal prob-
ability distribution or the log-Pearson III together with the 
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1993–1994, in the case of log-normal distribution (a) based on Tanaka’s model and (b) based on the modified fuzzy regression model.
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fuzzy regression, an estimation of the mean value and the 
standard deviation can be achieved simultaneously.

In addition, a modification of the Tanaka’s model is 
proposed. Even if the inclusion constraints are kept, the 
objective function is changed and hence, it includes both the 
total semi-widths and the distance of the observed data with 
the produced central values as it is proved in the Appendix.

Four criteria of suitability are established in order to 
check the suitability of the adopted theoretical probability 
density with fuzzy numbers as parameters. The first cri-
terion of suitability is based on the width of the produced 

fuzzy band and the third is based on the distance between 
the unbiased estimation of the mean value and the stan-
dard deviation with the central values of the estimated 
fuzzy quantities. Two other new measures are proposed. 
The first one is the least squares measure which incorpo-
rates both the distance of the real data with the central 
values and the produced fuzzy width and second the mea-
sure δ2 which is explained above. Therefore, based on the 
suitability measures, the log-transformed probability dis-
tributions are preferred. The Log-Pearson type III distribu-
tion seems to be preferable compared with the log-normal 
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distribution regarding the proposed hybrid fuzzy–probabi-
listic approach.

Hence, by using the standardized indices, ZT, to catego-
rize the drought, the corresponding thresholds of drought 
can be determined as fuzzy numbers (based on the achieved 
fuzzy regression) which represent the cumulative annual 
discharges. The proposed methodology is successfully 
applied in the case of the Evros River where the (crisp) 
cumulative discharge is compared with the aforementioned 
fuzzy thresholds of drought. This comparison takes place 
by using the proposed measure in this article of comparison 
between fuzzy number and crisp number, which exploits 
all the information of the membership function. Finally, 
an efficient classification of drought is achieved following 
the proposed methodology although the fuzziness is taken 
into account.
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Appendix

We start with the total produced fuzziness which is ana-
lyzed either around the central values or the observed data 
(Fig. A1) (similar considerations can be found in [29] but 
with different purposes):
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where Yj is the observed value of dependent hydrological 
variable and, Yj

h=1, Yj
R, Yj

L are, the central value of the esti-
mated hydrological variable, the upper bound of the pro-
duced fuzzy band and the bound limit of the produced fuzzy 
band, respectively. Solving for Y Y Y Yj j
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Eqs. (A1) and (A2) can be written equivalently as:
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by developing the last two terms it results
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Consequently, by eliminating the terms of Yj
R, Yj

L and by 
making common factors the terms of Yj

h=1 and Yj, Eq. (A4) can 
be written as:
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multiplying and dividing the parentheses with the number 

two (2) and placing where Y
Y Y

j
h j

R
j
L

= =
+1

2
, which holds 

in the case that fuzzy symmetric triangular numbers are 
selected as fuzzy coefficients (which is done in this article), 
it is concluded to:
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Therefore the following relation is modulated:

Y Y Y Y Y Y

Y Y

j j
L

j

M

j
R

j
j

M

j
h

j
L

j

M

j
R

j
h

−( ) + −( ) = −( ) +

−(
= =

=

=

=

∑ ∑ ∑
2

1

2

1

1 2

1

1 )) + −( )=

==
∑∑

2 1 2

11
2 Y Yj

h
j

j

M

j

M
 (A7)

In case of triangular symmetric fuzzy numbers are used 
as fuzzy coefficients (as in this article) then:
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The total sum of the difference between the observed 
value and the upper bound raised to the second power 

plus the difference between the observed value and lower 
bound raised to the second power is equal to the total sum 
of the difference between the central value of the estimated 
hydrological variable and the upper bound raised to the sec-
ond power plus the difference between the central value of 
estimated hydrological variable value and the lower bound 
raised to the second power plus the (double) difference 
between the central value of estimated hydrological variable 
and the observed data raised to the second power. Hence, 
this is the reason why Eq. (A7) is premised in this article 
instead of the standard objective function according to the 
study by Tanaka [20] formulation, since it includes not only 
the total fuzziness but also the distance of the central values 
from the observed data.
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Fig. A1. Graphical representation of Eq. (A1).


