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a b s t r a c t
The present study aims at investigating the ability of the synthesized zinc stannate, especially its 
photocatalytic activity, for degradation of tetracycline (TC) antibiotic under UV light irradiation. 
The process is assessed by four independent variables including pH, reaction time, initial TC con-
centration and photocatalyst dosage where TC removal is considered the response parameter. First, 
for optimization of the process, the response surface methodology (RSM) is implemented. Then, a 
second-order RSM model is developed based on experimental results. Subsequently, an artificial 
neural network (ANN) and a genetic algorithm are, respectively, applied for simulation and opti-
mization of TC removal from aqueous solutions. Afterwards, an ANN model is trained by applying 
three different algorithms (scaled conjugate gradient, gradient descent and Levenberg–Marquardt 
algorithms), and the best algorithm is taken into account to develop a predictive model. Next, the 
optimal number of hidden layers is determined. Finally, to optimize effective input parameters and 
percentage of TC removal from aqueous solutions, the ANN model is used along with the genetic 
algorithm for the process optimization. 

Keywords:  Photocatalyst; Response surface methodology model; Artificial neural network model; 
Genetic algorithm; Tetracycline; Antibiotic

1. Introduction

Performance prediction of treatment plants is of partic-
ular importance due to the presence of emerging pollutants 
in water and wastewater. The computer simulation model 
is the best way for achieving this purpose. Artificial neural 
networks (ANNs) can be applied effectively to develop a 
water and wastewater treatment plant model containing 

toxic pollutants [1,2]. One of the important kinds of emerging 
pollutants is antibiotics.

Antibiotics are broadly used in medicine and veteri-
nary as pharmaceutical compounds for treating diseases 
and improving the overall health [3]. In terms of production 
and usage, tetracycline (TC) is one of the most important 
antibiotics used to treat infectious diseases. A considerable 
amount of these compounds enter aquatic ecosystems by 



343S. Taherkhani et al. / Desalination and Water Treatment 169 (2019) 342–352

the pharmaceutical industry and after usage for household 
and hospital purposes. Such problems along with misman-
agement would have side effects on human health [4,5]. 
Existence of TC causes toxicity and allergy in the environ-
ment and threats human health [6,7]. Thus, elimination of 
pharmaceutical compounds such as TC antibiotic from aquatic 
environments is highly important. In recent decades, various 
methods have been used for the removal of pharmaceutical 
pollutants such as advanced oxidation processes (AOPs) 
[8,9], adsorption [10–12], filtration [13–15], chemical coagu-
lation [16,17], etc. 

Generally, an AOP includes all processes, in which active 
hydroxyl radicals are generated via various methods such as 
use of semiconductor oxides as a photocatalyst [18], which 
is called the photocatalytic degradation process. In this 
process, to destruct the organic pollutant, a photocatalyst 
(semiconductor) and a light source are needed. Zinc stan-
nate (ZTO) is a semiconductor oxide that exists in the form of 
a nanoparticle. Having high surface area, appropriate size, 
and optical, electrical and catalytic properties related to their 
structure, nanoparticles have a great potential in being pre-
sented as a catalyst for water and wastewater processes [13]. 
ZTO is known as the most important triode semiconductor 
oxide. This semiconductor oxide has about 3.6 eV energy in 
a band gap. Moreover, having properties such as sustainabil-
ity in all pHs and unique optical feature as well as electrical 
properties, ZTO is used as a photocatalyst for degradation 
of aquatic organic pollutants [19]. In previous studies, tita-
nium dioxide anatase form was used in the presence of UV 
light to destruct TC [20]. Moreover, some methods used for 
degradation of TC from aqueous solutions include the fol-
lowing: ultrasound facilitates the dispersion of nanopho-
tocatalyst Bi2Sn2O7-C3N4 over different amounts of zeolite 
for increasing solar light photocatalytic degradation of TC 
in aquatic environments [21], degradation of TC in water 
with AMoO4 photocatalysts [6], highly efficient visible-light 
photocatalytic activity of Ag/AgIn5S8 for TC hydrochloride 
degradation [4], etc. In this study, a triode semiconductor 
oxide (i.e., ZTO) was used as it has the gap energy of 3.6 eV 
and also has better results than titanium dioxide (3.2 eV) in 
producing hydroxyl radicals in the presence of UV light. 
As ZTO has higher potentials in producing electrons, it 
would have a greater potential in degrading pollutants. The 
overall process taken place in the process of photocatalytic 
degra dation is shown below: 

ZTO h e h+ → +− +ϑ  (1)

h pollutant oxidation of pollutant+ + →  (2)

h H O OH H+ • ++ → +2
 (3)

h OH OH+ − •+ →  (4)

O e  O2 2+ →− •−  (5)

O H HOO2
•− + •+ →  (6)

HOO HOO O H O OH OH O• • • −+ → + → + +2 2 2 2  (7)

H O e OH OH2 2 + → +− • −  (8)

• + →OH pollutant Degradation of pollutant  (9)

The antibiotic properties of TC as a harmful and non-
biodegradable contaminant are presented in Table 1.

Use of modelling combined with experimental studies 
has an important effect on cost and time saving. Some mod-
elling methods such as ANN models or the response surface 
methodology (RSM) are well able to predict complicated 
processes. The performance of AOPs depends on various 
parameters such as oxidant and catalyst concentration and 
chemical structure, pH, UV dosage and type and energy 
applied in the process. These parameters also affect each 
other. The difficulty of modelling these processes is because 
of details of chemical reactions occurring in the system. 
For solving these systems, mass balance and energy equations  
must be applied, which is difficult and time-consuming. 
In this condition, using an ANN as a non-linear, fast and 
effective model could be considered [22].

According to the literature, ANN modelling for AOPs, 
which contain nonlinear and complicated reactions between 
parameters, is highly applicable and effective [22–24].

Many researchers have implemented RSM for investi-
gation and optimization of processes for water and wastewa-
ter treatment. As a constraint, RSM is unable to incor porate 
uncontrollable influential parameters. Alternatively, an ANN 
as a computer forecasting method assesses the function of 
the process through modifying weights of the network to 
yield the requisite target. It is noteworthy that this method 
does not present any information on the chemical/physical 
process influencing the system. Therefore, a robust non- 
parametric simulative model is developed. A number of com-
parative studies have been carried out on RSM with an ANN, 
implying that ANNs generate robust models with large cor-
relation coefficients and lowest values of the mean squared 
error (MSE) [25].

Accordingly, an ANN-based model can investigate practi-
cal connections between response parameters and independent 
parameters (inputs) of a process by taking advantage 
of experimental data [26,27].

As a stochastic general search method, a genetic algorithm 
(GA) proceeds iteratively by producing new individual 

Table 1
Tetracycline antibiotic properties

Parameter Property

Molecular formula C22H24O8N2HCl
Molecular weight (g/mol) 480.9
Solubility (mol/L) 0.041
λ max (nm) 359
Chemical structure
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populations out of previous populations. A GA benefits from 
stochastic operators, namely crossover, mutation and selection, 
over an initially random selection so that a new population is 
computed. GAs are not identical to traditional optimization 
and search methods from four major perspectives:

GAs parallelly search within a population of response 
points. Thus, unlike traditional methods, they are able not 
to be trapped in local optimal points, thereby searching the 
best response points. Instead of using deterministic selec-
tion rules, GAs use probabilistic ones and focus on chro-
mosome, an encoded form of potential parameters of solutions 
instead of parameters themselves. Without any other deriva-
tive or additional data, it also utilizes fitness scores obtained 
from objective functions [28,29].

The present study is aimed at investigating the photo-
catalytic degradation of TC antibiotic with ZTO nanoparticles 
under irradiation of UV light. Furthermore, we are intended 
to model the photocatalytic degradation process using RSM 
and ANN and optimize it with GA approach.

2. Materials and methods

2.1. Experimental design

The materials include TC antibiotic (C22H24O8N2HCl), 
zinc nitrate hexahydrate and tin(IV) chloride pentahydrate 
with about 98% purity purchased from Sigma-Aldrich Co. 
as well as ammonia solution 32%, sodium hydroxide, and 
ethanol produced from Merck Co.

The following experimental instruments are used: the 
Shimadzu UV-visible spectrometer (model NO. 160A, Japan), 
the Heidolph MR 3001 K magnetic stirrer, the Metrohm 
Model 780 pH meter, an autoclave, a laboratory oven (Pars 
Azma Co.), a digital ultrasonic cleaner (CD-4820), and an 
electric furnace (Sybron Co.), Thermolyne Type 1500, with 
an accuracy of +10–5.

2.2. Zinc stannate (ZTO) synthesis 

The synthesis steps of ZTO are as follows: SnCl4.5H2O 
(1.5 mg) and Zn (NO3)2.6H2O (3 mg) are dissolved in dou-
ble-distilled water (20 mL) separately. Next, sodium hydr-
oxide (20 mL, 1 M) is added to an agitating solution of 
SnCl4.5H2O, inchmeal. Then, by mixing the zinc nitrate and 
former solution together, white hybrid sediments are formed. 
The sediments are carried to autoclave at a temperature of 
about 200°C–220°C and remain there for a period of 48 h. 
In the next step, the sediments are filtered off and then well 
washed by a water/ethanol mixture. Finally, the sediments 
are dried at 80°C for 20 h.

2.3. Photocatalytic properties of the synthesized zinc 
stannate (ZTO)

The photocatalytic properties of ZTO are evaluated for 
degradation of TC antibiotic under irradiation of UV light 
(30W-UV-C). To this end, a 200 mL glass beaker (lab glass) 
is applied as a reactor and 100 mL of TC solution is added 
to it and agitated by a magnetic stirrer.

Sampling from the reactor is carried out within 0 to 
100 min. The TC concentration in each sample is measured 

by the spectrophotometer (359 nm wavelength). The following 
equation is used for removal rate determination.

Removal degree% =
−

×
C C
C

t0

0

100  (10)

where C0 denotes the initial concentration of TC and 
Ct stands for the TC concentration at the time t. 

2.4. Data analysis

First, RSM is implemented to model the photodegra-
dation performance of TC antibiotic with ZTO employing 
four independent variables, namely pH, initial TC concen-
tration, photocatalyst dosage, and reaction time, where TC 
removal is considered the response parameter. RSM uses 
some experimental design procedures, the most important 
of which is the central composite design (CCD) where many 
experiments can be parallelly conducted. This approach is 
relatively efficient for at most five factors (30). The number 
of experiments is obtained by Eq. (11): 

l m Cm + +2  (11)

where m, l and C denote the number of factors, levels, 
and center point replicates, respectively [30]. 

In the RSM procedure, for verification of the model ade-
quacy, several techniques are used. Some of these techniques 
are residual analysis, scaling residuals, prediction of error 
sum of squares residuals and tests of lack of fit [31]. 

The results of CCD experiments are modelled using RSM 
to fit appropriate equations. Table 2 presents the independent 
variables and their levels in experiments along with RSM 
coded values. Eq. (12) explains how the second-order poly-
nomial model could be fitted to the experimental data [25].
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 (12)

Here, y, β0, βi, βii, βij, Xi, Xj, ε and k represent the predicted 
values, intercept constants, linear constants, quadratic con-
stants, interaction regression constants, error and number 
of variables studied, respectively.

The neural network structure consists of the following 
layers: The input layer is made up of independent variables, 
hidden layers, and an output layer made up of dependent 
variables. First, a feed forward back propagation neural net-
work (FFBPNN) with topology 4:5:1 is examined to select 
the best learning algorithm. Three learning algorithms 
includ ing scaled conjugate gradient (SCG), gradient descent 
(GD) and Levenberg–Marquardt (LM) algorithms are 
tested. Subsequently, the number of neurons in the hid-
den layer was optimized. The network was fed by the input 
and output experimental parameters; Table 3 gives the 
variable ranges.

Fig. 2 illustrates the overall design of an FFANN with 
input, output and different number of hidden layers with 
the BP algorithm. It should be noted that log- sigmoid 
and tan-sigmoid transfer functions are applied in the hid-
den layer, and linear transfer function is used for the output 
layer.
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The SCG, GD and LM algorithms contribute to the 
training of the ANN model. About 65 sets of experimental 
results applied for modelling the network and the inputs 
are divided stochastically into three subsets: training (70%), 
validation (15%) and test (15%). First, within the training 
phase, each neuron connection among layers receives sto-
chastic weights. The errors back propagated and weights 
keep being modified until the minimal error is reached 
for the predicted values in comparison with experimen-
tal results. In the following, the validation and testing 
steps of the ANN are carried out. In validation step, a set 
of experiments were used to tune the parameters of the 
MLP, the validation set would be used to find the optimal 
number of hidden units or determine a stopping point for 
the back-propagation algorithm and represents the gener-
alization and robustness of the network. Test set is some 

experiments used only to assess the performance of a fully- 
trained MLP, the test step would be used to estimate the 
error rate after choosing the final model (MLP size and 
actual weights).

The variables are optimized through a GA after the devel-
opment of ANN model. A GA is defined as optimization 
strategies that are developed on the basis of natural selec-
tion principles. This algorithm benefits from a set of rep-
resented stochastic solutions in a number of cases to solve 
the problems. Later, some operators are iterated until the 
convergence is reached. Indeed, the GA-based optimization 
strategy can be referred as a general optimization method 
that is independent from initial values for reaching the 
convergence. However, the required computational time is 
probably the most serious drawback. The GA development 
entails some specific steps including: setting of solutions 
(which is called chromosomes) represented by population, 
selecting fitness function that defines how fit individuals, 
selecting the most superior chromosomes, and genetically 
propagating selected parents, particularly mutation and 
cross over. These two operators are applied to generate new 
and enhanced chromosomes [28]. To simulate the process, 
both the neural network and the GA are applied within the 
MATLAB software. Fig. 2 depicts the optimized form of the 
ANN–GA modelling. 

3. Results and discussion

3.1. Evaluation of the synthesized zinc stannate (ZTO) 
characteristics

In Fig. 3, the FT-IR spectrum of the synthesized ZTO is 
presented in the 500–4,000 cm–1 by the hydrothermal method. 
The FT-IR spectrum shows that ZTO is on the absorption 
peaks of 582; 646; 1,030 and 3,400 cm–1. The peaks of 582 and 
646 cm–1 return to ZnO and SnO, respectively. The peaks 
of 1,030 and 2,930 cm–1 are associated with the symmetric 
and asymmetric tensile vibrations of Zn-O-Sn, respectively. 
The peak of 3,400 cm–1 is associated with the tensile vibrations 
of –OH at ZTO level.

Table 2
Variables levels applied in RSM through the CCD method

Parameters Level

–2 1– 0 1+ 2+

(Χı) pH 4.5 6 7.5 9 10.5
(Χ2) ZTO 100 150 200 250 300
(Χ3) TC 10 15 20 25 30
(Χ4) Time 10 40 70 100 130

Table 3
Experimental range applied in ANN

Type Variables Range

Input

Initial pH 4.5–10.5
ZTO dose (mg/L) 100–300
TC initial concentration (mg/L) 10–30
Reaction time (min) 10–120

Output TC removal (%) 11.8%–93.5%

 
Fig. 1. The reactor of UV photoreactor schematically.
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In the photocatalyst structure, existing crystal phases 
(cart No: 2184-074-01) are determined by the location and 
relative magnitude of available peaks characterized with 
the X-ray diffraction pattern.

Fig. 5 shows the SEM images of the synthesized ZTO. 
It is found that the synthesized ZTO takes the shape of 
nanoflowers.

3.2. RSM modelling and optimization

Statistically designed experiments are conducted by 
applying CCD method to study how the independent vari-
ables affect TC removal. According to Fig. 6, the experimental 
results are drawn vs. predicted values with RSM model. 

The fitted line is observed with a coefficient of correlation 
equal to 0.98, indicating the robustness of the model.

According to the observed data, a second-order poly-
nomial model is developed by implementing RSM after 
deleting unimportant terms, as presented in Eq. (13):

Y A B C D= − ( ) + ( ) − ( ) + ( )
+

52 5714 30 6050 5 4833 3 5783 20 8317

8 0806

. . . . .

. AA B C D

B

2 2 2 27 0306 1 8694 9 1806

13 1450 2 5450
( ) − ( ) + ( ) − ( )

− ×( ) −
. . .

. .A AA C A D B C

B D C D

×( ) + ×( ) − ×( )
− ×( ) + ×( )

1 3350 1 3550

0 1350 9 5650

. .

. .
  

 (13)

where Y, A, B, C and D stand for the degree of TC degra-
dation, pH, photocatalyst dosage, initial concentration and 

Fig. 2. Architecture of ANN–GA modelling.
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Fig. 3. FT-IR spectrum representation of synthesized ZTO.



347S. Taherkhani et al. / Desalination and Water Treatment 169 (2019) 342–352

reaction time, respectively. To assess the model, Table 4 gives 
the results obtained from the analysis of variance (ANOVA). 

The Fisher test is conducted to analyze the statistical 
significance of the model. A low p-value indicates that the 
developed quadratic model is significant from a statistical 
perspective and can be applied for an accurate prediction 
of TC removal. Moreover, the results for p-value larger than 
0.05 are not significant from a statistical perspective so that 
they can be deleted from the model unless they are com-
plying with the model hierarchy. The large value of deter-
mination coefficient (R2 = 0.9875) for Eq. (13) implies the 
significance of the model and offers an appropriate correla-
tion between the predicted and observed response values.

3.3. Effect of the experimental parameters on tetracycline (TC) 
removal

This paper investigates the effects of four different para-
meters, namely photocatalyst dosage, pH, reaction time and 
initial concentration of TC. It is necessary to optimize the 
photocatalyst dosage because it reveals the photocatalytic 
activity of ZTO for TC degradation and the treatment cost. 
Experiments are conducted at various factor levels and the 
analysis of obtained data is carried out using the Design-
Expert software. It is obvious in Fig. 7a that the highest TC 
removal rate occurs at higher ZTO dosage. Furthermore, 
the TC removal rate increases by an increase in reaction 
time. After about 70 min, the removal rate exceeds 70% at 
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Fig. 5. SEM images of prepared ZTO.
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all initial concentrations. Moreover, Fig. 7 demonstrates 
that the highest removal rate occurs at the lowest pH (4.5) 
and any increase in pH imposes an adverse impact on pho-
tocatalyst activity within TC degradation. The highest rate 
of degradation occurs in the acidic environment because of 
the electrostatic attraction among the surface of the photo-
catalyst and pollutant. This is in a highly good agreement 
with reports presented in the literature [25]. Some reports 

argued that the oxidation process was preferred within 
acidic environments [32,33]. All the samples exhibit a 
higher photodegradation at mild acidic pH, showing that 
the isoelectric point plays a central role in TC photodegra-
dation [34].

Moreover, Fig. 7a illustrates how the initial TC concen-
tration affects the removal efficiency. It is clearly evident 
that the initial TC concentration in a linear path has consid-
erable effects on the removal efficiency. By increasing the 
initial TC concentration (10 to 30 mg/L) at constant ZTO 
dosage (200 mg/L) and pH (7.5) values, the TC removal effi-
ciency decreases by about 20%. However, by increasing the 
reaction time, the TC removal percentage increases at all 
concentrations.

The pH associated with the photodegradation system 
is considered one of the most key parameters affecting the 
adsorption efficiency. Fig. 7b demonstrates a nonlinear 
relationship between the removal rate and pH. For ZTO 
nanoparticle, the surface charge changes by an increase in 
the values of pH and affecting the electrostatic properties 
of ZTO. It is clearly evident that an increase in pH affects 
the charge of the adsorbent surface and then causes decrease 
in the TC removal rate. Fig. 7c presents a nonlinear rela-
tionship between ZTO dosage and time vs. removal rate. 
It is visible that by increasing the reaction time and the 
ZTO dose, the removal rate is clearly increased. This point is 
also demonstrated in similar articles [34].

3.4. Optimization of the process parameters

In this study, the optimum conditions are achievable 
for independent variables (initial pH, ZTO dosage, initial 
TC concentration and reaction time) and response param-
eter (TC removal rate) by extracting from the investigated 
levels. Here, it is aimed at maximizing TC removal while 
keeping other parameters “within the range”. All factors 
and responses receive the same weight. The TC removal 

Table 4
ANOVA analysis for the selected quadratic model

Source DOF Adj SS Adj MS F-value P-value

Regression 14 9,079.61 648.54 89.96 0.000
Residual 16 115.34 7.21 – –

Total 30 9,194.96 – – –

SS: Sum of squares.
MS: Mean squares.
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(a) (b)

Fig. 7. Surface plots of photocatalytic destruction of TC. (a) Interaction effect of initial concentration and time on TC removal 
(at ZTO = 200 mg/L and pH = 7.5). (b) Interaction effect of pH and ZTO dosage on TC removal (at TC concentration = 20 mg/L 
and time = 70 min).
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percentages of 79.0% and 93.54% are observed at the opti-
mum values of ZTO dosage (250 mg/L), pH (4.5) and ini-
tial TC concentration of 10 and 30 mg/L, respectively. 
Furthermore, to validate the predicted results, confirma-
tive experiments are performed at the optimum conditions. 
The predicted results offer a TC removal efficiency of 
77% ± 2% and 95.45% ± 2% for the minimum and maximum 
initial concentrations, respectively. This suggests that the 
developed model is able to predict and optimize the TC 
removal process.

3.5. ANN model

For determining the TC removal rate, an ANN network 
is developed, as depicted in Fig. 2. First, a FFBPNN with 
the topology of 4:5:1 is examined to select the best learn-
ing algorithm. The tests are conducted on three learning 
algorithms including the SCG, GD and LM algorithms. 
The performance of the three mentioned algorithms is 
shown in Table 5. The correlation coefficient values (0.973, 
0.978 and 0.981) and MSE values (0.304, 0.482 and 0.425) 
are calculated for the LM, GD and SCG algorithms, 
respectively.

As can be observed in Table 5, the LM algorithm is 
known with the acceptable R and low value of MSE. Based 
on the literature, the GD algorithm functions at a slow pace 
to converge the requisite value of the performance. The 
average time needed for network training by applying the 
LM algorithm is obtained minimum, while the maximum 
time is obtained applying the SCG descent algorithm [35]. 
Thus, to model TC removal, the LM algorithm is chosen and 
optimized to determine the suitable transfer function and 
number of neurons.

Three transfer functions, including tan sigmoidal, log 
sigmoidal and linear functions, would be investigated 
using the hidden layer neurons ranging from 5 to 20. Most 
researchers tested the number of neurons within the hidden 
layer ranging from 1 to 20 [36,37]. Nevertheless, the ANN 
performance will be directly affected by the number of hid-
den layers. The number of neurons should be sufficiently 
chosen, not so low that it cannot find the optimal function 
and not so high that it causes over fitting. The low num-
ber of neurons in hidden layers restricts the network over 
its training ability and capability of estimating results with 
desired accuracy [23,25]. Therefore, by comparing the effi-
ciency of trained networks within a range of hidden layer 
neurons, the optimal number of hidden neurons is obtained.

The effectiveness of the ANN network topology and 
applicability of transfer function are well illustrated in 
Table 6. As can be observed, by increasing the number of 
neurons, the overall network performance also increases. 
It is observed that the minimum MSE and maximum correla-
tion coefficient are obtained 0.023 and 0.996, respectively, 
for a network with 4:20:1 topology and tansig transfer 
function in hidden and output layers. This network is cho-
sen as the best ANN model. Using an ANN, Gadekar and 
Ahammed [25] modelled dye removal through adsorption 
onto water treatment residuals. They investigated a variety 
of training algorithms and transfer functions. Above all, it is 
concluded that the LM training algorithm along with tansig 
transfer function provides the best performance.

The ANN-predicted and experimental values of TC 
removal are presented in Fig. 8 in all steps of the network 
validation. For evaluation of the network performance, the 
regression between the observed and predicted data is calcu-
lated and R2 is calculated 0.992, tending to be 1. This certifies 

Table 5
Comparison of various training algorithms to predict TC removal

Description Algorithm

Levenberg–Marquardt Gradient decent Scaled conjugate gradient

R 0.973 0.978 0.981
Mean square error (MSE) 0.304 0.482 0.425

Table 6
Comparison of TC removal anticipation with application of different transfer functions and topologies

Topology Transfer function

tansig logsig linear

MSE R (all data) MSE R (all data) MSE R (all data)

4:5:1 0.304 0.973 1.125 0.865 3.26 0.74
4:10:1 0.118 0.981 0.751 0.945 1.44 0.792
4:15:1 0.091 0.97 0.184 0.893 0.967 0.865
4:16:1 0.086 0.975 0.089 0.964 1.12 0.88
4:17:1 0.097 0.854 0.096 0.939 0.892 0.754
4:18:1 0.057 0.905 0.042 0.961 0.827 0.932
4:19:1 0.035 0.985 0.043 0.964 0.746 0.957
4:20:1 0.023 0.996 0.034 0.981 0.637 0.969
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the prediction accuracy by applying the developed trained 
ANN. Comparison of RSM with ANN models shows that 
the ANN R2 value is larger and is more in accordance with 
experimental data.

3.6. Genetic algorithm (GA) optimization

The developed neural network model is applied for 
optimization using the GA technique aiming at maximiz-
ing the percentage of TC removal from an aqueous solution. 

The equation derived from the ANN model is applied as the 
objective function [38]:

Objective function tansig LW tansig
IW

= ×

× ( ) ( ) ( ) ( )
(

( ; ; ;X X X X1 2 3 4  + +b b1 2
 (14)

where b1 and IW as well as b2 and LW stand for the bias and 
weights of the hidden layer as well as the bias and weights of 
the output layer, respectively.

Fig. 8. Linear regression for observed and predicted data for TC removal by neural network.

 

(a) (b)

Fig. 9. GA output graphs.
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The values of the GA-specific parameters incorporated 
in the optimization technique include number of generation 
100, selection function of Stochastic uniform, the Rank scal-
ing function, number of elite 2, crossover fraction of 0.8, and 
mutation function of constraint dependent and combination 
function of scattered. The optimum conditions are deter-
mined as follows: reaction time equal to 120 min, solution 
pH about 4.5, adsorbent dosage of 268 mg/L and TC con-
centration of 10.0 mg/L. Under these optimized conditions 
and by using GA, the model predicts the percentage of TC 
removal equal to 94.95%, where the experimental value is 
reported to be 93.54%, that is, the residual error between 
them is about 1.02%. This negligible error validates the 
constructed ANN–GA model. Fig. 9a shows the diagram 
of the best and average fitness values in each generation. 
Moreover, the best fitness value in the present generation is 
illustrated in Fig. 9b.

4. Conclusion

This paper investigated TC removal from aqueous solu-
tions by employing the photocatalytic activity of the syn-
thesized ZTO. The experimental results were modelled and 
optimised using RSM, ANN and GA. The developed RSM 
model as the second-order polynomial model precisely pro-
vided the simulation of the impacts of the chosen variables 
on the process of antibiotic removal. The complex photocat-
alytic degradation process of TC with ZTO was modelled 
applying a multilayer (input, hidden and output layers) 
ANN. A tansigmoidal function was used at the hidden 
layer and a purlin was used at the output layer. Finally, a 
network with a topology of 4:20:1, MSE of 0.023 and R of 
0.992 was selected as the best model. By implementing the 
LM algorithm, the ANN optimal topology was determined 
during the phase of training. The results revealed that a net-
work with 20 neurons in the hidden layer offered the best 
performance. Based on the developed ANN model and by 
applying the GA procedure, the percentage of TC removal 
was favourably optimized. To this end, a maximal percent-
age of TC removal (94.95%) was obtained at the reaction 
time, solution pH, adsorbent dosage and TC concentration 
of 120 min, 4.5, 268 mg/L and 10.0 mg/L, respectively. Under 
the same conditions, the optimum experimental percent-
age of TC removal was reported 93.54%, that is, a residual 
error of about 1.02%.
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