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a b s t r a c t
Sulphate and nitrate as respiratory electron acceptors widely exist in various water bodies and are 
potentially harmful contaminants. In this study, we hypothesized that simultaneous removal of 
anodic nitrate and cathodic sulphate in a bioelectrochemical reactor (BER) can be accomplished. 
Results indicated that the average nitrate removal efficiency, sulphate removal efficiency, nitrite 
production efficiency, and ammonia production efficiency were 38.84, 22.10, 4.56 and 0.38 mg/L, 
respectively. Simultaneous degradation of anodic nitrate and cathodic sulphate in BER was accom-
plished, although the obtained results suggested that the removal efficiencies of nitrate and sulphate 
were not as good as those of conventional biological treatments. The existence of dominant species 
Pseudomonas and Azoarcus in the anode proved that nitrate was reduced by nitrate-reducing bacte-
ria with acetate as the electron donor. In the cathode, Desulfomicrobium and Thauera were the main 
functional bacteria for sulphate reduction.
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1. Introduction

Sulphate and nitrate as respiratory electron acceptors 
widely exist in industrial and municipal wastewater and nat-
ural water bodies and are potentially harmful contaminants 
[1]. Nitrate is responsible for the eutrophication of aquatic 
systems and can be converted into nitrites, which can cause 
methemoglobinemia and gastric cancer [2]. Sulphate is not 
considered a threat to animal or human health, but its main 
reduction products (including SO2 and H2S) can pose prob-
lems to the ecological environment and human health [3,4]. 

Therefore, given the increase in nitrate and sulphate concen-
trations in various water bodies, treatment of these contam-
inants has become an urgent problem. Biological treatments 
for nitrate- and sulphate-containing wastewater have been 
extensively investigated. For example, the expanded gran-
ular sludge blanket reactor was developed to accomplish 
simultaneous removal of sulphate and nitrate under different 
dissolved oxygen (DO) concentrations [5–7]; the results indi-
cated that an equilibrium relationship exists between opti-
mal DO concentration and nitrate and sulphate reduction. In 
addition, a novel biological nitrogen removal process called 
nitrate reduction, autotrophic denitrification, and nitrifi-
cation integrated process was proposed and scaled up to a 
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800–1,000 m3/d full-scale demonstration plant [8,9]. However, 
in several cases, nitrate and sulphate are not contained in one 
water body and separated instead; in such cases, two types 
of wastewater (containing sulphate or nitrate) exist. In this 
study, we hypothesized that sulphate- and nitrate-containing 
wastewater can be simultaneously treated in one bioreactor 
and need not be premixed. The bioelectrochemical reactor 
(BER) may be a good approach for this hypothesis because 
it was developed for different operating modes required in 
different applications [10]. BER consists of an anode cham-
ber and a cathode chamber; two types of wastewater can 
be added to the two separate chambers to accomplish the 
removal of target pollutants.

Previous reports have indicated that anode-respiring 
bacteria (ARB) possess nitrate reduction capabilities because 
several of them, including Geobacter spp. and Shewanella 
spp., have an alternative dissimilatory metabolism for elec-
trode reduction [11,12]. This finding proves the feasibility of 
anodic nitrate degradation. In addition, Kashima and Regan 
[12] indicated that anode-reducing biofilms facultatively 
reduce nitrate at all anode potentials (−150 to +900 mV vs. 
standard hydrogen electrode) with a rapid metabolic shift. 
Sulphate can also be reduced by sulphate-reducing bacteria 
(SRB) in BER biocathode [13]. Thus, this study attempted to 
add nitrate-containing wastewater into the anode and sul-
phate-containing wastewater to the cathode for further deg-
radation by various functional microorganisms. With regard 
to anodic nitrate reduction by ARB, acetate as an organic 
carbon resource can make the nitrate reduction process rel-
atively stable (stable current and biomass production) [12]. 
Thus, in this study, acetate as an organic carbon resource 
was used for nitrate and sulphate reduction. In addition, 
BER can be applied at a potential of 0.2 V vs. Ag/AgCl to the 
anode, and this value is optimal for the growth of electro-
chemical active bacteria [14,15].

Simultaneous removal of various pollutants in BER 
has been widely investigated. For example, simultaneous 
nitrification, denitrification (at the cathode), and carbon 
removal (at the anode) in BER [16]; simultaneous phenol 
removal, nitrification, and denitrification in biocathode [17]; 
and complete nitrogen removal and electricity production in 
Thauera-dominated air-cathode single-chambered BER [18] 
have been accomplished. However, to the best of the authors’ 
knowledge, only a few studies have focused on the simul-
taneous removal of anodic nitrate and cathodic sulphate. 
Thus, in this study, indexes, such nitrate removal efficiency 
(NRE), sulphate removal efficiency (SRE), nitrite produc-
tion efficiency (NPE), and ammonia production efficiency 
(APE), were estimated to evaluate treatment performance. 
Illumina high-throughput sequencing technology was 
used to characterize the bacterial community quantitatively.

2. Materials and methods

2.1. Setup of reactors

The BER, as described in detail in an earlier study [19], 
is H-shaped with two chambers separated by a cation- 
exchange membrane (Nafion®N-117 membrane, 0.180 mm 
thick, ≥0.90 meq/g exchange capacity, CAS: 31175-20-9∙d. 
1.98). The working volume of each chamber is 100 mL. 

A CHI1000C potentiostat (Shanghai CH Instrument Company, 
China) connected to a three-electrode system was used to 
control the different external voltages. The cathode was 
used as the working electrode, and the anode served as the 
counter electrode. The Ag/AgCl electrode (CHI111, Shanghai 
CH Instrument Company, China) was placed in the cathode 
chamber as the reference electrode. Carbon felt was chemi-
cally treated as described in a previous report [20] and used 
as the cathode material. A graphite plate was utilized as 
the anode material. Unless otherwise stated, all potentials 
reported throughout this paper are relative to that of the 
Ag/AgCl electrode.

Each of the cathode chambers was inoculated with 
30 mL of activated sludge obtained from a sludge-thick-
ening tank at Guangzhou Lijiao Sewage Treatment Plant 
in Guangdong, China. Numerous microorganisms, which 
exhibited high activity in the inoculated sludge, were 
observed by microscopic examination. The microorgan-
isms showed a relatively clear (transparent) appearance 
and structure. The value of the mixed liquor volatile sus-
pended solids (MLVSS)/mixed liquor suspended solids 
(MLSS) was 0.605. The components of the basal medium 
in the cathode were 100 mM phosphate buffer solution 
(PBS), 50 mg L−1 of SO4

2–, 10 mL/L of vitamin solution, and 
20 mL/L of mineral solution. The vitamin and mineral solu-
tions were formulated as instructed in a previous report 
[17]. The components of the basal medium in the anode 
were as follows: 100 mM PBS, 50 mg L−1 of NO3

–, 10 mL/L 
of vitamin solution and 20 mL/L of mineral solution. Before 
placing the synthetic wastewater in the reactor, N2 was 
added continuously for more than 30 min to reduce the DO 
concentration. Anaerobic conditions were maintained. All 
experiments were performed at a laboratory temperature 
(26°C ± 3°C), and pH was maintained within the range of 
6.5–7 for all experiments. The operation time of all reactors 
was 140 d, and each operation cycle lasted for 7 d. After 
each operation cycle, the water exchange rate of the anode 
and cathode was 80% and 80%, respectively. 

2.2. Measurements and analysis

All samples were filtered through a 0.22 μm filter before 
analysis. The concentrations of NH4

+, NO3
–, and NO2

– in the 
influent and effluent were measured periodically through 
a previously established method [21–23]. The sulphate con-
centration in the aqueous phase was measured using an 
ICS-1000 ion chromatography system (Dionex, USA) with an 
IonPac AS14 anion column.

2.3. Bacterial analysis using high-throughput sequencing

The sludge samples from BER were labelled as R-S 
and R-N, and the inoculated sludge was labelled as seed. 
The genomic DNA of each sample was extracted using an 
E.Z.N.ATM Mag-Bind Soil DNA Kit (Omega Bio-tek, USA). 
The integrity of the extracted DNA was checked via agarose 
gel electrophoresis. A Qubit2.0 DNA kit (Life Technologies, 
China) was used for precise quantification of the genomic 
DNA and to control the amount of DNA added to the 
mixture for the polymerase chain reaction (PCR). A set of 
primers was utilized to amplify the hypervariable V3–V4 
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region of the bacterial 16S rRNA gene. After amplification, 
the PCR products were purified with Agencourt AMPure 
XP Beads (Beckman Coulter Inc., Brea, California, USA), 
and the DNA concentrations in the purified products were 
measured using a Qubit2.0 DNA kit (Life Technologies, 
China). High-throughput gene sequencing was performed 
with the Illumina MiSeq platform manufactured by Sangon 
Biotechnology, Co., Ltd. (Shanghai, China). Raw sequence 
data were quality filtered and analyzed using QIIME v1.8.0. 
High-quality representative sequences for each operational 
taxonomic units (OTUs) were assigned using Usearch 
v5.2.236 with 97% sequence identity. A Venn diagram was 
created using VennDiagram v1.6.16. Principal component 
analysis was performed to evaluate the differences in micro-
bial community of the samples using R v3.2.

3. Results and discussion

3.1. Performance

As shown in Fig. 1a, the average NRE, SRE, NPE and 
APE were 38.84, 22.10, 4.56 and 0.38 mg/L, respectively. 
Although the removal efficiencies of nitrate and sulphate 

were not as excellent as those of conventional biological treat-
ments [24], simultaneous degradation of anodic nitrate and 
cathodic sulphate in BER was accomplished. In the cathodic 
sulphate degradation process, the removal efficiency of 
sulphate was lower than that of nitrate because compared 
with SRB, nitrate-reducing bacteria (NRB) can better obtain 
electrons. SRB grows proportionally slower than NRB, and 
NRB can potentially obtain more energy than SRB [23,25].

In the anodic nitrate degradation process, the produced 
results are in agreement with previous studies’ findings that 
the production of nitrite and ammonia exists [11,12]. Nitrite 
is an important intermediate in nitrate degradation regard-
less of denitrification. Fig. 1 shows a significant accumula-
tion of nitrite concentration in running cycles; it increased in 
the beginning then decreased. Meanwhile, the existence of 
ammonia suggests that nitrate was reduced to ammonia via 
dissimilatory nitrate reduction to ammonia (DNRA). DNRA 
is a sequential two-step reduction of nitrate to ammonia 
with nitrite as the intermediate, and reports have suggested 
that energy generation is mostly from the first step, and the 
second step is used to dump excess electrons and degrade 
toxic nitrite [12,26]. Thus, the increased nitrite concentra-
tion in the beginning was due to denitrification and DNRA. 
Subsequently, the concentration decreased because it was 
further reduced to N2 or ammonia. Kashima and Regan [12] 
indicated that the nitrite formed via nitrate reduction is pref-
erentially reduced over the anode and/or nitrite and inhibits 
the anode reduction reaction. In this study, the production 
of nitrite was more than 10 times that of ammonium; these 
results suggest that although denitrification and DNRA are 
potentially degrading to the introduction of nitrate into the 
anode, the primary degradation of nitrate was undoubt-
edly mainly due to the heterotrophic denitrification in this 
mixed-culture system [11]. In this system, although the con-
centration of ammonium was low, it increased continuously 
in each cycle.

3.2. Bacterial community diversity

Three anaerobic activated sludge samples, namely, Seed, 
R–S, and R–N, were collected at the end to identify the 
dominant strains and changes in the microbial commu-
nity structure by performing Illumina high-throughput 
sequencing on the V3–V4 region of 16S rRNA. Table 1 lists 
the effective read, OTU, Shannon diversity, ACE, Simpson 
index, Chao1 richness, and Good’s coverage values of all 

 

 

Fig. 1. (a) Degraded concentrations of nitrate and sulphate and 
the produced concentrations of nitrite and ammonia and (b) 
removal profile of nitrate and producing profiles of nitrite and 
ammonia in a running cycle.

Table 1
Diversity indices of bacterial communities in three sludge 
samples

Sample ID Seed R–S R–N

No. of reads 48,124 45,517 51,562
No. of OTUs 2,358 1,457 925
Shannon 5.73 4.75 3.70
ACE 2,985.09 2,063.16 1,183.24
Simpson 0.01 0.03 0.07
Chao1 2,858.88 2,006.19 1,128.62
Coverage 0.99 0.99 0.99
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samples. The Shannon indexes in Seed, R–S and R–N were 
5.73, 4.75 and 3.70, respectively. The Simpson indexes in 
Seed, R–S and R–N were 0.01, 0.03 and 0.07, respectively. 
Generally, a high Shannon index suggests high community 
diversity, and a high Simpson index suggests low commu-
nity diversity. Thus, the microbial community biodiversity 
in R–S was higher than that in R–N. The Good’s coverage 
estimator (≥0.99) suggests that the bacterial OTUs in the 
seven samples were well represented by the collected gene 
sequences. Compared with Seed, R–S and R–N showed 
decreased microbial community biodiversity possibly due 
to the selective responses to different growth conditions. 
In Fig. 2, the rarefaction curves for three sludge samples 
showed a decreasing rate of accumulation of OTUs but 
did not reach saturation, suggesting that the sequencing 
obtained a large proportion of the diversity of the sludge 
communities [27]. The similarity of the OTUs of the three 
sludge samples at the community level was illustrated with 
Venn diagrams (Fig. 3) that describe shared and unique 
OTUs. The three samples shared 363 OTUs or <50% of 
the total number of OTUs.

3.3. Bacterial community structure

As shown in Fig. 4a, the bacterial community structures 
of the three sludge samples were dominated by the follow-
ing phyla: Proteobacteria, Firmicutes, Chloroflexi, Bacte-
roidetes, Planctomycetes, Synergistetes, Actinobacteria and 
Acidobacteria. Compared with Seed, R-N and R-S showed 
that the relative abundances of Proteobacteria, Firmicutes 
and Synergistetes increased significantly, and the relative 
abundances of Chloroflexi, Planctomycetes, Actinobacteria 
and Acidobacteria decreased significantly. Proteobacteria, 
Actinobacteria, Euryarchaeota and Firmicutes are widely 
distributed in acetate-fed BER [28,29]. Proteobacteria and 
Bacteroidetes could play key roles in electricity generation 
[30], especially the beta-subclass of Proteobacteria, which 
was the most abundant division in the present sample. This 
genus has been found in iron-oxidizing cultures [31] and 
can deliver electrons from Fe(II) to other electron acceptors, 
such as nitrate [32,33]. In addition, Proteobacteria is the 
dominant phylum in petroleum refineries, acrylic polymers, 
pharmaceutical industry, whey processing, steel and pet 
food industrial wastewater treatment plants, and sewage 

[34,35]. Bacteria belonging to Betaproteobacteria could use 
electrodes as their electron donor to reduce other substances 
[33]. Firmicutes (Sedimentibacter) is known for its ability to 
degrade a wide range of hydrocarbons under anaerobic con-
ditions [36]. The electrode biofilm community might provide 
Firmicutes with anaerobic conditions, which are favourable 
for its growth [34]. 

The class-level identification of bacterial communities in 
the three activated sludge samples is illustrated in Fig. 4b.  
The dominant classes included Clostridia, Betaproteo bac-
eria, Gammaproteobacteria, Bacteroidia, Deltaproteobacteria, 
Anae rolineae, Planctomycetia and Alphaproteobacteria. 
Com pared with Seed, R-S and R-N showed that the relative 
abundances of Clostridia, Bacteroidia and Betaproteobacteria 
increased significantly, whereas the relative abundances 
of Planctomycetia and Alphaproteobacteria decreased sig-
nificantly. In addition, the relative abundances of Delta-
proteobacteria and Anaerolineae increased in R-S but 
decreased in R-N. A previous study has shown that Alpha-
proteobacteria and Betaproteobacteria are predominant 
in acetate-fed BER [28]. Betaproteobacteria is a versatile 
organic degrader existing in various microbial communi-
ties from phenol-, PAHs- and PCP-degrading bacteria [37]. 
Alphaproteobacteria has been reported as the major class for 
degrading PCP using acetate as the co-substrate [38]. In addi-
tion, Firmicutes, Chloroflexi and Alphaproteobacteria con-
tain heterotrophic bacteria, while Betaproteobacteria includes 
several groups of nitrifiers, denitrifiers and other N-cycle-
related microorganisms [22]. Anaerolineae is a member of the 
phylum Chloroflexi, a core microbial population in anaero-
bic digesters [39]. Although members of Anaerolineae are 
obligate anaerobes, genes for aerobic respiration have been 
recovered from the genomes of several Anaerolineae mem-
bers [23,40]. Deltaproteobacteria can degrade other microbes 
by secreting hydrolytic exoenzymes [41]; in addition, it is 

Fig. 2. Rarefaction curves based on the OTUs in three anaerobic 
sludge samples.

Fig. 3. Venn diagram based on the OTUs in three anaerobic 
sludge samples.



237J. Chen et al. / Desalination and Water Treatment 183 (2020) 233–239

 

 

Fig. 4. Relative abundance of the dominant bacterial at (a) phylum level, (b) class and (c) genus level in three activated sludge samples 
(Seed, R–N and R–S).
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believed to be responsible for direct electron transfer to the 
electrode. Enrichment of Deltaproteobacteria could enhance 
the direct electron transfer efficiency between bacteria and 
electrode [42].

Sequences from dominant bacterial communities were 
analyzed at the genus level to obtain insights into the micro-
bial community structure of the three activated sludge 
samples. Only taxa that accounted for >1% of the relative 
abundance of the total bacterial communities were consid-
ered. Fig. 4c presents the differences in community structures 
at the genus level in the three sludge samples. 

In R-N, the dominant genera included Pseudomonas, 
Tissierella, Advenella, Youngiibacter, Azoarcus, Aminomonas and 
Acetoanaerobium. Pseudomonas is abundant in the environ-
ment, particularly with regard to their denitrification poten-
tial [43]. Some bacteria belonging to the genus Pseudomonas 
are capable of autotrophic and heterotrophic denitrification 
and can utilize various electron donors (e.g., H2, reduced 
sulphur compounds or organic carbon) to perform denitri-
fication [27,44]. The existence of Pseudomonas suggests that 
nitrate is reduced by NRB using acetate as the electron donor 
in the anode. Pseudomonas is a gram-negative rod bacterial 
genus that can achieve extracellular electron transfer via elec-
tron shuttles from cells to electrodes, thereby showing high 
bioelectrochemical activity in BER [45]. Azoarcus can degrade 
lactate to CO2 and consume N-compound [6]. In addition, 
the relative abundance of several genera was lower than 
that of others, and their existence is also essential. For exam-
ple, Ignavibacterium, which possesses capabilities of electron 
transfer and aromatic hydrocarbon/azo dye transformation, 
was also enriched at the anode in previous studies [45]. 

In R-S, the dominant genera included Desulfomicrobium, 
Thauera, Tissierella, Azoarcus, Dethiosulfatibacter, Pseudomonas 
and Fusibacter. The genus Desulfomicrobium belongs to 
the class Deltaproteobacteria, which has been reported to 
be commonly found in sulphate-reducing processes [42]. 
Thauera transforms SO4

2– to S2– with organic matter as elec-
tron donors and carbon sources [6]. Desulfomicrobium and 
Thauera are probably the functional genus in charge of 
sulphate reduction in the cathode. In addition, the relative 
abundance of several genera was lower than that of others, 
and their existence is also essential. For example, Clostridium 
is an anaerobic gram-negative strain that can use organic 
carbon sources, such as glucose, maltose, starch, or lactic 
acid, to produce volatile fatty acids, and several strains can 
reduce sulphate to sulphide [46]. Longilinea is a filamentous 
strict anaerobe that can ferment various carbohydrates [47]. 
Tissierella exists in R-N and R-S, and it can grow on urine by 
metabolizing creatinine as the sole carbon source producing 
acetate, methylamine, ammonia and carbon dioxide [48]. 
The functional genus for the simultaneous degradation of 
anodic nitrate and cathodic sulphate has been indicated in 
the description above, and its existence suggests the feasibil-
ity of the original idea of this study. After applying 0.2 V of 
external voltage in the anode, nitrate degraded in the anode 
and sulphate degraded in the cathode.

4. Conclusion

The average NRE, SRE, NPE and APE were 38.84, 22.10, 
4.56 and 0.38 mg/L, respectively. Although denitrification 

and DNRA are potential degrading processes to the intro-
duction of nitrate into the anode, the primary degradation 
of nitrate was undoubtedly mainly due to the heterotrophic 
denitrification in this mixed-culture system. The existence 
of dominant species Pseudomonas and Azoarcus in the anode 
proved that nitrate was reduced by NRB using acetate as the 
electron donor. In the cathode, Desulfomicrobium and Thauera 
were the main functional bacteria for sulphate reduction. The 
existence of major functional bacteria confirms the feasibility 
of this study.
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