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a b s t r a c t
A new approach for predicting the mixing properties of a rosette dense jet group in crossflow ambi-
ent conditions based on multi-gene genetic programming (MGGP) is presented. Explicit MGGP 
formulations for the dimensionless terminal rise height (yt/dF), the dimensionless impact distance 
(xi/dF), and the impact dilution (Si/F) are developed. Experimental data are used for training and 
testing the models. The performances of the MGGP models are found to be superior to the existing 
empirical equations, which are not sufficiently accurate to be used in conceptual rosette diffuser 
design. A confidence analysis is also conducted for the developed models. The results demonstrate 
that the MGGP technique is a promising tool to evolve an explicit, accurate and relatively compact 
mathematical model to predict a rosette dense jet group. The developed MGGP models can facili-
tate accurate estimation of the primary mixing characteristic parameters of a rosette dense jet group 
in crossflow ambient conditions for the investigated data range, and they could be continuously 
and quickly improved or extended with the availability of more training data.
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1. Introduction

Wastewater effluents are often discharged into the receiv-
ing water through rosette diffusers [1–3]. Such diffusers are 
commonly used for coastal desalination and disposal of 
municipal wastewater, and some examples include the out-
fall diffusers in Melbourne, San Francisco, and Sydney [2]. 
Improper outfall design may result in inadequate disposal 
of wastewater effluents, which could, in turn, lead to seri-
ous environmental and ecological issues [4]. Therefore, it is 
important to predict the mixing properties of the effluents 
for a sound outfall design or performance assessment [5,6].

Depending on the density difference between the jets 
and the ambient water, a rosette jet group can be classified 
into two categories. A rosette buoyant jet group refers to the 
scenarios in which the jets have a lower density than the 
ambient water, while a rosette dense jet group corresponds 

to the cases in which the jets have a higher density than the 
receiving water. Compared with rosette buoyant jets, the 
studies on rosette dense jets are relatively few, and thus 
the mixing properties of rosette dense jets require further 
investigation and better predicting tools.

As shown in Fig. 1, a rosette diffuser consists of a cluster 
of upward-inclined ports that are located around a circle. 
The dense jets are discharged from the ports with an ini-
tial velocity of uj to the ambient water that has a velocity of 
ua. In the regions close to the nozzles, the jets move upward 
due to the initial momentum and spread as they mix with 
the ambient water. Because of the momentum dissipation 
and negative buoyancy, the jets reach a terminal rise height, 
yt, and then start falling back toward the seafloor. The jets 
reach the seabed at the return point that is located xi from the 
diffuser. This distance is known as the impact distance, and 
the dilution at this location is known as the impact dilution, 
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Si. If the jets have sufficient clearance from other jets or 
boundaries, such as single jets, the jets are efficiently diluted 
due to the entrainment of the ambient water. However, 
for rosette jets, there could be dynamic interactions or the 
Coanda effect between the individual jets, which can affect 
the mixing properties of the jets [7,8]. These properties can 
be characterized by yt, xi, and Si, so predicting these jet char-
acteristic parameters is of significant importance to a better 
understanding of the effluent mixing properties.

A rosette dense jet group can be studied using vari-
ous methods, such as physical and numerical modeling 
approaches. Although these approaches can provide reli-
able data, they are either costly or computationally expen-
sive, so their application in practical engineering problems 
is restricted. Simplified theoretical or regression-based 
empirical equations are quite useful in practical applica-
tions, especially for a rough estimate of the jet properties. 
However, these equations may contain errors due to some 
predetermined assumptions or the ignorance of some hid-
den nonlinear effects. Abessi and Roberts [3] have developed 
empirical models for rosette dense jets, but their R-squared 
values were below 0.90. Therefore, the existing empirical 
equations are not sufficiently accurate to be used in concep-
tual rosette diffuser design, and the subject requires further 
investigation.

Artificial intelligence (AI) techniques provide a new ave-
nue for predicting engineering data. These techniques, such 
as an artificial neural network, adaptive neuro-fuzzy infer-
ence system, grey forecasting, genetic programming (GP), 
and artificial neural network-genetic algorithm, have been 
widely applied and validated in water resources problems 
in recent years [9–16]. The multi-gene genetic programming 
(MGGP) technique is a recent advancement of GP [17,18]. An 
MGGP model consists of several traditional GP genes that 
can capture nonlinear behavior and these genes are linearly 
combined. This technique effectively combines the capa-
bility of the standard GP in describing nonlinear behavior 
and that of the ordinary least squares methods in estimating 
regression coefficients and has been found to be better than 
both the standard GP and conventional regression methods 
[18,19]. Therefore, MGGP is a potentially promising tool to 

evolve an explicit, accurate, and relatively compact math-
ematical model to predict a rosette dense jet group. It is 
acknowledged that there are many well-established numer-
ical and theoretical models in the field of jet mixings, such 
as those reported by Yan and Mohammadian [20,21] and 
Yan et al. [22], but developing MGGP models are still bene-
ficial in three respects: first, the mechanisms for the mixing 
processes of a rosette dense jet group in crossflow ambient 
conditions are very complicated, and thus a well-recognized 
numerical and theoretical model has rarely been reported; 
second, an MGGP model is much more efficient than a 
numerical model; third, an MGGP model can be continu-
ously improved with the availability of more experimental 
or observational data.

The primary objective of this work is twofold: first, to 
develop explicit models for the mixing characteristic param-
eters of a rosette dense jet group in crossflow ambient con-
ditions, which are more accurate than the existing empirical 
equations for the investigated data range; and second, to 
demonstrate that the MGGP algorithm is a promising tool 
for investigating rosette dense jet groups, and thus the pres-
ent study will encourage researchers or engineers to collect 
more data that are suitable for training the MGGP models 
and continuously improve or extend the models in further 
studies. The models were trained and tested with available 
experimental data. The formulations are also presented and 
compared with existing empirical equations. Recently, Yan 
and Mohammadian [23–25] have successfully utilized AI 
algorithms to develop compact and explicit models for lat-
erally confined buoyant jets, vertical buoyant jets, and mul-
tiple inclined dense jets. However, the dilution processes of 
a rosette dense jet group in crossflow ambient conditions 
are quite different from and more complicated than these 
types of discharges, and thus further evaluating and apply-
ing the MGGP algorithm to develop explicit equations for a 
rosette dense jet group in crossflow ambient conditions is 
necessary. To the best of the authors’ knowledge, this is the 
first work using MGGP to predict the mixing characteristic 
parameters of a rosette dense jet group in crossflow ambi-
ent conditions. The developed models can facilitate accurate 
estimation of the primary mixing characteristic parameters 

Fig. 1. Schematic diagram of a rosette dense jet group in crossflow ambient conditions.
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for the investigated data range, and they could be continu-
ously and quickly improved or extended with the availabil-
ity of more training data.

2. Methods

2.1. Analysis of a rosette dense jet group

The most important parameters characterizing a jet are 
the riser height, yt, impact distance, xi, and impact dilu-
tion, Si (Fig. 1). It is well known that the mixing properties 
of a single jet are mainly governed by the jet densimetric 
Froude number [26,27], F, which is defined as
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where uj is the initial jet velocity, d is the port diameter, g is 
the gravitational acceleration, ρa is the density of ambient 
water, and ρj is the initial jet density.

The present work focuses on a rosette dense jet group 
in crossflow an ambient condition, which is also affected 
by the riser spacing, sr, and the ambient current speed, ua. 
Therefore, the dimensionless riser height, yt/dF, the dimen-
sionless impact distance, xi/dF, and the dimensionless impact 
dilution, Si/F, can be expressed as functions of the dimen-
sionless riser spacing, sr/dF and the dimensionless velocity, 
urF, as [3]
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where ur is defined as ua/uj.
Abessi and Roberts [3] have proposed comprehensive 

empirical Eqs. (6)–(8) for estimating these variables, which 
are summarized as follows:
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The R-squared values for theses empirical equations 
were below 0.90. Therefore, they are not sufficiently accurate 
to be used in conceptual rosette diffuser design, and thus 
the subject requires further investigations.

2.2. Experimental data

The experimental data of [3] were used for training and 
testing the MGGP models. The experiments were designed 
for typical diffuser configurations with F ranging from 29 to 
83, sr/dF ranging from 0.52 to 14.5, and urF ranging from 1 
to 3.9. The model rosette in the experiments had four ports 
that were placed 90° apart around a circle. The diameters 
of the circle and the ports were 2.25 and 0.216 cm, respec-
tively. The nozzles were inclined by 60°. A total of 41 tests 
were conducted, with 8 of them for the 0° scenario, namely 
the angle between the ambient current direction and one 
of the jets was 0°. The remaining tests were for the 45° sce-
nario, namely the rosette in the 0° scenario was rotated by 
45°. The experimental results showed that the 45° config-
uration was preferable in terms of dilution, so this work 
focuses on the 45° scenario. The mixing properties of a 
rosette dense jet group inflowing currents were assumed to 
be functions of sr/dF and urF, so sr/dF and urF were used as 
input parameters in the MGGP modeling for each mixing 
characteristic parameter. Each model was trained and tested 
using 33 data sets (Fig. 2). The modeling tests in this study 
showed that these data sets were sufficient for the establish-
ment of reasonable MGGP models. It is acknowledged that 
these models can be further improved or extended in the 
future when more measurements become available. In fact, 
with the rapid development of data collection techniques, 
using AI techniques to develop and improve a model is 
becoming a mainstream trend. However, it is necessary to 
demonstrate the performance of an AI technique to provide 
information for appropriate date collection.

2.3. MGGP modeling

MGGP is a recent variant of GP that allows for multiple 
genes. An MGGP model consists of several traditional GP 
trees and these trees are linearly combined. These trees are 
usually considered to be genes. A typical MGGP chromo-
some is shown in Fig. 3, which represents the expression

y x x x xx= +  + − ( ) { }+α β γ0 7 2 11
0 3

2 1 2
2. exp( ) log( ) . log sin. 	(9)

where x1 and x2 are the input variables, α and β are the 
weights of the genes, and γ is the bias term. This model pre-
dicts the output (y) using two input variables (x1 and x2). 
There are some nonlinear terms in the trees, but the trees 
are linearly combined. The weights and bias are determined 
from the training data using ordinary least squares methods. 
Therefore, MGGP effectively combines the capability of the 
standard GP in describing nonlinear behavior and that of 
the ordinary least squares methods in estimating regression 
coefficients.

In MGGP, the first population is constructed by ran-
domly creating chromosomes, and genetic operations such 
as crossover, mutation, and reproduction are performed to 
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create new populations during the evolving process. The 
final MGGP model is a weighted linear combination of mul-
tiple trees that contain nonlinear terms. Because MGGP mod-
els allow for multiple genes, each gene only needs to contain 
a few tree depths (typically four or five). Therefore, the non-
linear terms are of a low order, and the evolved model can be 
relatively compact. The MGGP model has been widely found 

to be superior to other methods, such as the standard GP 
and conventional regression methods [18,19]. More details 
regarding the MGGP technique have been well documented 
elsewhere in the literature [17,18].

In this work, the MGGP modeling was performed using 
the open-source toolbox GPTIPS2 [17]. It is written in stan-
dard MATLAB and has a pluggable architecture, so it is read-
ily modifiable and extendible. Typical parameter settings 
were employed in the present MGGP modeling. The popu-
lation size was set to be 500. The selection tournament size 
was set to be 20 and 30% of tournaments to be Pareto tourna-
ments. The maximum tree depth was set to be four, based on 
a sensitivity study. The program performs two runs simulta-
neously, and each run terminates after 60 s. The elite fraction 
number was set to be 0.3; namely, 30% of the models in one 
generation were copied to the next generation. The func-
tional set included most of the commonly seen mathematical 
operations: {‘times’, ‘minus’, ‘plus’, ‘rdivide’, ‘square’, ‘sin’, 
‘cos’, ‘exp’, ‘mult3’, ‘add3’, ‘sqrt’, ‘cube’, ‘power’, ‘negexp’, 
‘neg’, ‘abs’, ‘log’}.

3. Results and discussion

3.1. MGGP training and sensitivity analysis

The experimental data were divided into two groups: 
the data in 80% of the cases were used for training, and 
those in the remaining 20% were used for testing, which 
is a typical ratio of data splitting [28,29]. The data splitting 
was conducted in a random manner using MATLAB’s ran-
dom-permutation function. The model accuracy was evalu-
ated primarily based on the root-mean-square error (RMSE) 
and R-squared (R2) values, which can be expressed as
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where xobs and xcalc denote the observed and calculated values, 
respectively; N is the number of data points.

Preparatory modeling was conducted to evaluate the 
influence of the input variables and maximum genes on a 
chromosome. MGGP models based on a single input vari-
able were first tried. For example, the MGGP model for 
yt/dF based on sr/dF with a maximum number of genes of 
4 gave the best result with RMSE = 0.30 and R2 = 0.52, and 
that based on urF gave the best result with RMSE = 0.21 and 
R2  =  0.77. The high error and low correlation values indi-
cated that a single input variable cannot adequately describe 
the mixing characteristic parameters, and implied that 
the two input variables both had a clear influence on the 
model performance. Therefore, both input variables were 
utilized in subsequent analysis.

Fig. 2. 3D plots of data sets: (a) yt/dF, (b) xi/dF, and (c) Si/F.
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The sensitivity analysis for maximum genes in a chro-
mosome was conducted starting from training models with 
only one gene in a chromosome. Then, the gene number 
was successively increased, and the model performance was 
evaluated using both the training and testing data sets. For 
example, the MGGP model for yt/dF with only one gene in 
a chromosome gave the best result with RMSE  =  0.13 and 
R2 = 0.91 for the training data set. However, the same model 
performed poorly in predicting the testing (unseen) data 
(RMSE = 0.22 and R2  =  0.55), implying that the model was 
under-trained. Finally, a model with a maximum of four 
genes in a chromosome performed very well in both the 
training and testing periods. To control model complexity 
and reduce the risk of overfitting, a higher gene number was 
not used and the value of maximum genes in a chromosome 
was set to be four. The relevant sensitivity analysis results 
for all the mixing characteristic parameters are presented 
in Table 1. The results demonstrated that the models with 
a maximum gene number of four had a satisfactory pre-
dictive capacity (R2  >  0.90) for all the mixing characteristic 
parameters.

3.2. MGGP models

A major objective of this study is to obtain explicit expres-
sions for yt/dF, xi/dF, and Si/dF as functions of urF and sr/dF. 
The MGGP program provided many models of different 
levels of model performance and complexity, and the best 
model herein was defined as the model that exhibited the 
best balance during the training period. The coefficients in 
the evolved models were originally expressed in the form 

of the ratio of two integers, which ensured a high accuracy. 
For the purpose of presenting these models, the variable-
precision floating-point arithmetic function in MATLAB was 
used to reduce the significant digits. The developed models 
with fewer significant digits for the three mixing characteris-
tic parameters are summarized in Table 2.

It can be observed that these models are relatively com-
pact, and thus can be easily utilized. To evaluate the robust-
ness of the developed models, various performance indices 
for both the training and testing data sets were calculated 

Fig. 3. Example of a multi-gene genetic programming chromosome.

Table 1
Sensitivity analysis results for the value of maximum genes in a 
chromosome

Variable Data set Indicator Max Gene 3 Max Gene 4

yt/dF Training RMSE 0.10 0.06
R2 0.95 0.98

Testing RMSE 0.11 0.09
R2 0.90 0.97

xi/dF Training RMSE 0.56 0.45
R2 0.97 0.98

Testing RMSE 0.63 0.54
R2 0.97 0.98

Si/F Training RMSE 0.10 0.12
R2 0.97 0.96

Testing RMSE 0.27 0.24
R2 0.89 0.91
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(Table 3), including the mean bias error (MBE), mean abso-
lute error (MAE), mean absolute percentage error (MAPE), 
root-mean-squared error (RMSE), normalized root-mean-
squared error (NRMSE), R2, and p-value of the analysis of 
variance [30,31]. The p-value for each parameter was greater 
than the significance level of 0.05, so the predictions were 
not found to be statistically different from the experimental 
data.

The MGGP predictions for yt/dF were very accurate. 
The MBE values were 0 and 0.04 for the training and test-
ing data sets, respectively. This indicated that the bias was 
effectively diminished during the training period whereas 
the model slightly over-predicted the overall magnitude of 
the unseen data. The MAE and RMSE values for the train-
ing data sets were 0.04 and 0.06, respectively, so the abso-
lute error in MGGP training for yt/dF was about 0.05. The 
MAE and RMSE values for the testing data sets were slightly 
higher with an average value of approximately 0.08. These 
error indicators demonstrated that the absolute error of the 
MGGP model predictions for yt/dF was well below 0.1. The 
MAPE and NRMSE values indicated that the error in MGGP 
prediction for yt/dF was about 3% and 5% for the training 
and testing data sets, respectively, which was satisfacto-
rily accurate. The R2 values were higher than 0.97, which 
demonstrated that the model can accurately predict the 
overall data trend. The performance indices for the unseen 
data set were very close to those for the training data set, 
demonstrating a high predictive capacity of the proposed 
model for yt/dF.

The performance of the MGGP model for xi/dF was also 
very good. Similar to the model for yt/dF, the MBE value was 

also 0 for the training data set, indicating that the overall bias 
in the MGGP training was negligible. The MBE value for the 
testing data set was –0.29, which suggested that the model 
tended to under-estimate xi/dF. The MAE and RMSE values 
for the training data sets were 0.36 and 0.45, respectively, so 
the absolute error in MGGP training for xi/dF was about 0.4. 
The MAE and RMSE values for the testing data sets were 0.34 
and 0.54, respectively, so the absolute error in MGGP predic-
tions for xi/dF in the testing period was slightly higher than 
0.4. The MAPE and NRMSE values indicated that the error 
in MGGP prediction for xi/dF was about 6% and 8% for the 
training and testing data sets. The R2 values were both 0.98, 
which were satisfactorily high. Similar to the MGGP mod-
els for yt/dF, the developed models for xi/dF had consistently 
good performances during both the training and testing peri-
ods, demonstrating the high generalization capacity of these 
models.

For Si/F, the developed model also exhibited an unno-
ticeable bias for the training data set and slightly under-
predicted the overall testing data. The MAE and RMSE 
values for the training data sets were 0.10 and 0.12, respec-
tively, so the absolute error in MGGP training for Si/F was 
of the magnitude of 0.1. The MAE and RMSE values for 
the testing data sets were 0.21 and 0.24, respectively, so the 
absolute error in MGGP predictions for Si/F in the testing 
period was of the magnitude of 0.2. The MAPE and NRMSE 
values indicated that the error in MGGP prediction for Si/F 
was about 8% and 18% for the training and testing data sets, 
respectively. The R2 values were 0.96 for the training and 0.91 
for the testing data sets. These indices showed that the pre-
dictions for the testing data set had higher errors and lower 

Table 2
Summary of the developed MGGP-based equations

Variable Equation

yt/dF (0.039(urF)0.5)/(sr/dF) – 0.134sin(61.2(sr/dF)) – ((4.73 × 1012(sr/dF) + 4.73 × 1012 (urF) + 3.74 × 1013))/(3.52 × 1013(sr/dF) + 7.04 × 
1013(urF)) – (305(sr/dF)1.5)/((sr/dF) + (urF) + 7.9)3 – 0.34/(sr/dF) – 2.19(urF)0.5 – 0.0323(sr/dF)0.25 × (sin((sr/dF)) – (urF)2) + 5.47

xi/dF 6.39(sr/dF)(urF) – 1.93cos((urF)) – 0.537cos((sr/dF)2(urF)3) – 6.2(sr/dF)(urF)exp(–exp(–(sr/dF))) + 2.11
Si/F 0.0797(sr/dF) + 0.0797cos(cos((urF))) + 0.446log((sr/dF) + (urF) + cos((urF))) – 0.392cos((urF)) + (0.355sin(exp(-(sr/dF))))/

cos((sr/dF)) – 0.042

Note: Numerical precision reduced for display purposes.

Table 3
Performance indices of the developed models

Measure of fit yt/dF xi/dF Si/F

Training Testing Training Testing Training Testing

MBE 0.00 0.04 0.00 –0.29 0.00 –0.02
MAE 0.04 0.07 0.36 0.34 0.10 0.21
MAPE (%) 2.80 4.82 6.53 6.30 8.19 18.92
RMSE 0.06 0.09 0.45 0.54 0.12 0.24
NRMSE 0.04 0.06 0.06 0.09 0.08 0.17
R2 0.98 0.97 0.98 0.98 0.96 0.91
p-value 1.00 0.86 1.00 0.88 1.00 0.97
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correlation values than those for the training data set. A bet-
ter outcome can be expected with the availability of more 
observational data. However, the overall predictions of the 
developed model for Si/F were quite reasonable.

3.3. Model comparison

The fitting performances of the developed MGGP models 
are compared with the empirical equations proposed by [3] 
using the entire data set. The comparisons are presented in 
Fig. 4. The scattered points are very close to the identity line, 
demonstrating that the proposed MGGP models predicted 
yt/dF, xi/dF, and Si/F very well. The empirical predictions 
were also accurate in general but deviated farther from the 
identity line at some points.

To compare the model performances quantitatively, 
the performance indices of the developed models and the 
existing empirical equations for the entire data sets were 
calculated and are presented in Table 4.

The p-value for each parameter was greater than the 
significance level of 0.05, so the predictions were not found 
to be statistically different from the experimental data. 
For yt/dF, the proposed MGGP model reduced the abso-
lute errors (MAE and RMSE) of the empirical equations by 
more than 50% and increased R2 by about 10%. The MAPE 
and NRMSE values decreased from approximately 10% 
to 5% when the MGGP model was utilized. For xi/dF, the 
proposed MGGP model reduced the absolute errors of the 
empirical equations by more than 60% and increased the 
R2 by about 20%. The MAPE and NRMSE values decreased 
from approximately 17% to 7% when the MGGP model was 
utilized. For Si/F, the developed MGGP model was not as 
accurate as those for yt/dF and xi/dF but it also performed 
better than the existing empirical equations. It reduced the 
absolute errors of the empirical equations by more than 30% 
and increased the R2 by about 10%. The MAPE and NRMSE 
values decreased from approximately 15% to 10% when 
the MGGP model was employed. These results show that 
the proposed models have better generalization capacity 
than the existing empirical equations.

The MGGP algorithm does not require any pre-determi-
nation of the model structure, but it requires a modeler to 
define the input and output variables. In this study, the input 
and output variables for the MGGP models were determined 
by the well-established dimensional analysis presented in 
Section 2.1. The empirical equations had the same input and 
output variables because they were also derived based on 
the dimensional analysis. The final forms and coefficients 
of the chromosomes were obtained by the MGGP algorithm 
through an evolutionary process. The MGGP models were 
believed to be more accurate than the empirical equations 
because the results were closer to the experimental data, as 
the MGGP algorithm can further optimize the coefficients, 
detect some hidden relationships, and avoid improper pre-
determination of the model structures. It is acknowledged 
that there are many other advanced AI models that have 
the potential to predict the detailed mixing characteristics. 
However, the present study focused on MGGP primarily 
because it can provide explicit and compact models, and 
thus the other AI algorithms are not tested in the present 
study.

3.4. Prediction confidence analysis

To assess further the capacity for generalization of the 
developed MGGP models, prediction confidence analyses 
were conducted with the assistance of MATLAB’s “nlpredci” 
function. The function is a nonlinear prediction confidence 
interval function that uses a symmetric confidence interval 
approach. It uses the equations of [32] based on the t distri-
bution and gives a symmetric confidence interval at every 
point. More information about this method is referred to 
in previous papers in the literature [32–34]. The results are 
summarized in Table 5, which shows that the mean uncer-
tainty interval half widths were ±0.38, ±2.09, and ±0.39 for 
yt/dF, xi/dF, and Si/F, respectively.

Fig. 4. Comparison of measured and calculated results: (a) yt/dF, 
(b) xi/dF, and (c) Si/F.
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4. Conclusions

A new method based on MGGP to predict a rosette dense 
jet group in crossflow ambient conditions is introduced in 
this study. Experimental data were utilized to train and test 
the models to obtain yt/dF, xi/dF, and Si/F as functions of 
sr/dF and urF. The developed MGGP models were found to 
be capable of satisfactorily estimating yt/dF (MAPE = 3.18%; 
RMSE = 0.07; R2 = 0.97), xi/dF (MAPE = 6.48%; RMSE = 0.47; 
R2 = 0.98), and Si/F (MAPE = 10.46%; RMSE = 0.15; R2 = 0.95). 
The predictions of the developed MGGP models were clearly 
better than the existing empirical equations, which were not 
sufficiently accurate to be used in conceptual rosette diffuser 
design. Prediction confidence analyses were performed, and 
the mean uncertainty interval half widths were ±0.38, ±2.09, 
and ±0.39 for yt/dF, xi/dF, and Si/F, respectively. Therefore, 
the developed models and the MGGP algorithm have been 
found to be useful in predicting a rosette dense jet group in 
crossflow ambient conditions. Model improvements can be 
expected with the availability of more training and testing 
data, so further research objectives should mainly involve 
the experimental and numerical studies aimed to enrich the 
data sets.
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