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a b s t r a c t
The valorization of agricultural and industrial wastes for water remediation is a great environmental 
and economic gain. The purpose of this work was the preparation and application of the eggshell 
membrane (ESM) for the recovery of hexavalent chromium from water in the dynamic adsorption 
system. To understand the adsorptive behavior of ESM and its surface characteristics, the powder 
was fully characterized using several techniques such as scanning electron microscopy, Brunauer–
Emmett–Teller, Fourier transform infrared spectroscopy, X-ray diffraction, Zeta potential, thermo-
gravimetric analysis, and differential scanning calorimetry. It was found that the ESM is rich with 
amides, amines, and carboxylic groups and exhibits a porous and interlaced fibrous morphology 
which is suitable for the fixation of metal ions. The specific surface area was 13.38 m2 g–1 while the 
pHpzc of ESM is 7.51. Several operating parameters were investigated such as the bed height, Cr(VI) 
concentration, pH, ionic strength and temperature. Overall, the best adsorption capacity was found 
to be 41.49 mg g–1 under the following conditions: flow rate of 2 mL min–1, Cr(VI) concentration 
of 5 mg L–1, bed height of 20 mm, pH 3 and a temperature of 298 K. The regeneration of ESM was 
studied, wherein, the results showed that the ESM can be reused much time for Cr(VI) removal. 
The adsorption rate decreased from 57.70% to 44.24% after the tenth adsorption for the removal 
of Cr(VI) at 10 ppm. Five models were applied including Thomas, Yoon–Nelson, Bohart–Adams, 
Wolborska, and BDST to model the experimental dynamic adsorption of Cr(VI) on ESM.
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1. Introduction

Water pollution is reconsidered as one of the biggest 
environmental issues which we are facing today, due to 
the dramatic population growth and the large industrial 
activities, resulting in high discharge of domestic/industrial 
wastewaters. Heavy metals are one of the major types of 

pollutants that can be found in a range of industrial waste-
water because of the large use of such elements in differ-
ent industries. Because heavy metals are not biodegradable 
in the environment, they tend to accumulate in the living 
organisms which results in different types of diseases that 
ultimately threaten the life of people. Of these metals, 
chromium is widely used in different industrial activities 
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including alloys/metallurgy, textile, electroplating, textile 
dyeing and leather tanning, which results in large contam-
inated water with chromium. Cr(VI) is potentially toxic, 
carcinogenic and mutagenic [1–4]. The tolerance level for 
chromium Cr(VI) in drinking water is fixed at 0.5 mg L–1 
according to the World Health Organization [5].

Several techniques have been applied for the removal of 
heavy metal, including Cr(VI), from water consist usually 
of chemical/electrochemical precipitation, membrane fil-
tration, adsorption, ion-exchange, coagulation/flocculation 
and photocatalysis [6–16]. However, these methods exhibit 
some drawbacks such as low efficiency, the use of large 
quantities of chemicals and energy. Of these techniques, the 
adsorption system is very convenient and easy to operate 
for the removal of heavy metals from water. Since the acti-
vated carbon, the most adsorbent used is quite expensive 
and requires a high cost of regeneration, recently a huge 
attention has been paid to the valorization and use of effec-
tive low-cost agricultural and industrial wastes, and ligno-
cellulosic materials as bioadsorbents for water purification 
[17–22]. In bio-adsorption, the removal of metal ions species 
is involved in the physicochemical fixation/binding of such 
ions onto the surface of the adsorbent which is of bio origin 
via functional groups. Cationic metal can be fixed by amine 
groups as chelating agents, while, the electrostatic absorp-
tion of anionic metals can occur. Recently, eggshell mem-
brane (ESM) waste has been used widely for the removal 
of Cr(VI) from water as a biosorbent due to its efficiency 
and chelating propriety [23–25]. It contains many functional 
groups in its surface such as amines, amides, and carboxylic 
groups. Bin and Huang [25] reported that a part of adsorbed 
Cr(VI) onto the surface of ESM was reduced to less toxic 
Cr(III) in Cr2O3 or Cr(OH)3 during the adsorption process. 
They suggested that HCrO4

– firstly is adsorbed on the sur-
face of ESM via the electrostatic interaction with amide 
groups followed by reduction reaction on the surface ESM, 
afterward, the Cr(III) is adsorbed/deposited on the surface 
via chelation or precipitation.

Herein, the removal of Cr(VI) was carried dynamically 
in a fixed bed column system which contains ESM as an 
adsorbent. ESM powder was prepared and characterized by 
different techniques. The effect of some operating parameters 
was investigated.

2. Materials and methods

ESM was collected from egg waste. Hydrogen chloride 
(HCl), sodium hydroxide (NaOH), sodium chloride (NaCl), 
sulphuric acid H2SO4, 1,5-diphenylcarbazide and potassium 
dichromate (K2Cr2O7) were purchased from Sigma-Aldrich-
Fluka (Saint-Quentin, Fallavier, France).

2.1. Preparation of ESM adsorbent

Eggshell waste was collected from local restaurants. 
The material was cleaned several times with water and then 
it was boiled in distilled water for 15 min to remove impuri-
ties. Afterward, the eggshell membrane was manually sepa-
rated from the egg waste and dried for 24 h at room tempera-
ture. The material was ground in an electric mill and then 
sieved using a sieve (Afnor,  London, UK). Only particles 

with diameters between 315 and 500 μm were used for the 
experimental adsorption tests.

2.2. Characterization of ESM

The morphology of ESM was characterized using 
scanning electron microscopy (SEM) (JEOL JSM 6390LU, 
Freising, Germany). Surface functional groups of ESM 
were checked by Fourier transform infrared analysis (FTIR) 
using IR–1 affinity in combination with a single attenuated 
total reflectance reflection. The crystal structure of ESM was 
characterized on X-ray diffraction (XRD) (Rigaku Ultima 
IV, Neu-Isenburg, Germany) using copper radiation Kα 
(λ = 1.5460 Å), a generator setting of 40 kV, 40 mA, scanning 
speed 0.01 min–1 and an angle of 2θ between 0 and 70. Zeta 
potential was carried out with an instrument (Zetasizer 2000, 
Malvern Co., England) equipped with a microprocessor at a 
temperature of 21°C and a pH of 6.03. Brunauer–Emmett–
Teller (BET) specific surface was performed using (NOVA 
Quantachrome, Boynton Beach, US), at 77 K. Before analy-
sis, each sample was degassed at 150°C for 1 h in a nitrogen 
atmosphere. Thermogravimetric analysis (TGA) was car-
ried out using (METTLER TOLEDO, Columbus, Ohio, US) 
(STARe TGA/DSC 3 + System), at a heating rate of 10°C min–1 
(30 mL min–1) to 600°C under N2. Differential scanning cal-
orimetry (DSC) was performed on a METTLER TOLEDO 
(STARe DSC 3 + System) at a heating rate from 10°C min–1 
(30 mL min–1) to 500°C under N. The point of zero charge 
(PZC) value were calculated from the curve representing 
the pHf–pHi values as a function of initial suspension pH of 
ESM. The value of PZC corresponds to the intersection value 
with the abscissa axis where ΔpH = 0 [26].

2.3. Column adsorption experiments

Adsorption was carried out in a glass column (diameter: 
11 mm, length: 300 mm). The residual Cr(VI) concentration 
was determined at a wavelength of λmax = 545 nm using a 
UV-Vis spectrophotometer (JENWAY 7315, Staffordshire, 
England) after complexation with 1,5-diphenylcarbazide [27].

2.4. Analysis of experimental data

Breakthrough curves profiles of Cr(VI) adsorption were 
obtained from Ct/C0 = f(t), where Ct and C0 are effluent and 
initial concentrations, respectively, t is service time.

The set of equations used in this work are summarized 
in Table 1 [28].

2.5. Models and kinetic tests of fixed-bed column adsorption

Five theoretical models were applied in this study, the set 
of equations used in this work are summarized in Table 2: 
(i) Thomas, it can be used where external and internal diffu-
sion limitations are absent [29]. (ii) Yoon–Nelson, it is based 
on the hypothesis that the rate of decrease in the probability 
of the adsorbate molecule is proportional to the probabil-
ity of penetration of the adsorbate on the adsorbent [30]. (iii) 
Bohart–Adams describes the initial part of the breakthrough 
curve [31]. (iv) Wolborska is based on the general mass trans-
fer equations for the scattering mechanism in the range of 
the low concentration breakthrough curve which can be 
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applied to experimental data for describing the initial part of 
the breakthrough curve [32]. (v) BDST, proposed by Bohart 
and Adams [31] and it is based on the assumption that the 
adsorption rate is controlled by the surface reaction between 
the adsorbate and the unused capacity of the adsorbent, it is 
employed usually to estimate the bed depth required for a 
given service time [33].

3. Results and discussion

3.1. Characterization of ESM

3.1.1. SEM analysis

SEM images of the ESM sample are shown in Fig. 1. It 
can be seen the ESM exhibits an interlaced fibrous struc-
ture (compact network like with smooth protein fibers) [34]. 
This porous structure could be suitable for the retention of 
pollutants.

3.1.2. FTIR analysis

Fig. 2 shows the FTIR spectrum for ESM. Different peaks 
were detected which are attributed to various functional 
groups and bands.

The band at 3,366 cm–1 is assigned to N–H and –OH. 
Bands at 3,070; 2,927 and 2,858 cm–1 are attributed to C–H 
present in =C–H and =CH2. The peak at 1,630 cm–1 is due 
to C=O amide stretching. The absorption peak appearing 
at around 1,525 cm–1 is attributed to N–H amide bonding. 
Bands at 1,450; 1,190; and 610 cm–1are due to CH2 scissoring, 
C–N amine stretching and C–S, respectively [35].

3.1.3. X-ray diffraction

The X-ray diffraction spectrum of ESM shown in 
Fig. 3 indicates that ESM is an amorphous material [36]. 
Furthermore, a large peak at 2θ, 22° was detected which is 
assigned to the amides, amines and carboxylic groups in ESM.

Table 1
Table of equations used for fixed-bed analyses

Volume of treated 
effluent

V F teeff = ( )  (1)

Total amount of 
Cr(VI) adsorbed Q F A F C dt

t

t

total

total

ads= =
=

∫1000 1000
 (2)

Experimental 
absorption amount Q

Q
mexp =
total  (3)

Maximum adsorption 
capacity N Q m

Vexp exp=  (4)

Quantities of 
adsorbate passed 
in the column

W
C Qt

total
total= 0

1 000,
 (5)

Percentage of 
removal R

Q
W

% = ×total

total

100  (6)

Fig. 1. SEM images of the ESM sample.
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3.1.4. Zeta potential and BET analysis

The results showed that the zeta potential of ESM 
was found to be 2.30 (mV), while the particle density was 
68.880 g cm–3. The zeta potential measurement reflects the 
electrical potential at the interface between ESM particles 
and adjacent liquid. The membrane surface carries positively 
charged sites produced by basic lateral chains of amino 
acids. It possesses a surface with special functional groups 
such as hydroxyl (–OH), amino (–NH2), carboxyl (–COOH), 
amide (–CONH2), thiol (–SH), etc. Due to the presence of 
various functional groups, ESM can be used as a potential 
adsorbent [37].

Table 3 depicts the results of the BET specific surface area. 
ESM exhibits a surface area of 13.38 m2 g–1 and a pore diame-
ter of 22.13 (Å) (mesoporous type according to International 
Union of Pure and Applied Chemistry (IUPAC)) [38].

3.1.5. TGA analysis

TGA of ESM is shown in Fig. 4. Three phases of weight 
loss are distinct in the curve. The first phase 25°C–120°C cor-
responds to a rapid loss of about 6.92%of the sample weight 
(dehydration) due to water molecules held at the surface by 
hydrogen bonding [39]. The second weight loss is 50.38% in 
the temperature range of 220°C–400°C. This could contrib-
ute to the degradation of collagen and glycane chains, the 

third phase 400°C–600°C is that of membrane degradation 
29.42% [35].

3.1.6. DSC analysis

The DSC is represented in Fig. 5 which shows an endo-
thermic heat peak at 120°C probably due to the loss of 
moisture and residual protein [40]. It can be noted that the 
inflammation temperature is 200°C. The degradation of col-
lagen chains, glycane chains and membrane takes place at 
220°C–300°C, 300°C–400°C and 400°C–500°C, respectively. 
These results are in agreement with the results of TGA.

3.1.7. Point of zero charge (PZC)

Fig. 6 shows that the ESM’s pHpzc is equal to 7.51, which 
implies that its surface is negatively charged at pH > 7.51 and 
positively charged at pH < 7.51.

3.2. Effect of flow rate

Different flow rates of 1, 2 and 3 mL min–1 were tested 
using a peristaltic pump (ISMATEC A39494, Wertheim, 
Germany) to adsorb Cr(VI) by ESM. According to Fig. 7 and 
Tables 2 & 4, the increase of flow rate reduces the operating 
times and results in a decrease in the adsorption capacity. 
This behavior can be explained by the insufficient contact 
time for mass transfer between the adsorbate and ESM bio-
mass, diffusion of solute into the pores of the biosorbent and 
a limited number of active sites and ionic biomass groups for 
matrix biosorption [41].

3.3. Effect of bed height

Different quantities of ESM, 0.06, 0.12 and 0.18 g corre-
sponding to bed heights of 10, 20 and 30 mm, respectively, 
were used.

When the mass of sorbent forming homogeneous fixed 
bed, which is proportional to the height of the bed, increases, 
the number of sorption sites increases, therefore it increases 
the penetration and exhaustion times and sorption capacity 
(Fig. 8 and Tables 2 & 4) [42].

3.4. Effect of initial concentration

The adsorption of Cr(VI) at concentrations of 5, 10 
and 15 ppm was carried out and the results are shown in 
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Fig. 9. The removal rates were found to be 88.91%, 57.7%, 
and 45.42% for Cr(VI) concentration of 5, 10 and 15 ppm, 
respectively. While, the adsorption capacity values were 
41.49, 27.89, 20.44 for Cr(VI) concentration of 5, 10 and 
15 ppm, respectively.

The adsorbent slowly attains saturation at low concen-
trations of influents; a low concentration gradient leads to 
slow down the transport of species due to the reduced dif-
fusion rate [43–46]. As the concentration of Cr(VI) is higher, 
the breakthrough is steeper [47]. In addition, a decrease in 
the percentage of adsorption with a higher concentration of 
adsorbate indicates that the adsorption is dependent upon 
the availability of the binding sites [48] and it may be due 
to competition of the Cr(VI) ions for the sites available [49]. 
The quantity of ESM was fixed, the available sites for adsorp-
tion remained constant and a limited amount of Cr(VI) par-
ticles decreased the duration of reductive reaction, which 
then led to low removal efficiency under a high Cr(VI) 
concentration [49].

3.5. Effect of pH

The effect of pH of the solution on the adsorption of 
Cr(VI) was studied in the range of 2–4. The results are shown 
in Fig. 10 and listed in Tables 3 and 4.

It was found that the adsorption capacity is more pro-
nounced at pH = 3, this is explained by the charge on the 
surface of the adsorbent and the charge of the pollutant 
studied (attraction-repulsion between adsorbate–adsorbent) 
[50]. As a function of pH, Cr(VI) can be found in different 
ionic forms in water such as H2Cr2O7 at pH < 1, HCrO4

– at 
1 < pH < 6 and CrO4

–2 at pH > 6. Among these anions, the 
HCrO4

– is the predominant species of Cr(VI) at pH = 3 [51], 
therefore, an increase of electrostatic attraction is obtained 
between HCrO4

– species and the positively charged surface of 
ESM at pH < 7.51 according to results of PZC diagram (Fig. 6).

3.6. Effect of ionic strength

It is essential to study the competitive influence of coex-
isting NaCl ions during Cr(VI) adsorption. As shown in 
Fig. 11 and Tables 2 & 4, the Cl– coexisting ions have a sig-
nificant competitive influence on the adsorption of Cr(VI) 
which considerably reduces the removal efficiency of Cr(VI). 
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Table 2
Five models used for fixed-bed analyses
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C
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t
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0

1
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=
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C
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K C t K N Z
U

t
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0
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
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
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Cl– consumes surface sites of adsorbent and thus reduces 
the available adsorption surface sites for Cr(VI). During 
this time, the occupied sites decrease the surface charge and 
thus increase the electrostatic repulsion between surface and 
anions (HCrO4

–). A similar tendency has been reported by 
Wang et al [52].

3.7. Effect of temperature

According to Tables 2 and 4, the exhaustion time is reduced 
at high temperatures, this observation can be explained by 
the fact that a high functioning temperature favors the dif-
fusion of Cr(VI) molecules in the adsorbent, which permits 

a short passage time and a rapid saturation of the bed [53], 
and according to Fig. 12, the efficiency rate and adsorption 
capacity of Cr(VI) decrease at higher temperatures. This may 
be due to the failure of some active and internal bonds in 
sorbent surface sites [24]. Therefore, the adsorption of Cr(VI) 
on ESM bed was favorized at low temperature, indicating an 
exothermic process.
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Table 3
Pore properties of eggshell membrane

Parameters Specific surface 
area (m2 g–1)

Total pore volume  
(cm3 g–1)

Pore  
diameter (Å)

Particle density 
(g cm–3)

13.38 0.0138 22.13 0.25
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4. Regeneration

The desorption of Cr(VI) species adsorbed onto the ESM 
bed column was realized by washing with distilled water. The 
regenerated ESM bed column was reused to adsorb Cr(VI). 
As can be seen in Figs. 13 and 14, the ESM showed a good 
performance in removing Cr(VI) from the solution during 
the ninth adsorption–desorption cycles. It was found that the 
adsorption capacity for Cr(VI) was reduced after each cycle. 
The decrease in removal efficiency can be attributed to the 
loss of partial reduction property of ESM during adsorption–
desorption processes. The adsorption efficiency decreased 
from 57.70% to 44.24% after the tenth adsorption [54].

5. Modeling

5.1. Model of Thomas and Yoon–Nelson

According to Table 5, it is interesting to observe that 
the R2 coefficient values for the two models Thomas and 
Yoon–Nelson are greater than 0.98 for all parameters, also 

Table 4
Conditions and results for fixed-column Cr(VI) adsorption experiments

C0  
(mg L–1)

Z  
(mm) 

F  
(mL min–1)

pH T  
(k)

NaCl  
(N)

tb  
(min)

ttotal  
(min)

Veff  
(mL)

Wtotal 
(mg)

qtotal 
(mg)

qexp 
(mg g–1)

R 
(%)

10 10 2 3 298 0 36 110 220 7.80 1.37 22.88 17.60
10 20 2 3 298 0 100 250 500 5.80 3.34 27.89 57.70
10 30 2 3 298 0 145 290 580 7.00 5.88 32.66 84.01
5 20 2 3 298 0 235 450 900 5.60 4.98 41.49 88.91
15 20 2 3 298 0 42 110 220 5.40 2.45 20.44 45.42
10 20 1 3 298 0 210 520 520 6.00 3.50 29.17 58.34
10 20 3 3 298 0 33 100 300 5.70 1.78 14.88 31.32
10 20 2 4 298 0 35 260 520 5.40 3.00 25.02 55.61
10 20 2 2 298 0 21 225 450 4.70 2.54 21.24 54.23
10 20 2 3 318 0 93 170 340 5.00 2.67 22.33 53.59
10 20 2 3 308 0 97 200 400 5.60 3.05 25.43 54.49
10 20 2 3 298 0.01 24 110 220 3.1 1.37 11.48 44.47
10 20 2 3 298 0.005 45 130 260 3.30 1.77 14.78 53.77
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curves at different temperature according to the models studied 
for Cr(VI) adsorption by ESM (F = 2 mL min–1, Z = 20 mm, 
C0 = 10 mg L–1, and pH = 3 ± 0.1).
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the adsorption capacities and τ values calculated by the two 
models and the value obtained experimentally are close 
enough. The rate constant of Thomas and Yoon–Nelson 
increases with increasing flow rate, however τ decreases 
accordingly. This is due to the driving force of adsorption 
[41] and on the fact that a higher flow rate would permit 
an early achievement of the adsorption equilibrium. It can 
be argued that both models studied are appropriate to 
describe Cr(VI) adsorption [55].

5.2. Model of Bohart–Adams and Wolborska

For both models, according to Table 6, the correla-
tion coefficient is greater than 0.90 for all the parameters 
studied, reflecting the applicability of these two models. 

Due to the predominance of external mass transfer activi-
ties, the mass transfer coefficient increases with increasing 
flow rate [56].

5.3. Model of BDST

According to Fig. 15 and Tables 5 & 7, all R2 determi-
nation coefficients exceeded 0.98, indicating that the BDST 
model perfectly represents Cr(VI) adsorption. At Cb/C0 about 
0.7 and 0.9, the constant KAB has negative abnormal values, 
indicating a certain limitation of the BDST model [57].

6. Conclusion

In this work, ESM was valorized and used as an adsorbent 
for the removal of Cr(VI) from water in a dynamic system. 

Table 5
Parameters of Thomas and Yoon–Nelson models for Cr(VI) adsorption by ESM at different conditions using non-linear regression

Thomas model Yoon–Nelson model

C0 
(mg L–1)

Z  
(mm)

F  
(mL min–1)

pH T  
(k)

NaCl  
(N)

Kth × 103  
(ml mg–1 min–1)

qth  
(mg g–1)

qexp  
(mg g–1)

R2 KYN × 103  
(ml min–1)

τ  
(min)

τexp  
(min)

R2

10 10 2 3 298 0 6.22 21.64 22.88 0.9959 62.05 64.95 65 0.9923
10 20 2 3 298 0 2.90 27.48 27.89 0.9958 28.62 165.14 165 0.9939
10 30 2 3 298 0 2.77 23.61 32.66 0.9935 27.37 212.77 215 0.9905
5 20 2 3 298 0 3.23 26.97 41.49 0.9963 15.98 324.13 330 0.9947
15 20 2 3 298 0 4.82 19.66 20.44 0.9993 72.39 78.63 80 0.9987
10 20 1 3 298 0 1.42 28.09 29.17 0.9930 14.02 337.76 335 0.9889
10 20 3 3 298 0 11.78 12.39 14.88 0.9915 117.79 49.57 51 0.9844
10 20 2 4 298 0 3.49 24.97 25.02 0.9976 34.40 149.96 150 0.9972
10 20 2 2 298 0 3.77 21.12 21.24 0.9971 37.23 126.82 125 0.9959
10 20 2 3 318 0 5.88 21.59 22.33 0.9989 59.06 129.53 130 0.9981
10 20 2 3 308 0 4.23 24.91 25.43 0.9987 42.28 149.49 150 0.9979
10 20 2 3 298 0.01 5.08 11.00 11.48 0.9966 50.51 66.10 65 0.9934
10 20 2 3 298 0.005 4.80 14.36 14.78 0.9952 46.99 86.39 85 0.9924

Table 6
Parameters of Bohart–Adams and Wolborska models for Cr(VI) adsorption by ESM at different conditions using non-linear regression

Bohart–Adams model Wolborska model 

C0 
(mg L–1)

Z 
(mm)

F 
(mL min–1)

pH T 
(k)

NaCl 
(N)

KBA × 103 
(ml mg–1 min–1)

N0 
(mg L–1)

Nexp 
(mg L–1)

R2 βa 
(min–1)

N0 
(mg L–1)

Nexp 
(mg L–1)

R2

10 10 2 3 298 0 8.80 1,557.78 1,598.85 0.9915 14.05 1,526.76 1,598.85 0.9851
10 20 2 3 298 0 4.46 1,929.86 1,948.95 0.9818 8.80 1,905.13 1,948.95 0.9744
10 30 2 3 298 0 5.16 2,380.29 2,249.62 0.9901 12.28 2,380.29 2,249.62 0.9901
5 20 2 3 298 0 3.47 2,025.63 2,899.32 0.9033 7.02 2,025.11 2,899.32 0.9033
15 20 2 3 298 0 5.35 1,486.90 1,428.34 0.9815 8.53 1,418.71 1,428.34 0.9707
10 20 1 3 298 0 2.18 1,979.56 2,038.39 0.9667 4.32 1,979.51 2,038.39 0.9664
10 20 3 3 298 0 12.68 981.52 1,039.81 0.9903 12.95 956.29 1,039.81 0.9836
10 20 2 4 298 0 4.18 1,824.20 1,723.37 0.9821 7.56 1,837.23 1,723.37 0.9677
10 20 2 2 298 0 5.19 1,474.45 1,463.01 0.9821 7.70 1,465.46 1,463.01 0.9706
10 20 2 3 318 0 7.78 1,581.20 1,560.42 0.9640 13.98 1,513.37 1,560.42 0.9572
10 20 2 3 308 0 4.63 1,913.22 1,777.04 0.9702 8.18 1,874.35 1,777.04 0.9575
10 20 2 3 298 0.01 12.54 546.49 802.22 0.9673 7.66 495.79 802.22 0.9799
10 20 2 3 298 0.005 7.54 957.01 1,032.82 0.9852 7.29 949.06 1,032.82 0.9606
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To understand better the adsorptive proprieties of ESM, the 
material was fully characterized using different methods. 
ESM is rich with amides, amines and carboxylic groups 
and exhibits a porous and interlaced fibrous morphology. 
The specific surface area was 13.38 m2 g–1. pHpzc of ESM was 
found to be 7.51. Several operating parameters were inves-
tigated. Overall, the best adsorption capacity was found to 
be 41.49 mg g–1 under the following conditions: flow rate of 
2 mL min–1, Cr(VI) concentration of 5 mg L–1, bed height of 
20 mm, pH 3 and a temperature of 298 K.

The five models applied, Thomas, Yoon–Nelson, Bohart–
Adams, Wolborska, and BDST were considered appropriate 
to describe the dynamic behavior for Cr(VI) adsorption.

Symbols

C0 — Initial Cr(VI) concentration, mg L–1

Ct — Effluent Cr(VI) concentration, mg L–1

Veff — Effluent volume, mL
F — Influent flow rate, mL min–1

te — Time of exhaustion, min
tb — Time at breakthrough, min
qtotal —  Total weight of Cr(VI) adsorbed by adsorbent in 

column, mg
qexp —  Weight of Cr(VI) adsorbed per g of adsorbent 

from experiment, mg g–1

m — Adsorbent mass, g
Nexp —  Experimental maximum sorption capacity, 

mg L–1

V — Volume of solution, mL
R — Percentage of removal, %
Wtotal — Total amount of Cr(VI) sent to column, mg
Cads — Adsorbed Cr(VI) concentration, mg L–1

t — Service time of the column, min
Kth —  Kinetic constant of Thomas model, L mg–1 min–1

U — Linear velocity, mm min–1

KYN — Kinetic constant of Yoon–Nelson model, min–1

KBA —  Kinetic constant of Bohart–Adams model, 
L mg–1 min–1

Z — Height of the bed, mm
N0 — Maximum sorption capacity, mg L–1

Cb — Breakthrough concentration, mg L–1

N′0 — Adsorption capacity in BDST model, mg L–1

T — Temperature, °C, K
pHpzc — pH of point of zero charge
pHi — Initial pH of the solution
pHf — Final pH of the solution
ΔpH — Difference between pHf and pHi

Greek

τ —  Time required for 50% adsorbate breakthrough 
from Yoon–Nelson model, min

Table 7
Calculated constants of BDST model for Cr(VI) adsorption

Cb/C0 a  
(min cm–1)

b (min) KAB × 103  
(L mg–1 min–1)

N′0  
(mg L–1)

R2

0.1 5.70 –18.66 11.77 1,452.189 0.9950
0.3 6.00 –3.33 101.11 1,528.62 0.9976
0.5 7.50 –1.66 234.44 1,910.77 0.9941
0.7 8.75 3.33 –127.15 2,229.23 0.9868
0.9 9.00 36.66 –12.24 2,292.93 0.9838

Table 8
Comparison of Cr(VI) adsorption performances by ESM adsorbents

Adsorbent Adsorption  
mode

Bed Amount of 
adsorbent (g)

Removal of 
Cr(VI) (%)

References

0.05 47 [25]
Batch 3.78 81.47 [51]

ESM 0.5 100 [23]
Dynamic 2.2 cm × 3 cm / 100 [23]

1 cm × 2 cm 0.12 88.91 This study
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Fig. 15. Linear regression of BDST model at different break-
through points (C0 = 10 mg L–1 and F = 2 mL L–1).
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βa —  Kinetic coefficient of the external mass transfer 
in the Wolborska model, min–1
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