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ABSTRACT

Treatment of domestic sewage by sequential batch processes has been shown to be quite attractive,
mainly because it allows the maintenance of anaerobic, anoxic and aerobic conditions, which are
necessary for the removal of nitrogen and phosphorus, in a single reactor. The aim of this study
was to evaluate the behavior of a new reactor known as “cyclic sequential batch reactor” on the
removal of organic matter, nitrogen and phosphorus from domestic sewage in a tropical climate.
The removal of organic matter, nitrogen and phosphorus reached values of 90.6%, 90.5%, and 89.1%,
respectively. Effluent quality of less than 8.3 mg N/L total nitrogen, 4.6 mg N/L ammonia nitro-
gen, and 0.8 mg P/L of total phosphorus were routinely obtained in reactor conditions as following:
temperature about 26°C, a solids retention time of 12 d, a hydraulic retention time of 4 h, organic
loading rate of 2.1 g COD/L d, nitrogen loading rate of 0.24 g TKN/L d, phosphorus loading rate of
0.03 g P/L d and food-to-mass ratios of 0.76 g COD/g MLVSS d.

Keywords: Biological nitrogen removal; Biological phosphorus removal; Cyclic sequencing batch

reactors (CSBR); Domestic sewage; Eutrophication

1. Introduction

The concern about nitrogen (N) and phosphorus (P)
removal from domestic sewage is increasing due to the
negative impacts of the eutrophication process on aquatic
environments which are caused by undue disposal and
poor treatment of this anthropogenic waste [1]. Recently,
Brazil introduced restrictive new laws and policies at all
levels (federal, state and local) to increase public concern
for sewage treatment and water quality. However, many
wastewater treatment facilities, especially in developing
countries, are only designed for chemical oxygen demand
(COD) abatement, given that nitrogen and phosphorus dis-
charge limits are not regulated by local environmental leg-
islation; this is the case of Brazil. Additionally, the reduction
of a geographical area for sewage management is driving
the development of new systems and technologies. The
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removal of N and P can be accomplished through physical-
chemical and biological processes. Due to its lower cost
and operational simplicity, the biological process is gener-
ally chosen for sewage treatment of [1-3]. Among biolog-
ical processes, the activated sludge (AS) process has been
widely used for the treatment of sewage from communi-
ties/groups of all sizes, mainly by sequencing batch reac-
tors (SBR) [4-6]. Conventional biological nitrogen removal
is accomplished by autotrophic nitrification under aerobic
conditions, followed by heterotrophic denitrification under
anoxic conditions. However, P removal is achieved by spe-
cial microbial metabolism under alternative anaerobic and
aerobic stages. Such conditions are performed at different
stages during the SBR cycle [7-9], which reduces the cost
of the treatment system. In order to provide advanced sec-
ondary treatment, the SBR reactor could be modified to
also perform simultaneous nitrification, denitrification and
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organic matter removal [10-14]. Herein, requirements for
different degree of oxygenation and competition for organic
substrate among different functional microorganisms bring a
great challenge. The nitrogen removal process relies on two
steps called nitrification and denitrification. Nitrification
is a process in which ammonia is biologically converted
to either nitrite or nitrate, while the denitrification process
biologically converts nitrite and nitrate to N gas, which is
then released into the atmosphere. Nitrification requires
the presence of oxygen and a longer solids retention time
(SRT). The long SRT has benefit to nitrification, because
of the long generation cycles of nitrifying bacteria, rather
than grow very quickly. However, denitrification occurs
in anoxic conditions (no free oxygen available). Recently,
an SBR with anaerobic, anoxic and aerobic conditions was
developed without the necessity of changes the phases
during the batch. This process is known as a cyclic acti-
vated sludge system (CASS) [11,21,22]. This system is based
on a compartmentalized reactor containing a bio-selector
zone (anaerobic), an anoxic zone and an aerobic zone. As a
result, biological sludge treatment with optimal properties
has been observed. The presence of the aerobic and anoxic
zone guarantees the nitrification and denitrification in the
system, it means oxidation of N to nitrate and its reduction
consequent to nitrogen gas. Other attractive aspect is the
possibility of favoring the growth of phosphorus accumu-
lating organisms in the bio-selector zone, making possible
the more efficient removal of this important chemical from
the sewage. Thus, CASS performs treatment with excellent
technical properties, more compact and economic systems
compared to other reactors [23]. However, CASS is a rather
recent alternative and the main information comes from
researchers in countries with temperate climates. The nov-
elty of this study is to apply the cyclic sequential batch reac-
tor (CSBR) process under different conditions not before
developed. First, the higher temperature in tropical climate
countries leads to an undesirable low SRT to obtain the
nitrification process, and so we need to discover the mini-
mum value when we have a high non-aerated fraction. Also,
under high temperatures, the rate of nitrite formation may
become higher than the rate a nitrate formation and so it is
possible that the treatment system results in the accumula-
tion of nitrite. In addition, the P removal requires low SRT
and nitrification demands a high SRT, being simultaneous N
and P removal a big challenge in this study. It is highlighted
that our study used real sewage with P content of about
5 mg/L, which is a low value if compared to sewage from
South Africa and countries in the Northern Hemisphere,
where P concentrations in sewage are above 15 mg/L.

2. Materials and methods
2.1. Experimental set-up and reactor operation

Experimental assays were carried out in a pilot-scale.
The treatment system was installed at the Polytechnic
School of the University of Sao Paulo (USP, Brazil). Domestic
sewage that fed the system came from the USP campus
and neighborhood. First, the domestic sewage received a
preliminary treatment (screening and grit removal) and then
was pumped into the CSBR. Table 1 shows the main charac-
teristics of the domestic sewage used in this study.

The pilot-scale CSBR process was constructed of an
acrylic aeration tank (0.81 m x 0.52 m x 0.52 m with a capacity
of 150 L), a metering pump, and an air pump in conjunction
with a gas flow. The reactor design adopted in this study was
based on Goronszy et al. [21,23], which shows a relation of
internal chambers in the order of 1:2:27 for zone 1, 2 and 3,
respectively.

The domestic sewage was introduced into zone 1 of
the reactor by an intermittent flow metering pump. Then,
the domestic sewage was sent by gravity to zone 2, where
a mixer was installed to ensure good mixing of the biologi-
cal sludge. Aeration in zone 3 was done by air diffusers (fine
bubbles) located at the bottom of the reactor and connected
to an air compressor. The dissolved oxygen (DO) concen-
tration was measured online using a series of 5700 oxygen
probes (YSI Inc., Ohio, U.S.A.) connected to DO transmitters
and controlled by a Programmable Logic Controller (PLC)
coupled to an air solenoid valve. The membranes of these
electrodes were changed every 8 weeks. Temperature, pH
and oxidation-reduction potential (ORP) were measured
online using series SC1000 connected to appropriated sen-
sors (Hach Inc., US.A.).

The return of sludge from zone 3 to zone 1 was done
by a metering pump, in a continuous flow, to reproduce
the traditional CSBR process. Disposal of excess sludge
and treated sewage was made automatically by a solenoid
valve, controlled with a PLC. The volumetric exchange
was 50% of the zone 3 volume. The reactor was operated
in sequential batches composed of the feeding, reaction,

Table 1
Characterization of the domestic sewage used

Parameters Amount
pH 73+0.5
Alkalinity, mg CaCO,/L 250 + 49
Chemical oxygen demand, mg COD/L 697 + 146
Total suspended solids, mg TSS/L 325+ 55
Total Kjeldahl nitrogen, mg TKN/L 81.6 +14.2
Ammonia (N-NH}), mg N—NHZ/L 66.0+12.0
Nitrate (N-NO;), mg N-NO;/L 0.2+0.1
Nitrite (N-NO;), mg N-NO/L <0.3

Total phosphorus, mg P/L 75+17

* Analyzes were performed in duplicate.

Table 2
Operational conditions of the cyclic sequential batch reactor

Variables Range and levels
Reactor volume, L 150

Feed flow rate, L/d 450

Recycle ratio, % 100

Solids retention time, d 12

Hydraulic retention time, h 4.0

Airflow rate, mL/min 2.0-3.0
Dissolved oxygen (aeration-zone 3), mg/L  1.0-2.0
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sedimentation and effluent disposal phases. Table 2 shows
a summary of the operational conditions of the reactor.
Additionally, Fig. 1 shows the detailed characteristics of
the CSBR experimental system.

2.2. Acclimatization stage

The performance of the CSBR was evaluated over two
months of acclimatization (June and July, winter season —
Southern Hemisphere) and six months of the experimental
investigation stage (August to January, spring and summer
seasons — Southern Hemisphere). CSBR went into opera-
tional stability in 60 d. Temperature and pH (zone 3) during
acclimation were 26.0°C + 2.5°C and 6.9 + 0.5, respectively.
After this stage, COD and total Kjeldahl nitrogen (TKN)
removals were started.

Biological sludge was used for starting the CSBR: zone
1 was 50% filled with UASB (Upflow Anaerobic Sludge
Blanket) and volatile suspended solids (VSS) were about
2,500 mg/L, while zones 2 and 3 were 50% filled with
AS and VSS were equal to 3,500 mg/L. Table 3 shows the
sludge concentrations maintained after the system reaches
the permanent regime. The SRT was controlled daily by
the withdrawal of 1/SRT sludge volume from the aeration
tank. The solids loss in the final effluent was considered
negligible. SRT was maintained during 12 d. Food-to-mass
ratio (F/M) was controlled by adjusting the flow rate of
the sewage inlet to keep the COD load proportional to the
VSS mass present in the reactor. The data were recorded
on a computer by a data logger. Table 3 shows the sum-
mary of CSBR start-up operating conditions and organic
loading rate (OLR), nitrogenous loading rate (NLR) and
total phosphorus loading rate (PLR).

2.3. Analytical methods

The analyzed parameters were: temperature, pH,
COD concentration, ammonia, nitrite, nitrate, TKN, total
phosphorus, alkalinity, total solids and ORP. Laboratory
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Table 3

Operating conditions of the cyclic sequencing batch reactors
Parameters Amount
OLR, g COD/Ld 2.10+0.20
TKN-NLR, g TKN/L d 0.24+0.10
NH;-NLR, g NH;/L d 0.20 +0.05
PLR, g P/Ld 0.03+0.01
F/M, g COD/g MLVSS d 0.76
Anaerobic, mg MLVSS/L 2,807 +433
Anoxic, mg MLVSS/L 1,235 + 315
Aeration, mg MLVSS/L 2,736 + 428
SVI, mL/g 82+12
Anaerobic *7.1+05
Anoxic 74+04
Aeration 6.9+0.8

* Anaerobic chamber. pH adjusted daily with sodium hydroxide
to 7.0.

analyses were performed at the Sanitation Laboratory of
the University of Sao Paulo.

All parameters were determined by protocols in accor-
dance with the Standard Methods for the Examination of
Water and Wastewater [24]. Ammonium, nitrite, nitrate
and phosphorus were quantified in ion chromatography
(Dionex-100, AS4A-SC). The airflow rate was measured
by an airflow meter model 101325Pa. All analyzes were
performed in duplicates.

3. Results and discussion

3.1. Parameters of the CSBR performance and organic
matter removal

Table 4 shows the main chemical and physicochemical
properties of the influent and the effluent from the CSBR
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Adding infuent 60 min m
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Fig. 1. Schematic layout of the cyclic sequential batch reactor used.
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Table 4

Main characteristics of the sewage before (influent) and after (effluent) CSBR treatment

pH Alkalinity

Anaerobic *7.1+0.5 Influent (mg CaCO,/L) 250 +49
Anoxic 74+04 Effluent (mg CaCO,/L) 76 +23
Aeration 69+0.8 Nitrogen forms

Influent 73+0.5 Ammonia influent (mg NH;-N/L) 66.0+12.0
Effluent 6.9+0.8 Ammonia effluent (mg NH;-N/L) 4.6+25
COD Nitrite influent (mg NO;-N/L) <0.3
Influent (mg COD/L) 697 + 146 Nitrite effluent (mg NO;-N/L) <0.1
Effluent (mg COD/L) 65 + 23 Nitrate influent (mg NO;-N/L) 02+0.1
Removal efficiency COD (%) 90.6+3 Nitrate effluent (mg NO;-N/L) 09+09
TSS Total phosphorus

Influent (mg TSS/L) 325 +55 Influent (mg P/L) 75+£1.7
Effluent (mg TSS/L) 19+5 Effluent (mg P/L) 0.8+0.5
Removal efficiency (%) 941+3 Removal efficiency (%) 89.1+5.1
ORP TKN

Anaerobic (mV) -80 + 100 Influent (mg TKN/L) 81.6+14.2
Anoxic (mV) 35+55 Effluent (mg TKN/L) 74+35
Aeration (mV) 155+76 Removal efficiency (%) 90.5+5.2

* Anaerobic chamber. pH adjusted daily with sodium hydroxide to 7.0.

after six months of treatment. The pH of the influent, the
sewage into all zones of the reactor as well as the efflu-
ent were stable in values between 6.9 + 0.8 and 7.4 + 0.4.
Total suspended solids (TSS) in the treated effluent achieved
94.1% of efficiency (final value of 19 + 5 mg/L).

Fig. 2 shows the ORP values during the six months of
treatment system operation. Literature studies indicate
that ORP variation between —400 to —10 mV promotes the
formation of volatile organic compounds (VOCs). These
values also might imply the occurrence of methanogene-
sis in reactors [18,25]. The zone 1 (anaerobic) of the reac-
tor showed ORP values about —100 + 80 mV and probably
promoted VOCs generation, which was a goal in this study
because it provides a competitive advantage to PAOs. This
bacterial population takes up VOCs such as acetate and
propionate and store them as intracellular polymers such
as poly-B-hydroxybutyrate (PHB). PHB oxidation is used to
form poly-P bonds in cell storage so that soluble orthophos-
phate is removed from the solution and incorporated into
poly-P within the bacterial cell. Cell growth also occurs due
to PHB utilization and the new biomass with high poly-P
storage accounts for phosphorus removal. The formation of
VOCs in zone 1 was expected due to the process conduc-
tion. Additionally, zone 1 had a bio-selector chamber pro-
moting growth/presence of facultative heterotrophic organ-
isms because the influent exhibited readily biodegradable
COD. This condition in zone 1 was maintained with rig-
orous pH control. In zone 2 (anoxic), ORP was circa of
35 +55mV and in zone 3 (aerobic) was around 155 + 76 mV.
These values are in accordance with ORP for aerobic envi-
ronments described in the literature, which ranged from 0
to 200 mV [6,25,26]. The aerobic condition in zone 3 was
measured and DO concentration range of 1.0 to 2.0 mgO,/L,
ensuring good mixing of the biological sludge and the

development of biochemical processes without damage to
obligate aerobic microorganisms.

Fig. 3 shows the monitoring of COD concentrations
during six months of CSBR treatment. The average COD
concentration in the affluent was 696 mg/L, this value can be
considered high for a typical sanitary sewer, this high con-
centration is due to the frequent disposal of crushed organic
waste in the sewer line. COD reached the final value of
65 + 23 mg/L, being 90.6% of removal efficiency. Goronszy
et al. [23] used a cyclic activated sludge system to sewage
treatment and obtained a COD efficiency of 96.7%.

Values of VSS along CSBR treatment (anaerobic, anoxic
and aeration zones) are shown in Fig. 4. The VSS con-
centration in the anaerobic zone was 2,807 + 433 mg/L, in
the anoxic zone was 1,235 + 315 mg/L and in the aerobic
zone was 2,736 + 428 mg/L. Considering the COD load of
2.10 g/L d, the total useful volume of 0.150 m?® reactor and
the average VSS concentration of 2.75 g/L, the F/M medium
was 0.76 g COD/g MLVSS d. Figs. 3 and 4 highlighted that
it was possible to maintain the effluent with COD in very
low concentrations. This is important because bulking and
floating sludge is a big concern in many wastewater treat-
ments. Rezaee et al. [14,27] evaluated the variation of the
sludge volume index (SVI) as a function of the mixed liquor
suspended solids (MLSS) concentration and hydraulic reten-
tion time (HRT) at different aeration modes in an up-flow
anaerobic/aerobic/anoxic bioreactor (UAAASB). Rezaee and
collaborators [27] also showed that the high values of SVI
were obtained at the highest F/M ratio (at the minimum
values of MLSS concentration and HRT) and the lowest F/M
ratio (the maximum values of MLSS concentration and HRT)
independent of the aeration mode. The minimum SVI value
obtained was 77.41 mL/g in the UAAASB with mechanical
mixing when MLSS concentration, aeration mode, and HRT
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Fig. 3. Chemical oxygen demand concentration during the CSBR system, (a) average in time series and (b) box plot for COD.

were 10,000 mg/L, 2, and 6 h, respectively. Asadi et al. [28]
evaluated the variation of SVI as a function of HRT at differ-
ent DO concentrations in a continuous feed and intermittent
discharge airlift bioreactor. The minimum SVI value obtained
was 96 mL/g with DO of 1.0 mg O,/L, HRT of 6 h and SRT of
12 d. In our study, the SVI value of 82 + 12 mL/g was compa-
rable to those values reported in the literature. The results
here indicate that the operating conditions (HRT of 4h, DO
of 1.0-2.0 mg O,/L and sludge recycle rate of 100%) had
not a negative affect in the sludge sedimentation.

3.2. Phosphorus removal

Fig. 5 shows the total phosphorus concentrations during
six months of experimental investigation. P concentration of
0.8 £ 0.5 mg P/L in the effluent was obtained after 4 h of
HRT and SRT of 12 d. Consequently, the removal efficiency

was achieved at least 89.1%. Studies in literature with phos-
phorus loading rates in sequential batch reactors similar to
that used here reported removal efficiencies of 85% to 95%
[21,23,29]. Although these studies indicated that an SRT
less than 12 d is deemed necessary to complete the phos-
phorus removal, our study needed 12 d to achieve the best
phosphorus removal. Thus, the CSBR design enables high
efficiency of phosphorus removal, showing better results
than those around 25%-30% of phosphorus removal by
conventional treatments [15,16]. Li et al. [30] reported that
Candidatus Accumulibacter phosphatis is the best-known PAOs
widely present in full-scale plants for enhanced biological
phosphorus removal.

The study by Wang and collaborators [17,19,20] also
showed that initial pH of 7.8 favored a high number of
PAOs, low number of glycogen accumulating organisms
and high enzymatic activities (exopolyphosphatase and
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Fig. 5. Total phosphorus concentration during the CSBR system, (a) average in time series and (b) box plot for phosphorus.

polyphosphate kinase) if compared to initial pH 6.6. In our
study, zone 3 showed pH around 6.1 in the beginning of the
operation, which caused a slightly acidic biological sludge due
to nitrification and low carbon availability. However, as seen,
pH around 6.1 for a short time did not have a negative effect
on the BPR process. Although, pH control in a higher range
(pH 2 7.5) would probably improve BPR performance in the
CSBR. The pH value in zone 1 (anaerobic) was daily adjusted
with sodium hydroxide, resulting in an average amount of
7.1+0.5. Thisvalue was adopted based on the literature [31-37].

3.3. Nitrogen removal

The influent and effluent profiles of nitrogenous
compounds and alkalinity are shown in Figs. 6 and 7,
respectively. It is emphasized that nitrite and nitrate concen-
trations in the influent were very low. TKN and ammonia

had significant removal by CSBR with the operation of
NLR 0.24 + 0.10 g TKN/L d and OLR 2.10 + 0.20 g COD/L d:
TKN showed removal efficiency of 90.5%, while ammonia
removal efficiency was 92.6 mg N/L. The results show that
the C/N ratio was not a limiting factor for N removal. Some
studies with organic and nitrogen loading rates in sequential
batch reactors, similar to this study, reported TKN and
ammonia removal efficiencies between 85% and 95% [23,29].

We observed a reduction in the removal rate of total
nitrogen for recycles between 50%-80% and 200%-250%
when the maximum removal was 62.6%. However, recy-
cles between 100%—-150% promoted removal rates of 88.0%
nitrogen and 97.0% COD. Ma and colleagues [22] used a
cyclic recirculation system and obtained high removal of
ammonia and P when the sludge recirculation rate increased
from 50% to 100%. The removal efficiencies of ammonia and
total phosphorus were 91.1% and 84.7%, respectively. In this
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study, the recycling rate was adjusted to 100% recycle in the
acclimation phase to obtain the best process performance.
This condition of recycling rate resulted in N removal of
90.5% and COD of 90.6%.

Fig. 6 points out sewage nitrification and denitrifica-
tion occurred efficiently. TKN and ammonia concentrations
in the effluent were 7.4 + 3.5 and 4.6 + 2.5 mg N/L, respec-
tively, after six months of treatment. Also, throughout the
experimental time, nitrate concentrations in the effluent
were smaller than 3.2 mg N/L, showing a high efficiency of
the denitrification process. It probably occurred due to the
sludge recycling rates of 100% in continuous flow (zone 3

to zone 1 and consequently to zone 2). As discussed pre-
viously, this recycling rate was the main factor for nitrate
removal in zone 1. Thus, the applied organic load was not
restrictive for biochemical processes occurrence and the
DO concentration in zone 3 was sufficient for nitrogenous
compounds oxidation. The DO concentration in zone 3 was
established between 1.0 and 2.0 mg O,/L during the study.
More DO concentration in zone 3 was corroborated by
increased ORP. The nitrification process leads to a further
reduction of pH; but pH reduction may also be associated
with a possible return of alkalinity by denitrification process.
The effect of ammonification, nitrification and denitrification
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on alkalinity can be inferred by simple stoichiometric ratios,
as demonstrated in the Egs. (1)-(3) below [26].

(Aalc/AN) =50 gCaCO,/14gN =3.57 mgCaCO,/mgN (1)
(Aalc/AN) =-100 gCaCO,/14gN =-7.14 mgCaCO,/mgN (2)
(Aalc/AN), =50 gCaCO,/14gN = 3.57 mgCaCO,/mgN 3)

where (Aalc/AN): alkalinity change per mg N; am: ammoni-
fication; n: nitrification; d: denitrification

Alkalinity concentration in the domestic sewage was
250 + 49 mg CaCO,/L and after the CSBR process remained
76 + 23 mg CaCO,/L (Fig. 7). The theoretical alkalinity con-
sumption estimated by the combined stoichiometric reac-
tions of ammonification, nitrification and denitrification
were 223 mg CaCO,/L, but the experimental results showed
a real consumption of 174 mg CaCO,/L. The difference
between the theoretical and experimental values depends
on the ammonia and alkalinity concentrations in the influ-
ent. Our strategy was done a supplementation in zone 3
with artificial alkalinizing material to avoid biochemical
limitations in the nitrification and denitrification processes.
For this purpose, we considered that 1.0 mg NH,-N/L of
ammonium demands an addition of 3.57 mg/L CaCO, for
well-adjusted alkalinity, promoting the ammonification,
nitrification and denitrification processes. Alkalinity in the
system without CaCO,-addition was satisfactory only when
nitrite and nitrate were in very low concentrations. Also, we
highlighted that the temperature of about 26.0°C + 2.5°C in
the sludge aeration tank created a favorable condition for
the biochemical processes, especially nitrification.

4. Conclusions

This study emphasizes that high removals of 90.6%
COD, 90.5% total nitrogen and 89.1% total phosphorus
were possible due to CSBR operation as following: OLR of
2.10 g COD/L d, NLR 0.24 g TKN/L d, PLR 0.03 g P/L d, SRT
of 12 d and HRT of 4 h. The applied SRT did not allow the
nitrite formation rate to exceed the nitrate formation rate,
so there was no accumulation of nitrite in the system. More
importantly, the CSBR design performed a simultaneous
removal of organic matter, nitrogen and phosphorus from
domestic sewage. The high removal efficiencies of these com-
pounds show that CSBR is a promising technology under
environmental conditions of tropical countries.
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