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a b s t r a c t
Functionalized porous organic polymers (POPs) with high Brunauer–Emmett–Teller surface area 
(SBET) are promising for the removal of heavy metals while their synthesis remains a challenge. 
A kind of acylamino functionalized triazine-based POPs was developed from melamine and trime-
sic acid by one-pot polycondensation in this study. The resultant polymers were applied for Cd2+ 
removal from aqueous solution. These polymers had controllable SBET of 246–463 m2/g with the pre-
dominant mesoporous distribution. Due to their well-constructed porosity and plentiful acylamino 
groups, they were efficient for Cd2+ removal with the maximum capacity of 392.5 mg/g at pH = 6. 
The adsorption was very fast and less than 15 min was enough to attain the equilibrium. Analysis 
of the mechanism revealed that the embedded acylamino and triazine ring played a role due to the 
strong chelating of the oxygen and nitrogen with Cd2+.
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1. Introduction

Cadmium (Cd2+) pollution is a severe environmental 
problem due to its high toxicity and accumulative character 
[1,2]. Cd2+ is difficult to be degraded in nature and it can 
be continuously enriched in living organisms, which seri-
ously threatens human health and ecological environment 
[3]. The maximum emission standard of Cd2+ is 5  µg/L in 
drinking water by the Environmental Protection Agency of 
the United States, and less than 3 µg/L of Cd2+ can exist by 
the World Health Organization. Thus, efficient removal of 
Cd2+ is urgent while still remains a challenge [4,5]. Various 
methods including chemical precipitation, ion exchange, 
and adsorption are applied for Cd2+ removal [6–8], and 
adsorption by solid materials is identified as the most pop-
ular method due to its operation simplicity, high efficiency, 
and easy recovery [9,10].

Many solid materials including low-cost sorbents [11], 
mesoporous silica [12], activated carbon [13–15], nano-par-
ticles [16,17], graphene oxide [18,19], and porous organic 
polymers (POPs) [20–22] are fabricated for Cd2+ removal. 
The POPs have attracted increasing attention due to their 
high Brunauer–Emmett–Teller (BET) surface area (SBET), out-
standing porosity, and diversified chemical structure [23]. 
Their molecular structure is flexibly designed to assemble 
different architectures. Moreover, their post-functionaliza-
tion by introducing various functional groups can be easily 
realized [24,25], giving more active sites for strong interac-
tion of heavy metal ions. Cd2+ tends to form a stable covalent 
bond with S/N-containing functional groups such as –NH2, 
COOH, and –SH [26–28]. Thus, these specific groups are 
often introduced on the POPs. The results indicate that the 
Cd2+ adsorption is greatly enhanced due to the strong che-
lating between the heteroatoms (S and N) and Cd2+ [29]. 
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Zhao et al. [30] prepared the magnetic Schiff-based POPs 
for Cd2+ removal and the maximum capacity (qmax) arrived 
at 0.8 mmol/g. Zeng et al. [31] reported that the polyacrylic 
acid modified nanotrap exhibited the qmax of 406.6 mg/g at 
pH  =  7 for Cd2+. However, the synthetic procedure of the 
POPs often involves noble metal catalysts, harsh synthetic 
conditions, and toxic solvents.

More recently, one-pot synthesis of the POPs under mild 
condition is anticipated. Saleh et al. [32] prepared the acyl-
amino functionalized POPs from trimesic acid (TMA) and 
p-phenylenediamine by one-pot polycondensation. Taskin 
et al. [33] reported a Schiff-based POPs from terephtha-
laldehyde and melamine (MA) by a Schiff-based reaction, 
the introduced N acts as a productive functional ligand for 
Cu2+. He et al. [34] synthesized a triazine and thiophene 
bifunctionalized POPs from the Friedel–Crafts reaction, the 
introduced N easily forms coordination complex with Cu2+. 
For this purpose, in this study a simple one-pot amidation 
was carried out under mild condition (atmospheric pressure 
and catalyst-free) using MA and TMA as the monomers, and 
the synthesized triazine-based POPs were functionalized 
with the acylamino groups. The simple one-pot amidation 
offers several advantages such as free-catalysts, low-cost 
raw materials, and few by-products. In addition, it gives the 
as-prepared POPs with plentiful acylamino groups, which 
are beneficial for Cd2+ adsorption. The equilibrium and 
kinetic adsorption were investigated in detail using Cd2+ 
as the model heavy metal, and the adsorption mechanism 
was illustrated in detail.

2. Experimental section

2.1. Synthesis of the acylamino modified triazine-based POPs

The acylamino modified triazine-based POPs were syn-
thesized according to the method in ref. [35]. MA and TMA 
were used as the monomers and a typical amidation was 
carried out under mild condition. In brief, 7, 14, or 21 mmol 
of MA and 7  mmol of TMA were dissolved in 35  mL of 
DMSO and the mixture was continuously stirred at 423 K 
for 72  h. The obtained off-white powders namely NTM1, 
NTM2, and NTM3 were placed in a vacuum and dried at 
353 K.

2.2. Characterization of the polymers

The Fourier transform infrared (FT-IR) spectra of the 
polymers were detected by a Nicolet 6700 Fourier trans-
form infrared spectrophotometer (Thermo Scientific Co., 
United States). Micromeritics ASAP 2020 surface area 
(Micromeritics, USA) was used to measure the pore struc-
ture of the polymers. CHNOS elemental (Vario Micro Cube, 
Germany) was used to investigate the elemental analy-
sis (EA). The X-ray photoelectron spectroscopy (XPS) was 
detected via the Thermo ESCALAB spectrometer with an 
Al K-α source. A field emission scanning electron micro-
scope (FESEM, Nova Nano SEM 230) operating was used to 
detect the morphologies of the polymers. High-resolution 
transmission electron microscopy (TEM) was conducted 
on an FEI Titan G2 60–300 microscope. The thermograv-
imetric analysis (TGA) of the polymers was measured 

by thermobalance (STA-499C, NETZSCH, UK). The Cd2+ 
concentration was determined by the TAS-990 atomic 
absorption spectrum (AAS).

2.3. Adsorption performance

The Cd2+ adsorption on the polymers was performed 
by mixing 0.02  g of the polymers in 50  mL of Cd2+ aque-
ous solution. The initial concentration of Cd2+ was in the 
range of 100–500 mg/L, the solution pH ranged at 2–10 was 
adjusted with 0.1 mol/L of HCl or NaOH. The adsorption 
was performed at 298, 308, and 318  K, respectively. The 
concentrations of Cd2+ before and after the adsorption were 
analyzed by AAS and the adsorption capacity was calcu-
lated as,

q C C V
We e= − ×( )  0 	 (1)

where qe (mg/g) is the equilibrium capacity, C0 and Ce rep-
resent the initial and equilibrium concentration (mg/L), 
respectively, V is the volume of the solution (L) and W is 
the mass of the polymers (g).

3. Results and discussion

3.1. Structural characterization of the polymers

The one-pot amidation based on the amino groups of 
MA and the carboxyl groups of TMA was performed for 
MA and TMA in this study. MA and TMA have multiple 
amino and carboxyl groups. As a result, the as-prepared 
polymers are functionalized with plentiful acylamino 
groups. In addition, considerable amino (from MA) and 
carboxyl groups (from TMA) also remain, they are ben-
eficial for Cd2+ adsorption. The FT-IR spectrum in Fig. S1 
shows that the vibrational bands at 1,549 and 1,481  cm–1 
were ascribed to the C=N stretching of the triazine ring 
[29,35,36]. The strong vibration at 1,675 cm–1 was generated 
from the C=O stretching of the acylamino groups [27,36]. 
The contact angles (CA) of the polymers in Fig. S2 revealed 
that these polymers were hydrophilic with the CA less than 
90°, and a higher feeding amount of TMA induced a less CA 
due to the higher hydrophilicity. The XPS spectrum in Fig. 
1a exhibited that the polymer contained 47.2 wt.% of carbon 
(C), 42.2  wt.% of N, and 10.6  wt.% of oxygen (O). These 
data were similar to the elemental analysis (C: 34.6 wt.%, 
N: 40.9  wt.%, H: 5.2  wt.%, S: 2.4  wt.%, and hence O was 
calculated to be 16.9 wt.%). In particular, it is clear that the 
ratio of N/O was higher than 2, suggesting that consider-
able amino groups remained on the polymers. As different 
feeding amount of MA and TMA was fed in this reaction, 
a similar phenomenon was observed (Fig. S3 and Table 
S1). Additionally, the bands with the binding energies at 
268, 400, and 530  eV were assigned to the C1s, N1s, and 
O1s, respectively [35]. The high-resolution C1s in Fig. 1b  
revealed that three peaks at 284.7, 286.5, and 287.7  eV 
corresponded to the C=O, C=N, and C=C configurations, 
respectively. The high-resolution N1s in Fig. 1c was divided 
into three peaks of the C=N (398.3  eV, 38.3  wt.%), –NH2 
(399.5  eV, 55.9 wt.%), and –NH– (405.3  eV, 5.8 wt.%) con-
figurations, respectively [22,36]. The high-resolution O1s in 
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Fig. 1d had the C=O (531.7  eV), C–O (532.4  eV), and H2O 
(533.1 eV) configurations. The TGA in Fig. S4 indicated that 
the polymer was thermal stable. Less than 10 wt.% of the 
weight loss occurred below 200°C and the main weight 
loss happened at 400°C–500°C due to the decomposition 
of the frameworks. The X-ray diffraction (XRD) showed its 
amorphous structure (Fig. S5).

Fig. 2 shows the N2 adsorption-desorption isotherms 
of the polymers. It exhibited a Type-IV profile [37], indic-
ative of its hierarchical microporous and mesoporous 
character. The pore size distribution based on the non-lo-
cal density functional theory model followed this analysis. 
The detected pores were mainly distributed in the range of 
20–60 nm. As shown in Fig. S6, as the feeding amount of MA 
and TMA was close, the functional groups of MA and TMA 
were condensed for the formation of oligomers, and the 
oligomers further assembled to the polymers. As different 
feeding amount of MA and TMA was applied, some changes 
occurred for NTM1, NTM2, and NTM3 (Fig. S7). According 
to the N2 isotherms, the structural parameters of the poly-
mers were obtained and it is observed that NTM1, NTM2, 
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Fig. 1. XPS spectra of NTM3 (a) survey, (b) C1s and C1s-Cd2+, (c) N1s and N1s-Cd2+, and (d) O1s and O1s-Cd2+.
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and NTM3 had the SBET of 246, 487, and 463  m2/g, respec-
tively (Table 1), their total pore volume (Vtotal) were 0.95, 
0.78, and 0.74 cm3/g, respectively. As the ratio of MA/TMA 
increased, the SBET increased first and then decreased. It can 
be explained by the fact that the collision probability of the 
activated molecules increased first as the ratio increased, 
inducing a sufficient amidation. Nevertheless, a higher ratio 
of the monomers resulted in an incomplete reaction. As a 
result, considerable amino groups were remained in the 
polymers. The weak acid capacity (Ca) and weak basic capac-
ity (Cb) gave the same conclusion (Table S2). NTM3 with the 
highest ratio had the highest Cb (4.35 mmol/g). Meanwhile, 
the elemental analysis in Table S1 also clarified that NTM3 
had the highest N content due to the residual amino groups. 
The SEM images in Figs. 3a and b show that the polymers 
were irregular spheres and plentiful interconnected macro-
pores were existent for the polymers. The TEM images in 
Figs. 3c–f displayed that the particles were 40–80 nm with 
an amorphous structure. The polymers were composed of 

aggregated nanoparticles with alternately dark and bright 
microstructure.

3.2. Cd2+ adsorption

The equilibrium isotherms of Cd2+ were first measured 
for the polymers and Fig. 4a indicated that the qe increased 
with increasing Ce. The Langmuir and Freundlich models 
were adopted for fitting the equilibrium data [38,39]. It can 
be seen from Table S3 that the correlation coefficients based 
on the Langmuir model (RL

2) were higher than the latter (RF
2), 

indicating that the Cd2+ adsorption was better described by 
the Langmuir model with a monolayer adsorption process. 
These results were accordant to the reported results in the 
literature [24–26]. In addition, the qmax on NTM1, NTM2, and 
NTM3 were predicted to be 326.3, 367.8, and 392.5  mg/g, 
respectively. NTM3 was proven the most efficient and its 
low Smicro/SBET (57.5%) and the largest amino groups should 
be the direct cause. As compared to the qmax of Cd2+ on NTM3 

Fig. 3. (a-b) SEM and (c-f) TEM images of the polymers.

Table 1
Structural parameters of the polymers

SBET/(m2/g) Smicro/(m2/g) Smicro/SBET/(%) Vtotal/(cm3/g) Vmicro/(cm3/g) Vmicro/Vtotal/(%)

NTM1 246 225 91 0.951 0 0
NTM2 487 273 56 0.785 0.144 17.9
NTM3 463 266 57 0.744 0.148 18.9
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with some other sorbents reported in the literature (Table 2) 
[17,18,28,30,31,40–47], NTM3 was one of the most promising 
sorbents.

Subsequently, NTM3 was employed as the sorbent and 
the equilibrium isotherms were measured at 298, 308, and 
318 K, respectively. Fig. 4b displayed that the qe increased as 
the temperature increased, implying an endothermic process 
[36,48]. The fitted results in Table S4 gave similar informa-
tion that the qmax increased with elevating the temperature. 
The Van’t-Hoff equation was applied to figure out the ther-
modynamic parameters such as the adsorption enthalpy 
(ΔH, kJ/mol), entropy (ΔS, kJ/mol), and free energy (ΔG, 
J/(mol K)) [31,35,44],

log
. .

q
C

H
RT

S
R

e

e









 = − +

∆ ∆
2 303 2 303

	 (2)

The ΔH and ΔS were predicted by plotting the log (qe/
Ce) vs. 1/T. As shown in Fig. 4c and Table S5, the ΔH and ΔS 
were calculated to be 4.82 kJ/mol and 13.73 J/(mol K), respec-
tively, indicating the adsorption was endothermic [36]. The 
positive ΔS can be explained by the release of H2O molecules 
around Cd2+ in aqueous solution [11]. Due to the solvation 
effect, Cd2+ exists as the form of hydrated Cd2+ surrounded 

by lots of H2O molecules. As the adsorption proceeded, the 
amino groups interacted with Cd2+ and released abundant 
H2O molecules and hence lead to the increased ΔS. The 
ΔG decreased with increasing the temperature, implying a 
more spontaneous process at a higher temperature.

Fig. 5 shows the qe as a function of the solution pH. It 
is observed that the qe increased first and then slightly 
decreased as the solution pH increased from 1.18 to 10.02 
and the largest qe located at pH = 6. Fig. 5 also depicts the 
specific speciation of Cd2+ as the solution pH varied from 1 
to 14 by the Visual MINTEQ 3.0 software. At a lower solu-
tion pH, superfluous H+ made the active sites such as the 
–NH2, –NH–, and –C=O protonated, which was adverse for 
the adsorption. Of course the competition adsorption of H+ 
was also a reason for the lower qe [11]. At the solution pH 
increased, the active sites of the polymers were liberated, 
which had a strong chelating with Cd2+ [12]. When the solu-
tion pH was higher than 6, the precipitation of Cd2+ as the 
form of Cd(OH)+ and Cd(OH)2 appeared, affecting the qe in 
a negative way [23].

Fig. 6 gives the kinetic curve of Cd2+ adsorption on the 
polymers. It is obvious that the adsorption was very fast at 
the beginning of 6 min and reached the equilibrium within 
15 min. In the beginning, plentiful active sites were available 
for Cd2+ adsorption, which facilitated the strong affinity of 
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Cd2+ to the polymers. As the adsorption proceeded, the avail-
able sites and the Cd2+ concentration were both reduced, 
making the adsorption rate dropped. The fast adsorption of 
Cd2+ on the polymers was shown to be superior to some other 
materials in the literature [49,50]. The pseudo-first-order 
and pseudo-second-order rate equations were applied for 
fitting the kinetic data [51,52] and the pseudo-second-order 
was better for characterizing the kinetic data since R2 = 0.997. 
After the adsorption, the mixed desorption solvent includ-
ing 1.0  mol/L of HCl and 0.5  mol/L of ethylene diamine 
tetraacetic acid (EDTA) was used for the regeneration of the 
polymers, 99.6% of the desorption efficiency was achieved. 
The polymers were used for six cycles and Fig. 7a displayed 
that the qe had not a considerable loss. Additionally, the selec-
tivity experiment was investigated in a mixed solution con-
taining different metals such as K+, Na+, Ni2+, Cu2+, Mn2+, Cd2+, 
Ca2+, Zn2+, Mg2+, Pb2+, and Fe3+. Fig. 7b demonstrates that the 

polymer exhibited significantly higher qe for Cd2+ than some 
other metals.

To clarify the mechanism for Cd2+ adsorption on the 
polymers, the XPS spectra of the polymers before and after 
Cd2+ adsorption were tested. After Cd2+ adsorption, the C1s 
relevant to the carbonyl (C=O) shifted from 284.7 to 285.0 eV 
(Fig. 1b), the band correlated to the triazine ring (C=N) 
changed from 286.5 to 286.7 eV. However, there was no shift 
for the C=C configuration at 287.7 eV. Noticeably, Fig. 1c dis-
plays that the N1s related to triazine groups (C=N) changed 
from 398.3 to 398.6 eV after Cd2+ adsorption and the amino 
groups (–NH2) with the binding energy at 399.5 eV was blue-
shifted to 399.8 eV. Meanwhile, Fig. 1d indicates that the O1s 
correlated to the carbonyl (C=O) was shifted from 531.7 to 
531.4 eV. The shift of the binding energy was strong evidence 
for the strong interaction between the active sites and Cd2+. 

Table 2
Comparison of the qmax for Cd2+ adsorption on the sorbents

A+dsorption conditions qmax (mg/g) Ref.

γ-Cyclodextrin/chitosan composites pH = 8.5, T = 298 K 833.3 [17]
rGO-PDTC/Fe3O4 pH = 6.0, T = 298 K 179.8 [18]
Poly(itaconic acid)-grafted chitosan pH = 6.0, T = 298 K 405.5 [28]
Schiff-based POPs pH = 6.0, T = 298 K 89.60 [30]
Polyacrylic acid modified nanotrap pH = 7.0, T = 298 K 406.6 [31]
Esterified grain pH = 5.0, T = 298 K 473.9 [40]
Thiourea-modified chitosan pH = 6.0, T = 298 K 256.4 [41]
Nano-PFM pH = 6.0, T = 298 K 39.05 [42]
β-Cyclodextrin pH = 6.0, T = 298 K 136.4 [43]
Activated carbon pH = 8.0, T = 303 K 15.75 [44]
PAA-MMC pH = 7.0, T = 303 K 406.6 [31]
UFMBO pH = 6.0, T = 298 K 74.77 [45]
AA hydrogel pH = 6.5, T = 298 K 495.0 [46]
Cashew nutshell pH = 5.0, T = 298 K 436.7 [47]
NTM3 pH = 6.0, T = 298 K 392.5 This work
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As illustrated in Fig. 8, the N (from the amino, acylamino, and 
triazine) and the O (acylamino and carboxyl) of the polymers 
formed strong coordination complexes with Cd2+. Therefore, 
it can be concluded that the embedded acylamino, triazine 
ring, and amino groups of the polymers formed stable coor-
dination complexes with Cd2+ and the strong chelating lead 
to the efficient removal of Cd2+.

4. Conclusion

The acylamino functionalized triazine-based POPs were 
easily fabricated using a one-pot amidation reaction and the 
polymers had tuned SBET (246–463 m2/g) and predominated 
mesopores. The polymers were efficient for Cd2+ adsorp-
tion with the qmax of 392.5 mg/g at pH = 6 and the acylamino 
groups were important for the adsorption due to the strong 
chelating of N and O with Cd2+. Besides, the Cd2+ adsorption 
was very fast and less than 15 min was enough for the equi-
librium. The polymers could be repeatedly used at least six 
cycles without significant loss of the qe.
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tration of 50 mg/L, T = 298 K).

Fig. 8. Illustration of the chelating interaction between Cd2+ and the polymers.
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Fig. S6. Prediction of the pore formation mechanism of the polymers.
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Fig. S7. N2 adsorption–desorption isotherms and pore size distribution of the polymers.
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Table S5
Thermodynamic parameters for the adsorptive removal of Cd2+ by the polymers

Temperature/(K) ΔG/(kJ/mol) ΔS/(kJ/(mol K)) ΔH/(kJ/mol) R2

Cd2+

298 0.73
13.73 4.82 0.9986308 0.59

318 0.46

Table S1
Elemental analysis of the polymers

C/(wt.%) N/(wt.%) H/(wt.%) S/(wt.%) O calculated/(wt.%)

NTM1 44.7 32.6 5.4 2.1 15.2
NTM2 40.3 36.2 5.3 2.6 15.6
NTM3 34.6 40.9 5.2 2.4 16.9

Table S2
Weak acid capacity (Ca) and weak basic capacity (Cb) of the polymers

NTM1 NTM2 NTM3

Ca/(mmol/g) 0.68 0.55 0.31
Cb/(mmol/g) 1.23 2.33 4.35

Table S3
Correlative parameters for the adsorption of Cd2+ on NTM1, NTM2, and NTM3 according to the Langmuir model and Freundlich 
models

Langmuir model Freundlich model

KL/(L/mg) qm/(mg/g) RL
2 KF/((mg/g)(L/mg)1/n) n RF

2

NTM1 2.28 × 10–3 326.3 0.9850 2.32 1.41 0.9492
NTM2 3.95 × 10–3 367.8 0.9824 6.39 1.66 0.9650
NTM3 6.06 × 10–3 392.5 0.9914 14.72 2.00 0.9845

Table S4
Correlative parameters for the adsorption of Cd2+ on NTM3 at 298, 308, and 318 K according to the Langmuir model and Freundlich 
models

Langmuir model Freundlich model

KL/(L/mg) qm/(mg/g) RL
2 KF/((mg/g)(L/mg)1/n) n RF

2

298 K 6.06 × 10–3 392.5 0.9914 14.72 2.00 0.9845
308 K 7.52 × 10–3 405.7 0.9988 16.28 2.32 0.9877
318 K 9.32 × 10–3 431.2 0.9979 17.02 2.55 0.9898
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