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a b s t r a c t
This study investigates the influence of various parameters on the performance of electro-Fenton 
process for degradation of diazinon. Two dimensionally stable stainless steel electrodes were used 
for the sake of feasibility. Optimal conditions of current intensity (I), pH, Fe2+ amount, and initial dia-
zinon concentration were deeply studied. Complete removal of diazinon was reached after 60 min of 
reaction at initial concentration of 2.5 mg/L. The favored current intensity was 300 mA using 20 mg/L 
of Fe2+. The kinetics of diazinon degradation was described by pseudo-first order pattern. In addition, 
an artificial neural network (ANN) model was developed to describe the relation between the oper-
ational parameters and diazinon degradation. The findings indicated that ANN provides reasonable 
predictive performance (R2 = 0.994) accounting for training, validation, and test. A pure quadratic 
model was also developed, and implied correlation of (R2 = 0.896) regarding the total variation of the 
diazinon degradation.
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1. Introduction

The growth of agro-chemical and pesticides industry has 
heightened the concern about the bio-recalcitrant contami-
nants in industrial and municipal wastewaters [1]. Industrial 
contaminants such as dyes, pharmaceuticals, pesticides and 
phenolic compounds may badly affect the aquatic, environ-
mental systems, and public health because of their toxic and 
carcinogenic nature [2].

Moreover, the toxicity and non-digestibility of these 
compounds restrict the treatment by conventional biolog-
ical methods [3]. At the present time, the development of 
advanced chemical-based technologies for wastewater 
treatment is of extreme concern for both environmental 
professionals and industry stakeholders [4]. In this context, 
many researchers have decided to study the feasibility of 

advanced oxidation processes (AOPs) for removal of bio- 
recalcitrant organics from water [5–7]. 

AOPs depend on the generation of hydroxyl radicals 
which are able to degrade persistent organic molecules 
until their mineralization. These radicals can be generated 
by physical, chemical, photo-chemical or electro-chemical 
methods [8]. Fenton reaction–based processes are effective 
and feasible treatment methods because of their fast reac-
tion rates and the limited toxicity of Fenton reagents [9]. 
However, the classic Fenton reaction needs the addition of 
external H2O2, which is a powerful reactive oxidant and is 
dangerous to transfer and handle [10]. In addition, the con-
ventional Fenton process produces large volume of iron 
sludge which needs further treatment and disposal [11]. 
Recently, many processes have been developed from classic 
Fenton reaction such as photo-Fenton, electro-Fenton, and 
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Fenton-like reaction to overcome the drawbacks associated 
with the classic Fenton reaction [12,13]. Among these pro-
cesses, electro-Fenton is considered a practical Fenton-based 
method, which depends on continual yielding of hydroxyl 
radicals by electro-produced H2O2 [14,15]. 

In electro-Fenton method, hydroxyl radicals are electro- 
catalytically produced in acidic solutions containing ade-
quate amount of dissolved oxygen and ferrous ions [16]. The 
negative potential near the negative electrode surface leads 
to the reduction of dissolved oxygen to produce hydrogen 
peroxide [17]. The added ferrous ion reacts with the gener-
ated hydrogen peroxide to produce hydroxyl radicals and 
ferric ions which is considered a Fenton reaction. The formed 
ferric ions are reduced back to ferrous ions near the cathode 
surface [16,18]. Meanwhile, water is oxidized on the anode 
surface to generate more dissolved oxygen in the solution. 
This cycle provides continual production of hydroxyl rad-
icals with less sludge amount during the electro-oxidation 
reaction [19]. The produced hydroxyl radicals are very 
strong reactive species which can be used to oxidize resistant 
and hazardous organics like pesticides and phenols [20]. 

The electro-Fenton process is typically influenced by 
several operational factors, viz., pH, initial contaminant 
con centration, Fe2+ dose, current intensity, etc. The effects 
of these variables on the degradation efficiency of contam-
inants can be described by regression analysis. Response 
surface methodology (RSM) is a multivariate method used 
to evolve correlations between a number of inputs and a 
response of interest through fitting a polynomial equation 
to the experimental data [21]. RSM develops a group of 
statistical and mathematical techniques that can be used to 
describe, optimize, and improve the system performance 
[22]. Artificial intelligence including an artificial neural net-
work (ANN) is another technique that can be performed to 
determine the performance of electro-Fenton oxidation pro-
cess. ANN is composed of a group of highly interconnected 
processing units (known as neurons) that work in parallel to 
model complex problems [23]. ANN has the ability to cap-
ture non-linear relationships by linking input variables with 
each other and with the output values [24]. The ANN model 
predicts the best possible response by accomplishing three 
steps of training, validation, and test [25]. To the best of our 
knowledge, there is a lack of information about the applica-
tion of ANN modeling to estimate pesticides removal using 
electro-Fenton oxidation process.

The main objective of this work is to assess the feasibil-
ity of utilizing electro-Fenton process for treatment of pesti-
cides contaminated wastewater. Electro-Fenton was applied 
on water contaminated by a pesticide, namely diazinon as a 
substrate. ANN was used for modeling the influence of oper-
ational conditions such as reaction time, initial concentration, 
current intensity (I), Fe2+ dose, and pH on the performance of 
diazinon degradation.

2. Materials and methods

2.1. Experimental

2.1.1. Materials

Diazinon (chemical formula in Fig. 1) was purchased 
from Merck, Germany. Acetonitrile and FeSO4∙7H2O were 

purchased from Acros, Germany. All obtained chemicals 
were of analytical grade and used without additional treat-
ment. HCl solution was added to contaminated water to 
adjust it to the desired pH.

2.1.2. Experimental procedure

Experimental work was carried out at room temperature 
(25°C ± 3°C) with an unseparated 1,000 mL cylinder contain-
ing 650 mL of diazinon aqueous solution. Two stainless steel 
electrodes (5 cm × 5 cm × 0.5 cm) fixed vertically in the bot-
tom of the vessel get uniform potential distribution. An air 
compressor was supplied to induce air bubbles in the water 
before and during the reaction. The purpose of air bubbles 
is to increase the dissolved oxygen which has a vital role in 
H2O2 formation. The pH was adjusted by drops of diluted 
HCl and a certain amount of FeSO4∙7h2O solution was added 
under vigorous mixing using a magnetic stirrer. A galva-
no-static DC power supply was connected to the electrodes 
to provide and control the electrical current. A voltmeter 
(Digital Voltmeter [G-1002-500]), and an ammeter (PHYWE, 
Model No: 07038) were used to measure potential and 
current intensity (I), respectively.

2.1.3. Analytical methods

Diazinon was quantified by HPLC (Agilent 1200, USA) 
and total organic carbon (TOC) was measured by TOC ana-
lyzer (Analytik Jena, multi N/C 2100, Germany). Samples 
were taken periodically during the reaction and filtered by 
0.2-μm syringe filters. A volume of 25 μL from each sample 
was injected by auto-sampler into a C18 column with a flow 
rate of 1.2 mL min–1. The mobile phase was a mixture of 70% 
acetonitrile and 30% distilled water. The detection wave-
length for diazinon was 254 nm. 

2.2. Design of an ANN

2.2.1. Regression analysis

A pure-quadratic model (Eq. (1)) was developed to pre-
dict the degradation performance of diazinon using the 
input variables of pH, initial pesticide concentration, Fe2+ 
dose, current intensity, and reaction time. This model con-
tains constant, linear, and squared terms [26]. The values of 
the model coefficients were computed by the method of least 
squares through minimizing the summed square of residuals 
[27]. The coefficient of determination (R2-value) and adjusted 
R2-value were used to express the model predictive accuracy. 
A statistics t-test was performed to determine the variables 
that significantly influence the diazinon removal. All cal-
culations were carried out by computer program MATLAB 
R2015b.

Fig. 1. Chemical structure of diazinon.
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where Y is the predicted diazinon removal efficiency (%), β0 
is the model intercept, βi is the linear effect term, βii is the 
quadratic effect term, and xi is the value of each indepen-
dent variable; that is, pH (3–7), initial pesticide concentra-
tion (25–200 mg/L), Fe2+ dose (5–30 mg/L), current intensity 
(100–400 mA), and reaction time (10–120 min).

2.2.2. Neural network structure

An ANN model is used to predict the removal efficiency 
of diazinon. It is composed of an input layer, one hidden 
layer, and an output layer. The input layer had five neu-
rons that received records from five experimental factors, 
viz., pH, initial pesticide concentration, Fe2+ dose, current 
intensity, and reaction time. The hidden and output layers 
contained eight and one neurons, respectively. Hence, the 
network architecture was expressed as 5–8–1 (Fig. 2). The 
transfer function in the hidden layer was hyperbolic tangent 
sigmoid “tansig” (Eq. (2)), which squashes the output values 
between –1 and +1. The pure linear “purlin” transfer function 
was selected in the output layer for function fitting, which 
gives outputs in the range of –∞ to +∞ (Eq. (3)). A trial-and- 
error method was used to determine the optimum numbers 
of hidden layers and neurons [28]. 
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+
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f u u f u( ) = − ∞ < ( ) < +∞  (3)

where u is the neuron’s net input.

2.2.3. Data classification

The collected data were randomly divided into three sets 
[25]; that is, 60% for a training set, which is used to adjust 
the weights and biases of network through minimizing the 
mean squared error (MSE); 20% for a validation set, that is, 
used to terminate training before overfitting; and 20% for 
testing the generalization and usability of the ANN model.

2.2.4. ANN properties

This study developed a feedforward neural network 
with a backpropagation algorithm to train the ANN model. 
In this method, the training attributes are applied to the input 
layer using random initial weights, in which their effects are 
propagated through the network until an output is generated 
[24]. The response of the network is then compared with the 
target output to compute an error function, namely the net-
work performance indicator. The error signal is transmitted 
backwards from the output layer to each node in the hid-
den layer, and the feedback algorithm adjusts (increases or 
decreases) the weights by some proportion to the error [23]. 
This process is then repeated until the corrected weights are 
obtained, where each node in the network receives an error 
signal that represents its contribution to the overall error 
[24]. At this point, the error function in weight space records 

Fig. 2. Artificial neural network architecture composed of five input nodes, eight hidden nodes and one output node; that is, 5–8–1.
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a minimum value corresponding to an adequate error level. 
In this study, Levenberg–Marquardt (trainlm) was selected as 
a training algorithm to update the weight values.

3. Results and discussion

3.1. Influence of initial diazinon concentration

The amount of degraded diazinon was strongly depen-
dent on initial concentration as depicted in Fig. 3. The 
experimental results revealed that higher initial concentra-
tion of diazinon reduces the degradation rate, and hence 
additional reacting time is required for maximum diazinon 
removal. The removal ratios of diazinon at initial concentra-
tions of 20, 10, and 5 mg/L were 76%, 87%, and 97%, respec-
tively, after 90 min of reaction. At initial concentration of 
2.5 mg/L, complete removal of diazinon was achieved after 
only 60 min of reaction. These results may be explicated by 
the abundance of diazinon molecules in high concentrated 
solutions that may require additional hydroxyl radicals 
to be degraded into primary and secondary by-products 
[20]. Moreover, hydroxyl radicals may be consumed before 
complete degradation of diazinon with high initial con-
centration, and hence additional Fenton reagent and reac-
tion time may be required to generate sufficient amount of 
hydroxyl radicals [29]. 

The observed trend of TOC removal was different of that 
of diazinon as depicted in Fig. 4. The rate of TOC removal 
was almost time uniform and lower than diazinon degrada-
tion rate. In addition, the final removal was incomplete and 
less than the removal of diazinon. A TOC reduction by 62% 
was observed after 120 min of reaction. At the same time, 
the removal of diazinon was 88%, which can be attributed 
to formation of primary and secondary oxidation by-prod-
ucts during the degradation reactions [30]. Degradation 
of diazinon was reported to produce 2-isopropyl-6-meth-
yl-pyrimidin-4-ol (IMP), which considered an outcome of 
the breakage of the P–O (pyrimi-dine group) bond [1]. IMP 
was reported to be a benign organic compound as compared 
with its origin compound diazinon [31]. Traces of diethyl 
2-isopropyl-6-methylpyrimidin-4-yl phosphate (diazoxon) 
may be also generated during the oxidation of diazinon 
which causes higher levels of TOC during the reaction [1]. 

Moreover, additional hydroxyl radicals may be required to 
attain complete mineralization of the by-products, and hence 
the removal of TOC is slower than diazinon [32].

3.2. Influence of current intensity

Different current intensities (100–400 mA) were applied 
under the same operational conditions as depicted in Fig. 5. 
Using a current intensity of 100 and 200 mA attained a deg-
radation efficiency of 69% and 87%, respectively, after a reac-
tion time of 90 min. Using current of 300 mA improved the 
degradation of diazinon to 96.5% in 90 min and 99.5% after 
120 min. At 400 mA, the diazinon degradation was accel-
erated at early stages of reaction, but the final degradation 
efficiency was not improved significantly. Consequently, 
300 mA is considered the favored current intensity in this 
work. This finding can be demonstrated on the basis that 
the applied current is the engine for oxygen reduction which 
leads to the formation of hydrogen peroxide near the cath-
ode surface [9]. Accordingly, increasing current intensity 
improves the generation of H2O2, and hence, Fenton reaction 
activity is enhanced [32].

Fig. 3. Effect of initial diazinon concentration. pH = 3.0, 
I = 300 mA, Fe2+ dose = 20 mg/L.

Fig. 5. Effect of current intensity. Initial diazinon concentra-
tion = 5 mg/L, pH = 3.0, Fe2+ dose = 20 mg/L.

Fig. 4. Removal of TOC. Initial diazinon concentration = 10 mg/L, 
pH= 3.0, I = 300 mA, Fe2+ dose = 20 mg/L.
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3.3. Influence of pH

The degradation efficiency of diazinon under different 
pH is shown in Fig. 6. The results revealed that electro-Fen-
ton process is preferable at pH ≈ 3. Increasing the pH from 
3.0 to 5.0 reduced the diazinon removal rate, and hence 
the removal of diazinon decreased from 98% to 79% after 
120 min of reaction. At neutral condition (pH ≈ 7.0), the 
removal rate of diazinon significantly diminished and the 
degradation was limited to 46% after 120 min of reaction. 
Similar behavior was reported for degradation of various 
bio-recalcitrant organic contaminants by electro-Fenton or 
other Fenton-based methods [12,33,34]. This finding can 
be explained on the fact that ferric hydroxide may be sig-
nificantly produced and precipitated at pH higher than 
5.0, which consumes iron species before involvement in 
Fenton reaction [35]. Moreover, H2O2 is not stable at high 
pH mediums and rapidly decomposes to O2 and H2O [9], 
while lower pH is favored for the production and stability of 
H2O2 [32]. On the other hand, at pH less than 3.0 hydrogen 
generation may be enhanced, and hence the active area for 
production of H2O2 is reduced [9,36]. 

3.4. Effect of Fe2+ dose

Fe2+ dose significantly influenced the degradation effi-
ciency of diazinon as shown in Fig. 7. Using Fe2+ dose of 5 
and 10 mg/L attained degradation of diazinon by 62% and 
80%, respectively, after 120 min of reaction. Increasing the 
Fe2+ dose to 20 mg/L achieved diazinon degradation of 99%. 
Increasing iron amount to 30 mg/L led to enhance of degra-
dation rates at early stages but the difference in final degra-
dation efficiency after 120 min was not significant. Therefore, 
the favored Fe2+ dose is considered 20 mg/L. Similar trends 
were also reported by other researchers who investigated 
the degradation of bio-recalcitrant organic pollutants by 
electro-Fenton process [9,14,18]. The limited degradation 
at lower Fe2+ doses may be attributed to the slight forma-
tion of hydroxyl radicals due to scanty Fe2+ in Fenton reac-
tion. Moreover, parasitic reactions may take place at over 
required Fe2+ doses, and consume hydroxyl radicals before 
the complete degradation of pollutants is attained [35].

3.5. Degradation kinetics

In order to evaluate the kinetics of diazinon degradation, 
the equation of pseudo-first order pattern was used. The rela-
tion between rate of degradation (r) and the concentration of 
diazinon (C) during the reaction time (t) are fitted to pseu-
do-first order kinetic equation [37].

r dC
dt

K C= − = obs  (4)

where kobs is the constant of degradation rate. Eq. (4) can be 
integrated to Eq. (5) for simplification [37]:

ln
C
C

K t0







 = obs  (5)

where C0 is the initial concentration of diazinon. The exper-
imental results of electro-Fenton process at different initial 
concentrations were fitted to Eq. (5). Fig. 8 depicts the lin-
ear relevance of ln(C0/C) and reaction time at the optimum 
operational conditions. kobs and R2 were calculated for each 
case and presented in Table 1. The results showed that deg-
radation of diazinon followed pseudo-first order model 
with reasonable correlation at different initial concentrations.

3.6. Statistical regression model

As listed in Table 2, a significant (p < 0.05) adverse effect 
was noticed for the linear term of x2, indicating that the 
removal of diazinon could be dropped with an increase in 
initial concentration. Additionally, the independent variables 
of x3, x4, and x5 had significant (p < 0.05) and positive linear 
effects on the model output. This result indicated that the 
degradation efficiency of diazinon could be improved with 
an increase in each of Fe2+ dose, current intensity, and reac-
tion time. The beta coefficient associated with the quadratic 
term of x2 was positive (p < 0.05), suggesting that the relation-
ship between diazinon removal and initial pesticide concen-
tration resulted in a convex curve. The squared terms of x3, 
x4, and x5 were negative and statistically significant (p < 0.05), 

Fig. 6. Effect of pH. Initial diazinon concentration = 5 mg/L, 
I = 30 mA, Fe2+ dose = 20 mg/L.

Fig. 7. Effect of Fe2+ dose. Initial diazinon concentration = 5 mg/L, 
pH = 3.0, I = 300 mA.
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indicating that the plots of diazinon removal against each of 
Fe2+ dose, current intensity, and reaction time were concave 
curves. However, non-significant effects (p > 0.05) were found 
for both the linear and quadratic terms of x1: pH. Based on the 
aforementioned results, the effect of x2 was quadratic linear 
convex down, while that for each of x3, x4, and x5 was qua-
dratic linear concave up.

The coefficient of determination (R2-value) for the pure- 
quadratic model was 0.896, which implied that the model 
explained 89.6% of the total variation in the diazinon removal. 
Since the adjusted R2-value of 0.889 was in good agreement 
with (close to) the R2-value; the variables and observations of 

Fig. 8. Degradation kinetics of different initial diazinon concentration. pH = 3.0, I = 300 mA, Fe2+ dose = 20 mg/L.

Table 1
Reaction kinetics at different initial concentrations

Initial diazinon 
concentration (mg/L)

Kapp Standard 
error

R2

20 0.01664 0.00104 0.96203
10 0.02376 0.00191 0.93922
5 0.04024 0.00132 0.98928
2.5 0.10043 0.00568 0.97801

Table 2
Diagnostic statistics representing t-test and p-values for coefficients of the pure-quadratic regression model

Variable Regression coefficient Std error t Ratio p-value Effecta

β0: –38.8836 20.4239 –1.9038 0.0590 Non-significant
x1 β1: –1.4308 8.7665 –0.1632 0.8706 Non-significant
x2 β2: –0.4150 0.1219 –3.4039 0.0009 Significant
x3 β3: 3.5765 0.6006 5.9545 0.0000 Significant
x4 β4: 0.2535 0.0638 3.9743 0.0001 Significant
x5 β5: 1.7422 0.0762 22.8539 0.0000 Significant
(x1)2 β11: –0.9433 0.9030 –1.0446 0.2980 Non-significant
(x2)2 β22: 0.0011 0.0005 2.1219 0.0356 Significant
(x3)2 β33: –0.0635 0.0174 –3.6482 0.0004 Significant
(x4)2 β44: –0.0003 0.0001 –2.2685 0.0248 Significant
(x5)2 β55: –0.0100 0.0006 –16.0295 0.0000 Significant

aSignificances of variables were corrected based on p-values less than 0.05. x1 is pH (3–7), x2 is initial pesticide concentration (2.5–20 mg/L), 
x3 is Fe2+ dose (5–30 mg/L), x4 is current intensity (100–400 mA), and x5 is reaction time (10–120 min).
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the model were meaningful, and the problem of overfitting 
could be diminished [38].

The pure-quadratic model was used to develop an RSM 
that visualizes the interactive effects of independent inputs 
on the response. The RSM plots a 95% simultaneous con-
fidence interval for the fitted response surface. The plot in 
Fig. 9 shows a contour of RSM for diazinon removal effi-
ciency vs. the input factors of pH (3–7), initial pesticide 
concentration (2.5–20 mg/L), Fe2+ dose (5–30 mg/L), current 
intensity (100–400 mA), and reaction time (10–120 min). 
The obtained RSM can be employed to compute the diaz-
inon removal efficiency at particular inputs. For instance 
(Fig. 9), at pH: 5, initial pesticide concentration: 5 mg/L, 
Fe2+ dose: 20 mg/L, current intensity: 300 mA, and reaction 
time: 60 min, the predicted diazinon removal efficiency was 
76.42%. This value was close to the actual removal of 75% 
(R2: 89.6%).

3.7. Artificial neural network

3.7.1. Training and validation performances

The plot in Fig. 10a displays the MSE performance of 
training, validation, and test sets against the iteration num-
ber. During training, the MSE gradually decreased along 
the epoch numbers until epoch 7. This pattern was satisfac-
tory for the network training, since the purpose of training 
is to minimize MSE in as few epochs as possible [25]. The 
MSE of the validation set was monitored during the train-
ing process, in which it decreased until epoch number 1, 
and then initiated to increase. Hence, the iteration process 
was stopped at epoch 1 (i.e., MSE = 3.2742) when the MSE of 
the validation set begins to rise. This early stopping (even if 
the MSE of the training set continues to decrease) is under-
taken to avoid the problem of overfitting on training data. 
The validation and test curves increased simultaneously 
after epoch 1 indicating that the training activity was dis-
continued before overfitting. In the case of overfitting, the 
training process tends to generate excess parameters that 
make the model more complex [26]. At this point, the model 

loses its generalization power resulting in reduced perfor-
mance when introducing new inputs.

Fig. 10b depicts the progress of training variables con-
cerning the magnitude of the gradient of performance and 
the number of validation checks. The training step is termi-
nated if the minimum performance gradient reaches 1e-5 
or if maximum validation failure becomes 6, whichever 
occurs first. In this study, the magnitude of the gradient 
(i.e., 21.751) was higher than the least error level of 1e-5, and 
hence the training step was stopped because the validation 
error failed to decrease for six iterations.

3.7.2. Optimum weights and biases

During the training phase, the weights and biases are 
adjusted until the network output matches the target [25]. 
The process of training is undertaken using a back-propa-
gation algorithm that involves gradient descent method. 
Table 3 lists the connection weights (W8 × 5 and W1 × 8) and the 
threshold levels (b8 × 1 and b1 × 1) that provided the minimum 
performance function expressed as MSE on the validation 
set. These network parameters can be defined as follows:

Each element of the 5-length input vector (P5 × 1) was con-
nected to each neuron in the 8-length hidden layer through 
8 × 5 weight matrix (W8 × 5). The input vector was first mul-
tiplied with the weights of the connections and summed 
up linearly (ΣW8 × 5∙P5 × 1), and then 8-length bias (b8 × 1) was 
added; that is, u8 × 1 = ΣW8 × 5∙P5 × 1 + b8 × 1. The formed new 
input was transformed to the hidden layer through “tansig” 
activation function; that is, f(u) = tansig(ΣW8 × 5∙P5 × 1 + b8 × 1). 
The output of this transfer function is then transmitted to the 
units of the following layer.

Each neuron of the 8-length hidden layer vector (P8 × 1) 
was connected to the single neuron in the output layer 
through a 1 × 8 weight matrix (W1 × 8). The outputs from the 
hidden units were weighted and summed up (ΣW1 × 8∙P8 × 1), 
and then a 1-length bias (b1 × 1) was added; that is, u1 × 1 = 
ΣW1 × 8∙P8 × 1 + b1 × 1. The resulted net input was modified by 
“purlin” transfer function, thereby generating an output 
signal; that is, f(u) = purlin(u1 × 1 = ΣW1 × 8.P8 × 1 + b1 × 1).

Fig. 9. Response surface plot representing the effects of pH (3–7), initial pesticide concentration (2.5–20 mg/L), Fe2+ dose (5–30 mg/L), 
current intensity (100–400 mA), and reaction time (10–120 min) on the response of removal efficiency (0–100%).
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3.7.3. Regression plot

The regression plot in Fig. 11 shows the coefficient of 
determination (R2-value) between the network response and 
measured target. The dashed line corresponds to the out-
puts that perfectly equal to targets, whereas the solid line 
represents the line of best fit. The training, validation, and 
test plots indicated a good fit with R2-values of 0.995, 0.997, 
and 0.976, respectively. The overall R2-value accounting for 
training, validation, and test procedures was 0.994, indicat-
ing that the model was able to explain 99.4% of the variability 
in the diazinon removal efficiency. It was noticed that only 
0.6% of the total variation existing in the diazinon data sets 
were not explained by the ANN model as opposed to 10.4% 
of the RSM. This result revealed that the ANN model had a 
better predictive power than RSM, and it could be used to 
forecast values exactly close to the experimental response. 
After the training-validation-test step, the constructed ANN 

can be used to predict the diazinon removal using a new set 
of inputs (i.e., pH, initial pesticide concentration, Fe2+ dose, 
current intensity, and reaction time).

3.7.4. Sensitivity analysis

The optimum weights of the ANN model (Table 3) were 
used to compute the relative importance of each indepen-
dent variable (i.e., pH, initial pesticide concentration, Fe2+ 
dose, current intensity, and reaction time) on the diazinon 
removal efficiency. For this purpose, a sensitivity analy-
sis was carried out using Eq. (6), which is based on parti-
tioning the network’s connection weights [38]. The relative 
importance method was also used to find the input variable 
that has the most relative influence on the model response. 
The arrangement of data and computation of sensitivity 
analysis were performed as described in previous work [26].
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Fig. 10. ANN performance: (a) the training stopped once the MSE for validation data started to increase at epoch 1, and (b) training 
state gradient showing various parameters of progress.

Table 3
Weights and threshold levels of the designed ANN model

Hidden layer 
node

Weight from node i in input layer to node j in hidden layer for the matrix W8 × 5 Hidden layer 
threshold (b8 × 1)k = 1 k = 2 k = 3 k = 4 k = 5

m = 6 0.3438 0.4583 –0.2810 –0.4645 4.9539 6.6801
m = 7 –1.7139 –0.4300 –1.9747 –2.1332 –1.3020 1.3793
m = 8 –0.6282 –0.5449 0.9640 0.9132 2.6195 1.2014
m = 9 –1.8771 0.6336 –0.2817 –1.2687 –0.5808 –0.9281
m = 10 3.1624 0.7702 0.6411 –1.1486 –1.8205 0.4091
m = 11 –3.0007 –0.5738 –2.1483 –1.2174 1.2585 –1.4906
m = 12 0.1154 1.8239 1.5093 –1.8998 –0.1655 –2.4032
m = 13 –2.1298 0.6688 0.1241 –1.5945 –0.8083 –0.9463

Output layer 
node

Weight from node j in hidden layer to node k in output layer for the matrix W1 × 8 Output layer 
threshold (b1 × 1)m = 6 m = 7 m = 8 m = 9 m = 10 m = 11 m = 12 m = 13

n = 14 2.8198 0.1556 0.4543 –1.6963 –0.2847 0.2918 1.5723 1.1076 –1.6937
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where Ij is the relative importance of the jth input variable on 
the output variable, Ni and Nh are the numbers of input and 
hidden neurons, respectively, W is the connection weight, the 
subscripts k, m, and n designate input, hidden, and output 
neurons, respectively, and the superscripts i, h, and o indicate 
input, hidden, and output layers, respectively.

The results in Fig. 12 reveal that all the input variables had 
strong effects on the diazinon removal efficiency. Therefore, 
none of the investigated variables could be excluded from 
this study. However, the reaction time exhibited the most 
important factor among the input variables with a relative 
index of 26%. The ranking of inputs as per relative impor-
tance was reaction time > pH > current intensity > Fe2+ 
dose > initial pesticide concentration. These results indicated 
that the designed network could express the behavior of the 
complex electro-Fenton oxidation process within the range of 
experimental conditions.

4. Conclusions

This work investigated the influence of operational 
conditions on the degradation of diazinon by electro-Fen-
ton process using stainless steel electrodes. Electro-Fenton 
process was highly efficient at low initial diazinon concen-
tration (2.5–5 mg/L), while at higher initial concentrations 
the removal of diazinon was limited to 70%. The favored 

Target

0 50 100

O
ut

pu
t =

 0
.9

9x
Ta

rg
et

 +
 0

.2
9

0

20

40

60

80

100

Training: R
2  0.995

Target

0 50 100

O
ut

pu
t =

 1
xT

ar
ge

t +
 0

.0
66

0

20

40

60

80

100

Validation: R 2  0.997

Target

0 50 100

O
ut

pu
t =

 0
.9

5x
Ta

rg
et

 +
 4

.2

0

20

40

60

80

100

Test: R 2  0.976

Target

0 50 100

O
ut

pu
t =

 0
.9

9x
Ta

rg
et

 +
 0

.5
6

0

20

40

60

80

100

All: R 2  0.994

Fig. 11. Four plots showing the training, validation, testing, and overall data. The output tracks the targets very well, and the R2-value 
was over 0.99 for the total response.
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current intensity was 300 mA, and the optimal pH was 3.0. 
The considered dosage of Fe2+ was 20 mg/L. The kinetics of 
diazinon degradation was fitted to pseudo-first order pat-
tern and revealed good correlation. A pure quadratic model 
implied that the model explained 89.6% of the total varia-
tion in the diazinon removal. The overall correlation ANN 
model accounting for training, validation, and test proce-
dures was 99.4%, which means that the model could explain 
of the variability in the diazinon degradation efficiency.
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