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a b s t r a c t
Statistical analyses are often subject to misinterpretation due to poor data quality which is inaccu-
rate, incomplete, or unavailable. This study describes how incomplete data diminishes the screening 
accuracy of water pollution hotspots using a self-organizing map (SOM), a popular algorithm in 
reducing the dimension of complex data in a nonlinear fashion. A full data set consisting of 12 water 
quality and quantity parameters monitored monthly over 3 years at the Yeongsan River in Korea 
was provided to SOM as a reference input. For purposes of comparison, SOM was further allowed 
to accept three incomplete data sets in terms of variable availability as well as data loss for single 
and multiple parameters and different pollution levels. We found that data loss of either single or 
multiple parameters exceeding 15% of the entire data set led to significant changes in spatial and 
temporal patterns of the original data. However, the variables intentionally unavailable in the given 
data set affected the screening performance of water pollution hotspots in SOM, to a less obvious 
extent, as long as the percentage of missing data fell below 10%. The same applied to data loss with 
three pollution levels, from high through moderate to low concentrations of one important variable. 
Therefore, we recommend the use of multiple approaches that couple dimensionality reduction 
algorithms with reasonable imputation methods for the data set with a high percentage (e.g. above 
15%) of missing values.

Keywords:  Non-linear data analysis; Dimensionality reduction; Water quality data; Pollution hotspots; 
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1. Introduction

Statistical analyses not only contribute to facilitating stra-
tegic planning but also improve informed decisions for sus-
tainable watershed management. Statistical analyses were 
applied to a wide range of watershed management issues 
including, but not limited to, characterization of spatial and 
temporal data patterns, source apportionment, design of 
sampling locations, and impact assessment of complex rela-
tionships among variables [1–5]. For example, the previous 

study of Aguilera et al. [1] adopted a dynamic factor anal-
ysis to identify riverine nutrient patterns and associated 
environmental drivers. Principal component analysis (PCA) 
and its variant were employed in the study of Yang et al. 
[2] to allocate pollution sources across different zones such 
as urban, suburban, and rural watersheds. The modified 
Sanders approach was involved in the development of sur-
face water quality monitoring network [3]. Structural equa-
tion modeling, a combination of confirmatory factor analysis 
and path analysis, was also used to address the direct and 
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indirect effects of wastewater effluent on macroinvertebrate 
communities [4,5].

The performance of statistical analyses was, however, 
sensitive to data quality such as missing values, noise, 
outliers, censored and truncated data, and so on [6–9]. 
Alameddine et al. [6] introduced three robust outlier detec-
tion methods to detect and isolate outliers and found their 
effectiveness in analyzing multidimensional water qual-
ity data over conventional methods such as Mahalanobis 
distance. Imputations of missing values were examined 
in the study of Betrie et al. [7], which demonstrated that 
two imputation methods such as the iterative robust mod-
el-based and sequential imputation approaches were appro-
priate to recover missing water quality data at mine sites. 
Another study of He [8] studied the data set with censored 
observations and multiple detection limits and applied an 
expectation-maximization algorithm to both simulated 
and observed water quality data for statistical justification. 
Another study by Ruždjak et al. [9] found that the standard 
PCA algorithm was only tolerant of less than 4% of incom-
plete data such as missing values and outliers.

A self-organizing map (SOM) was capable of accom-
plishing the intended functionality, which discovered com-
plex data characteristics, under limitations on data quality 
described above [10–18]. The SOM algorithm, in particular, 
provided outstanding capabilities in removing the number of 
data records with similar properties as well as in visualizing 
the reduced records in a low-dimensional map [10–12]. Due 
to all those distinct merits, the SOM studies had a wide span 

from surface and subsurface water quality [10–16] through 
hydrology [17] to ecology [11,18]. As opposed to those pre-
vious studies showing diverse application opportunities, the 
originality of this research lies in evaluating the efficiency 
of the SOM algorithm in response to intentional data loss in 
the data sets. Using the data sets with and without data loss, 
we specifically addressed the effects of (1) missing records 
occurred in single and multiple variables, (2) missing vari-
ables themselves, and (3) missing records made at different 
pollution levels in a fixed variable on the performance of the 
algorithm. We hope that the results derived from this study 
help promote correct use and interpretation of SOM as well 
as extend its applications in areas of poor data quality.

2. Materials and methods

2.1. Monitoring network

For this study, we used only a small part of the pub-
lished data which were available in the tributary monitor-
ing program for a target watershed [19] as well as compiled 
from our previous study [20]. Fig. 1 presents a basin-wide 
monitoring network designed to measure water quality and 
quantity in the Yeongsan (YS) River, one of the four major 
rivers in South Korea. The monitoring network consisted of a 
total of 83 sampling sites: 2 are on the mainstream as well as 
81 are on the tributaries. These observation stations were, in 
particular, selected from all available monitoring programs 
maintained by relevant authorizing agencies based on a 

Fig. 1. Selected sampling locations for discharge and water quality at the mainstream and tributaries in the Yeongsan River Basin, 
Korea.
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number of factors such as the size of the entire monitoring 
network, stream size, spatial representativeness, available 
budget, etc. A complete list of 83 stations, including their 
physical characteristics (i.e., drainage area and main channel 

length), is provided in Table 1. As shown in the table, indi-
vidual observation stations varied greatly in drainage area 
and main channel length, regardless of their locations in 
the mainstream or tributaries. The established monitoring 

Table 1
Monitoring stations for measurement of water quality and discharge in the mainstream and major tributaries of the Yeongsan River, 
Korea

Sections Site  
IDa

Drainage 
area (km2)

Channel 
length (km)

Sections Site  
IDa

Drainage 
area (km2)

Channel 
length (km)

Upstream areas in 
the mainstream

A1§ 82.84 24.98 A43 5.05 5.08
A2 47.29 14.13 A44 5.25 4.07
A3 15.53 8.97 A45 9.01 5.6
A4 59.2 26 A46 5.03 4.85
A5 45.39 15.49 A47 137.51 29.4
A6 32.21 16.7 A48 12.4 8.7
A7 149.34 23.56 A49 9.08 7.85
A8 15.39 12.91

Tributary areas in the 
Gomakwon-cheon

A50 16.28 7.92
A9 6.76 6.35 A51§ 76.64 14.6
A10 9.94 10.16 A52 7.08 3.68
A11 11.97 8.23 A53 20.1 9.64
A12 12.31 5.07 A54 15.48 12.04
A13§ 68.93 16.11 A55 8.02 6.92
A14 5.97 4.75 A56 15.01 9.9
A15 N/Ab N/A A57 5.75 4
A16† 82.84 24.98 A58 11.45 6.73
A17‡ 68.93 16.11 A59‡ 76.64 14.6
A18 11.45 50.89

Tributary areas in the 
Yeongam-cheon

A60§ 264.08 25.26
A19§ 25.05 11.27 A61 5.74 8.53
A20‡ 25.05 11.27 A62 9.45 8.45

Midstream areas in 
the mainstream

A21 33.76 13.31 A63 10.14 9
A22§ 14.37 8 A64 27.68 9.94
A23 7.07 4.49 A65 91.47 19.48
A24 8.84 6.3

Yeongsan Reservoir
A66 40.27 19

A25‡ 14.37 8 A67 37.79 23.1
A26 6.92 7.83

Tributary areas in the 
Hwangnyong-gang

A68 76.96 19.02
A27 2.76 3.88 A69 116.03 26.15
A28 41.36 19.15 A70§ 22.23 8.93
A29 35.34 12.4 A71 37.9 9.96
A30 102.53 17.51 A72 17.08 10.83
A31 53.45 14.2 A73 8.11 4.48
A32 10.25 7.57 A74† 116.48 30.56
A33 40.78 24.32 A75‡ 116.48 30.56
A34 19.48 6.45 A76‡ 22.23 8.93

Downstream areas 
in the mainstream

A35§ 85.89 14.89

Tributary areas in the 
Jiseok-cheon

A77§ 141.36 19
A36 25.89 11.73 A78 126.24 28.64
A37 18.47 8.74 A79 22.26 12.62
A38 27.28 10.6 A80 122.11 31.22
A39‡ 85.89 14.89 A81 34.02 21.3
A40 3.51 4.11 A82 22.58 9.4
A41 8.03 6.42 A83‡ 141.36 19
A42 16.46 7.72

aUnderlined, bold, and italic texts indicate the monitoring stations in the mainstream, secondary tributaries, and drainage channel, respec-
tively. Also, shown as symbols §, †, and ‡ in superscript are the upstream, midstream, and downstream sites along each section, respectively.
bN/A represents values that are not available from the source [19].
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network appeared to comprehensively cover most of the 
geographic areas of the YS River, except for a few large dams 
located in the upstream and midstream areas (see Fig. 1).

2.2. Experimental analyses

Monthly water sampling was carried out at all monitor-
ing sites from January 2013 to December 2015 [19,20]. The 
water quality parameters measured directly in the field 
using multiple probes included water temperature (Temp), 
dissolved oxygen (DO), pH, and electrical conductivity (EC). 
Laboratory analyses of collected water samples were done 
for biochemical oxygen demand (BOD), chemical oxygen 
demand (COD), total organic carbon (TOC), total nitrogen 
(TN), total phosphorus (TP), suspended solids (SS), and 
chlorophyll-a (Chl). Note that water samples, kept at 4°C 
on in a cooling box as soon as after taken, are delivered to 
the laboratory, in which water quality testing is conducted 
based on official test methods of water pollution enacted by 
the Korean Ministry of Environment. The river discharge 
(Discharge) in the mainstream and tributary channels was 
derived directly from the velocity-area method (which was 
estimated from the measured velocity in discrete segments 
and verticals across the channel). However, the water bal-
ance approach (which was computed from precipitation 
and evapotranspiration, in addition to other fluxes of water) 
was adopted in cases direct measurements of the stream 
velocity along the cross-sectional area were extremely dif-
ficult or impossible. Table 2 shows descriptive statistics of 
12 monitoring parameters in the mainstream and tributaries 
observed during the 3 years. Among monitored parameters, 
the variables Discharge (CV = 2.38), SS (CV = 1.69), and Chl 
(CV = 1.56) was found to be most changeable across the YS 
river and the parameters pH (CV = 0.06), DO (CV = 0.30), and 
Temp (CV = 0.53) was the least changeable.

2.3. Input data sets

The input data set submitted to SOM was initially 
constructed from all observations on the mainstream and 

tributaries (n = 2,419, see Table 2), which was used as a ref-
erence input. Three additional data sets were also prepared 
by modifying the reference data set. For instance, a specific 
amount of data records (i.e., rows) at single and multiple 
variables (i.e., columns) corresponding to 5% to 30% of the 
entire data set was replaced with null values, hereinafter 
referred to as group 1. The second extra data set was devel-
oped by intentionally removing some variables from the ref-
erence data set, hereinafter referred to as group 2. Similar to 
group 1, 10% of data loss occurred in the data set composed 
of a single variable based on its pollution levels such as low, 
moderate, and high pollutant concentrations, hereinafter 
referred to as group 3. A comparison was then made between 
the returned results of the reference and three modified data 
sets using SOM.

2.4. Self-organizing map

We adopted a popular algorithm SOM, which provided 
new insights into complex data sets, to examine its ability to 
detect water pollution hotspots, including changes in water 
quality and quantity profiles, from both reference and mod-
ified data sets. SOM was specifically selected for this study 
among various classification and clustering algorithms 
because it was highly resistant to poor data quality (e.g., 
heterogeneity, outliers, noise, missing data, etc) [10–18]. 
This implies that SOM still maintains superior performance 
in characterizing spatial and temporal patterns in the data 
set of poor quality. SOM also had a notable advantage that 
it returned a low-dimensional view of informative vectors 
(i.e., weight or codebook vectors), which were extracted from 
heterogeneous data set with large input variables (i.e., high 
dimensions) [10–12]. Those reduced vectors were then visu-
alized in a figure with multiple subplots (named as com-
ponent planes) so that the end-users readily described the 
relationship among variables as well as addressed areas of 
interest such as water pollution hotspots in our case. Before 
executing the SOM algorithm, the four input data sets were 
rescaled between 0 and 1 in terms of individual variables 

Table 2
Summary statistics for major monitoring parameters recorded during 36 months (i.e., January 2013 to December 2015) in the 
mainstream and tributaries of the Yeongsan River, Korea (n = 2,419)

Parameters Units Mean SD CV

1 Water temperature (Temp) °C 15.07 7.96 0.53
2 Dissolved oxygen (DO) mg/L 10.23 3.03 0.30
3 pH – 7.36 0.47 0.06
4 Electrical conductivity (EC) μm hos/cm 282.68 212.37 0.75
5 Biochemical oxygen demand (BOD) mg/L 2.97 2.94 0.99
6 Chemical oxygen demand (COD) mg/L 6.31 4.86 0.77
7 Total organic carbon (TOC) mg/L 4.44 3.17 0.71
8 Total nitrogen (TN) mg/L 3.42 3.53 1.03
9 Total phosphorus (TP) mg/L 0.15 0.21 1.36
10 Suspended solids (SS) mg/L 18.37 31.00 1.69
11 Chlorophyll a (Chl) mg/m3 10.44 16.28 1.56
12 River discharge (Discharge) m3/s 0.83 1.97 2.38

SD = Standard deviation and CV = coefficient of variation.



131Z. Kim et al. / Desalination and Water Treatment 182 (2020) 127–134

using the embedded normalization method of range [20]. 
The algorithm was identically run with the transformed 
data sets in a combination of linear initialization and batch 
training modes. Note that the map size of SOM returned 
from three variant data sets is designed to always match 
that of the reference data set to provide a consistent view 
on the variation of spatial and temporal data profiles. More 
extended capabilities, as well as an in-depth review of SOM, 
are available elsewhere [10–18,20].

3. Results

3.1. Effect of data loss for single and multiple variables

Fig. 2 shows the influence of missing values of one and 
multiple parameters on the average values of the entire 
data set, which are assigned by SOM. Note that random 
data loss ranging from 5% to 30% was intentionally made 
in the modified data set of group 1, specifically for single 
variable (i.e., (a) pH, (b) TN, and (c) Discharge) as well as 
(d) multiple variables such as pH and TN (i.e. a plus b). In 
the figures, blue and red colors indicate the relative change 
of the mean values of individual variables as a percentage 
in the positive and negative directions, respectively. In con-
trast, the size of a circle signifies the absolute change of 
their mean values, regardless of their directions. In other 
words, a large red circle implies the mean value in the 

modified data set was much bigger than that of the original 
data set. It was generally expected that variables with lots 
of missing data, once provided to SOM, produced larger 
changes in the mean values of all observed variables in the 
entire data set than those with fewer missing data. This is 
particularly true for pH which elevates the mean values in 
other variables in both directions such as BOD, Chl, and 
Discharge (Fig. 2a) as well as for Discharge which only 
increases its average value itself (Fig. 2c). More importantly, 
the two variables (i.e., pH and Discharge) led to significant 
changes of the assigned values (of individual neurons in the 
given map size), including their average values, for other 
variables when a proportion of missing data went beyond 
15% (Figs. 2a and c). However, neither were all variables 
sensitive to data loss occurred in the two variables, nor did 
a missing rate of 10% or less affect the average values of 
all monitored parameters considerably. Interestingly, data 
loss in the parameter TN altered the produced values of 
all variables in SOM to a lesser extent, irrespective of its 
missing rates (Fig. 2b). Similar results were also observed 
with the data sets which contained 5% of missing data for 
multiple variables (Fig. 2d). Note that only the data set with 
missing values in completely different samples rather than 
in identical samples for more than three variables causes 
noticeable change to the assigned values for a certain 
parameter such as Discharge. Collectively, data loss taken 
place in either single or multiple variables might modify 

Fig. 2. Changes in the average value of individual variables when the original and modified data sets (namely, group 1) are provided 
to SOM. The group 1 data sets are prepared by increasing the number of missing values (from –5% to –30%) for a single variable 
such as (a) pH, (b) TN, and (c) discharge as well as (d) for multiple variables (i.e., 5% data loss for each variable) in the original data 
set. Note: in Fig. 2d, lowercase letters a, b, and c indicate the variables pH, TN, and discharge, respectively. Also, shown in plain and 
underlined texts are that missing values occur at the same and completely different samples (i.e., rows) in the modified data sets, 
respectively.
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the allocated values of all tested variables, but produced a 
minimal change in the presence of a missing rate of 10% or 
less, regardless of variables.

3.2. Effect of data loss for variables

The screening accuracy of water pollution hotspots in 
SOM was also assessed in response to the number of avail-
able variables (Fig. 3). In Fig. 3a, the vertical axis on the left 
indicates the number of water pollution hotspots addressed 
by SOM based on the modified data sets of group 2 that 
either exclude a single variable rotationally from the origi-
nal data set (see blue dotted line) or include only a few vari-
ables (see black dotted line). On the other hand, the vertical 
axis on the right represents quantification error observed 
with equivalent data sets (see red dots). The exact locations 
selected as water pollution hotspots from the corresponding 
data sets are also displayed in Fig. 3b. Note that those loca-
tions only show spatial information rather than sampling 

time when water pollution mainly occurs. As can be seen 
in Fig. 3a, the number of water pollution hotspots fluctu-
ates between 28 and 48 in the absence of a particular vari-
able from the original data set as well as in the presence of 
one or a couple of variables only in the modified data sets. 
However, some excluded variables such as EC, TOC, SS, 
and Discharge still maintained a similar number of pollu-
tion hotspots, as compared to the original data set (i.e., raw 
data). Out of the four variables, only the variables SS and 
Discharge appeared to correctly address pollution hotspots 
with respect to spatial location (Fig. 3b, compare the total 
number of samples as well as the locations addressed from 
each data set). Quantification error which measured the 
quality of the map in SOM in terms of the distortion (i.e., 
the Euclidian distance) between input and weight vectors 
decreased with the decrease in the number of variables, 
specifically becoming the lowest in the data sets with few 
variables (Fig. 3a). All these results implied that provid-
ing all monitored parameters simply as input to SOM did 

Fig. 3. Changes in water pollution hotspots in terms of COD when the original and modified data sets (namely, group 2) are provided 
to SOM: the effects of (a) excluded and included variables on the total number of pollution hotspots and quantification error and 
(b) on individual hotspot locations. The group 2 data sets are prepared not only by rotationally eliminating one variable at a time from 
the original data set (see excluded variables in Fig. 3a), but also by involving a couple of variables (see included variables in Fig. 3a).
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not improve the screening performance of water pollution 
hotspots. Rather, they reduced the quality of the map as well 
as did not help classify water quality and quantity character-
istics properly.

3.3. Effect of data loss in different pollution levels

Fig. 4 illustrates the screening performance of water pol-
lution hotspots in SOM between the original and modified 
data sets (i.e., group 3). Note that only one single variable 
COD (labeled as raw data in Fig. 4a) is included in these 
modified data sets, from which intentional data loss reach-
ing 10% occurs separately according to the level of water 
pollution (labeled as low, moderate, and high levels in Fig. 
4a). Also, shown in Fig. 4a and b are component planes that 
visualize the variation of COD concentrations and exact 
locations of water pollution hotspots according to the data 
sets with and without data loss, respectively. It was shown 
in Fig. 4a that spatial and temporal patterns of COD in the 
original data set appeared to be quite similar to those of the 

modified data set with missing values only in high pollution 
level (compare the areas of concern exhibiting high COD 
concentrations at both component planes). However, those 
areas of concern in the original data set slightly shifted right-
wards and completely moved to other locations in the modi-
fied data sets that contained 10% null values in moderate and 
low pollution levels, respectively. Missing values in data also 
decreased the number of water pollution hotspots, as com-
pared to that of the original data set (n = 40). The reduction in 
the number of pollution hotspots screened was more appar-
ent in the data set with missing records in high pollution lev-
els (n = 31) than those of other levels (n = 34). Only the station 
where water pollution happened more frequently (i.e., A8) 
appeared to be correctly addressed by SOM, in the presence 
of 10% data loss at any pollution levels. This result was par-
ticularly consistent with the screening results with variable 
availability, as described in the previous section 3.2. Overall, 
10% of data loss made in different pollution levels did not 
alter the screening accuracy of water pollution hotspots in 
SOM considerably. However, this is only true and valid for 

Fig. 4. Changes in water pollution hotspots in terms of COD when the original and modified data sets (namely, group 3) are provided 
to SOM: (a) component plane of COD and (b) individual hotspot locations. The group 3 data sets are prepared by removing a given 
amount of records randomly in different concentration levels of COD (i.e., 10% data loss of high, moderate, and low pollution sam-
ples) from the original data set.
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stations with more frequent pollution records than less fre-
quent pollution events.

4. Conclusion

This study aims to quantify the relative contribution of 
missing data to the screening performance of water pollu-
tion hotspots using a popular tool SOM in terms of dimen-
sion reduction and data visualization. The input data set was 
compiled from monthly water quality and quantity records 
for 3 years at the YS River in Korea. Three variant data sets 
were also derived from the reference input through the 
intentional deletion of variables as well as a certain amount 
of records in single and multiple variables, including those 
in a fixed variable according to different pollution levels. By 
running SOM multiple times with four different data sets, 
we arrived at the following conclusions.

• An increase in the number of missing data records in a 
single variable resulted in drastic changes in the weight 
vectors of some variables, specifically when data loss 
reached over 15%. Almost similar results appeared in 
the data sets with 15% data loss, made in different rows 
rather than in identical rows, for multiple variables.

• Removing one or a couple of variables, except for SS 
and Discharge, from the reference data set returned 
heterogeneous results in terms of the number of water 
pollution hotspots and their spatial location. SOM suc-
cessfully captured only pollution hotspots with chronic 
contamination, regardless of the number of monitored 
variables retained in the data sets.

• The presence of null values imposed on different pol-
lution levels (i.e., low, moderate, and high pollutant 
concentrations) in a fixed variable as high as 10% slightly 
modified the spatial and temporal patterns of water 
quality and quantity, as compared to the data set with-
out data loss. The screening performance of water pol-
lution hotspots was maintained solely for stations with 
more frequent pollution events, which coincided with 
the results derived from the absence of variables in the 
reference data set.

In summary, SOM adopting the non-linear projection 
seemed to more tolerant of variable availability than data loss 
in the data set. Therefore without proper integration with the 
imputation methods, the universal use of SOM as a predic-
tion tool is not warranted, specifically when missing records 
exceed more than 15% of the entire data set.
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