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a b s t r a c t
Precipitation is a complex system affected by many factors. The evolution of annual precipitation 
time series is uncertain, non-linear and non-stationary. The accuracy of precipitation prediction is 
often not high by using a single mathematical method. Based on empirical mode decomposition 
(EMD) and ensemble empirical mode decomposition, the improved complementary ensemble 
empirical mode decomposition (CEEMD) can restrain the mode aliasing problem in the process of 
EMD decomposition, but there is still some noise present in the decomposition sequence, which 
affects the precision of prediction. The decomposed data of CEEMD are denoised based on wavelet 
transform, and combining the advantages of Elman neural network in adapting to time-varying and 
dynamic memory, a novel regional annual precipitation prediction model has been established, this 
model is applied to the prediction of annual precipitation in Zhengzhou based on the coupled model 
of CEEMD-wavelet transform-Elman neural network (CWE). The results show that the CWE model 
has a good prediction effect, and the Nash-Sutcliffe efficiency coefficient of the model is above 0.70. 
The prediction accuracy of the CWE model is higher than that of the single Elman model and other 
models, and its relative error and absolute error are lower. In addition, this model can reveal the 
influencing factors of annual precipitation evolution to a certain extent, and provide a new way for 
annual precipitation prediction.
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1. Introduction

Scientific and accurate prediction of precipitation has an 
important guiding significance to regional water resources 
management, flood control, and disaster reduction, and 
water environment protection [1–5]. Research on regional 
precipitation prediction has become a hot topic for scholars at 
home and abroad. In data-based precipitation prediction, 
statistical models have traditionally been used [6,7]. 
Recently, an artificial neural network model has also been 

introduced into precipitation prediction applications [8–12]. 
Huang et al. [13] proposed an empirical mode decomposition 
(EMD) method. It is a new signal analysis method, which 
has strong local performance and is suitable for the study 
of non-linear, non-stationary and random signals. However, 
the intrinsic mode component (IMF) component obtained 
by the EMD method has the phenomenon of mode aliasing, 
which makes it difficult to characterize the original signal. 
Wu et al. [14] proposed an analysis method for noise-assisted 
data based on EMD, namely the ensemble empirical mode 
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decomposition (EEMD) method, which greatly suppresses 
the modal aliasing of the IMF components in EMD methods. 
The complementary ensemble empirical mode decomposi-
tion (CEEMD) Yeh et al. [15], the model reduces the signal 
of reconstruction error by adding white noise with oppo-
site values to the original signal and solves the problem of 
poor EEMD completeness. Since Daubechies published an 
important paper on Wavelet [16], most engineers and sci-
entists have become more and more familiar with wavelet. 
It has been shown that for many signal denoising meth-
ods, the threshold method of wavelet coefficients has near- 
optimal denoising characteristics. Wavelet denoising not 
only reduces the complexity of numerical calculation but 
also produces clearer results. Vidakovic et al. [17] address 
the shrinkage of wavelet coefficients and induced denoising 
in the time domain by taking into consideration the “time” 
characteristics of a noisy signal.

Scholars at home and abroad focus on the evolu-
tion law of precipitation in large basins, regions and cit-
ies. In Adamowski Jan’s research, a method of river flow 
forecasting in semi-arid watersheds based on a discrete 
wavelet transform and artificial neural network is proposed 
[18]. It can be seen that the research methods of the above 
scholars mainly focus on the traditional statistical model, 
single neural network and other aspects. Sayemuzzaman 
and Jha analyzed the time series of 249 precipitation sta-
tions in North Carolina from 1950 to 2009 [19]. The Mann–
Kendall (MK) test, the Theil–Sen approach (TSA) and the 
sequential Mann–Kendall (SQMK) test were applied to 
quantify the significance of trend, the magnitude of trend, 
and the trend shift, respectively. Regional (mountain, pied-
mont and coastal) precipitation trends were also analyzed 
using the above-mentioned tests. Hou et al. [20] used the 
improved Morlet wavelet neural network to forecast pre-
cipitation in western Jilin. The results show that the model 
has low forecasting error and good performance. Yang et 
al. [21] based on the precipitation data from 96 weather sta-
tions in northwest China during 1960–2013, the Continuous 
Wavelet Transform and the Mann-Kendall test were applied 
to analyze the precipitation spatiotemporal variations at 
different time scales. The relationships between the origi-
nal precipitation and different periodic components were 
investigated. However, the traditional mathematical statis-
tics model cannot learn the high-frequency and mutational 
data well, and cannot reflect the evolution characteristics of 
the sequence in the frequency domain. The traditional neu-
ral network has the defect of overtraining, which makes the 
network deviate too far away from the whole. Therefore, in 
order to reduce the non-stationarity of annual precipitation 
series, a coupling prediction model is established, which is 
a new way to improve the accuracy of annual precipitation 
prediction. CEEMD is a method to effectively deal with 
the decomposition of nonstationary signals. Compared to 
common decomposition methods, it effectively reduces 
the number of iterations and increases the reconstruction 
accuracy. Wavelet denoising the decomposed components 
can further reduce the non-stationarity of the sequence. 
The Elman neural network has a strong nonlinear fitting 
ability. Based on this, the CEEMD-wavelet transform- Elman 
neural network (CWE) model for annual precipitation pre-
diction is established.

2. Theories and methods

2.1. Methods of data analysis

2.1.1. Complementary ensemble empirical 
mode decomposition

The supplement of EEMD  Yeh et al. [15] solves the 
problem of poor completeness of EMD, but the decompo-
sition of the signal depends on the selection of the noise 
amplitude and the number of integrations, and false com-
ponents (components without physical meaning) are prone 
to occur. Based on this, an improved EEMD method is pro-
posed. Complete Ensemble Empirical Mode Decomposition 
(CEEMD) is improved based on EMD and EEMD. It can 
reduce modal aliasing in EMD decomposition, and can solve 
the problem of large error of EEMD reconstruction [22]. 
The advantage of CEEMD is that it eliminates the pseudo 
components of the IMF and reduces the non-stationarity of 
the precipitation sequence.

The calculation steps of CEEMD are as follows:

•	 n groups of positive and negative white noise sequences 
were randomly added to the original time series, the 
mean value of added auxiliary noise sequences is zero, 
and two sets of collective signals are generated [23].
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where Gi1 and Gi2 are time-series signals after adding 
white noise, Ni is auxiliary noise signal and S is the 
original signal. Finally, there are 2n sets of signals were 
obtained.

•	 The EMD decomposition method is used to decompose 
each set signal, and each signal gets a set of 2m-1 IMF 
components and a trend term. where the jth IMF com-
ponent of the ith component is expressed as cij. m is the 
number of decompositions for each signal.

•	 The decomposition results are obtained by combining 
multiple components, the decomposition results are as 
follows.
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where cj represents the jth IMF component obtained by the 
final decomposition of CEEMD. n is the number of added 
white noise sequences. Finally, the wave motion or trend of 
different scales in the signal is decomposed into a series of 
sequences with different characteristic scales step by step, 
and each sequence is an eigenmode function component.
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where U(t) represents the sum of IMF components and the 
remaining components after CEEMD decomposition of the 
original noisy data, and rm represents the average trend or 
constant.
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2.1.2. Wavelet transform

Wavelet noise reduction is a commonly used modern 
signal processing method. The research of Donoho et al. 
[24] shows that wavelet denoising has a wide range of func-
tional adaptability and the optimal adaptive denoising abil-
ity. Wavelet denoising can effectively denoise the signal. 
In order to improve the quality of time series, the signal can 
be denoised by wavelet transform before the time series is 
taken as a sample.

In the paper, the Mallat algorithm is considered to 
implement wavelet decomposition. the process description 
is shown in Eq. (4).
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where f is the time domain signal, k = 0,1,2, ..., n–1 (n is the 
number of sampling points), h*n, g*n is the pulse response 
of the conjugate mirror filter, j is the number of wave-
let decomposition layers, this paper considers the optimal 
decomposition to five layers.

After the signal is decomposed, the high-frequency 
coefficient threshold value obtained by decomposing is 
quantified, and a limited threshold value is selected for 
quantizing the high-frequency coefficient. There are two 
kinds of traditional threshold functions: hard threshold 
function and soft threshold function. The soft threshold 
denoising method is considered in this paper.

Using the characteristic of strong signal reconstruction 
ability of wavelet analysis, the Mallat reconstruction algo-
rithm is used to reconstruct the decomposed signal. The 
reconstruction algorithm is actually the inverse process of 
the decomposition algorithm, the reconstruction algorithm is 
shown as follows:
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The basic flow is to process the high-frequency part 
of the wavelet results of each layer after decomposition of 
Eq. (4), and then reconstruct the signals of each layer by 
using Eq. (5). In other words, the main components reflecting 
the essential characteristics of signals can be obtained.

2.2. Elman neural network

Elman neural network, which was put forward by 
Elman [25], is a typical recurrent feedback neural network. 
The structure of the Elman neural network consists of four 
layers: an input layer, hidden layer, connective layer and 
output layer. Different from BP neural network [26], Elman 
neural network adds a layer of a connective layer in the hid-
den layer as a time delay operator to realize the dynamic 
memory of the system, and the output value of hidden layer 
as the input value of the next time to realize the dynamic feed-
back to the system. Based on the good memory and stability 

of the Elman neural network, it has been widely used in var-
ious fields. The Elman network structure is shown in Fig. 1.

In Fig. 1, u is the input vector, y is the output vector, 
xc is the acceptance layer output vector, and x is the hid-
den layer output vector. W1 is the connection weight from 
the input layer to the hidden layer; W2 is the connection 
weight from the input layer to the hidden layer; W3 is the 
connection weight from the hidden layer to the output layer. 
The expression of the Elman network model is as follows:

y k g W x k( ) = ( )( )3  (6)

x k f W x k W u kc( ) = ( ) + −( )( )( )1 2 1  (7)

x k x k ax k ac c( ) = −( ) + −( ) ≤ <( )1 1 0 1  (8)

where g() is the activation function of the output neuron, 
f()is the activation function of the hidden layer neurons, 
and a is the self-joined feedback gain factor. When a = 0, 
the network is a standard Elman network; when a ≠	0,	 the	
network is a modified Elman network.

Elman neural network adopts the BP algorithm to mod-
ify the weight value, and the learning index function uses 
the square sum of the error function. The corresponding 
expression is listed below:
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where y wk ( )ˆ  is the target output vector and yk(w) is the 
original output vector.

Elman neural network learning algorithm adopts a 
momentum gradient descent back-propagation algorithm. 
The weights and thresholds are optimized by using the 
difference between the network output values and the out-
put samples, to minimize the sum of squared errors of the 
network output layer.

3. Predictive coupling model based on CWE

Decomposition–prediction–reconstruction is one of 
the important ways of nonlinear time series prediction. 

Fig. 1. Elman neural network structured.
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According to the “decomposition–prediction–reconstruction” 
framework, three main steps are involved in the proposed 
CWE learning paradigm: data decomposition, individual 
forecast and ensemble forecast.

To verify the effectiveness of the proposed CWE-based 
prediction model, the annual precipitation sequence was 
selected as the sample data. Furthermore, some popular fore-
casting technologies should be also performed as benchmark 
models for comparison purposes. In this section, the steps 
of the model are first designed, as described in section 3.1. 
In the aspect of evaluation criteria, section 3.2 gives the 
corresponding indicators in detail, the superiority of the pro-
posed model in terms of prediction accuracy can be tested.

3.1. Model steps

The steps of CWE coupling model are as follows:

•	 Decomposition of precipitation observation data series 
from 1951 to 2017 at Zhengzhou Meteorological Station 
by CEEMD, the  IMF’s and one residue of time series 
are obtained.

•	 The IMF’s and one residue are denoised by wavelet 
transform.

•	 The IMF’s and one residue after wavelet de-noising are 
standardized. If the range of input or output data of the 
network varies greatly, the prediction model of the net-
work will have a big error, so we must standardize the 
data and make the range of the data in [0,1]. The corre-
sponding expression is listed below:
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where x is the original value of the t moment; xmin is the 
minimum value of the sequence; xmax is the maximum 
value of the sequence; y is the normalized value of the t 
moment.

•	 By using Elman neural network, the training data of IMF 
components and trend items are repeatedly adjusted to 
make the prediction of IMF components and trend items 
reach the best effect.

•	 Finally, the predicted IMF components and one residue 
are accumulatively restored and compared with the 
original data.

The calculation process of the CWE coupling prediction 
model is shown in Fig. 2.

3.2. Evaluation criteria of predicting performance

In order to better reflect the prediction effect of the CWE 
coupling model, four main criteria are used for evaluation 
of prediction, relative error (RE), mean relative error (MRE), 
mean absolute error (MAE), root mean square error (RMSE), 
and Nash–Sutcliffe efficiency coefficient (NSE) are taken as 
evaluation indicators.
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where yt is the actual value of the t moment; y–t
 is the pre-

diction value of the t moment, µt is the total average of 
observations, N is the number of time series.

Fig. 2. Calculation process of the CWE coupling prediction 
model.
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4. Case study

4.1. Data source

The data source of this study is the China ground inter-
national exchange station. Precipitation data of Zhengzhou 
meteorological stations from 1951 to 2017 were selected, 
and preliminary quality control was carried out to make the 
experimental data more representative. The location of the 
Zhengzhou meteorological bureau is shown in Fig. 3.

As can be seen from Fig. 4, the annual precipitation in 
Zhengzhou from 1951 to 2017 is influenced by the com-
plexity, diversity and variability of meteorological condi-
tions, and there is a lot of randomness and uncertainty in 
the precipitation process. The maximum annual precipi-
tation is 1,040.7 mm, the minimum annual precipitation is 
353.2 mm, and the minimum annual precipitation is in 2013, 
which brings some difficulties to the prediction of annual 
precipitation.

4.2. Complementary ensemble empirical mode decomposition

The CEEMD decomposition model was used to decom-
pose the annual precipitation data of Zhengzhou city from 
1951 to 2017. After repeated testing, when the maximum 
decomposition is 5; the noise frequency is 100, the noise 
amplitude is 0.2, the CEEMD has the best decomposition 

effect on precipitation. The result of decomposition is shown 
in Fig. 5.

The annual precipitation sequence of Zhengzhou city 
was decomposed into 4 IMF components and a correspond-
ing residue by using the CEEMD method. Among them, 
the IMF1 component has the highest volatility, the high-
est frequency, and the shortest wavelength; the amplitude 
of the IMF2 ~ Residue gradually decreases, the frequency 
gradually decreases, and the wavelength gradually becomes 
larger. Due to the large non-stationary nature of the origi-
nal data and strong volatility, the proportion of IMF1–
IMF4 components is gradually reduced. At the same time, 
it can be seen from the residual term that the annual pre-
cipitation in Zhengzhou city is decreasing. It can be seen 
that the volatility and tendency of the series are greatly 
reduced by CEEMD decomposition. Therefore, this decom-
position method is helpful to transform nonlinear and non- 
stationary sequences into a stationary time series, which 
can improve the performance of the sequences.

4.3. Wavelet denoising

Wavelet denoising can effectively denoise non-station-
ary signals, the IMF’s and trend terms generated by CEEMD 
decomposition are denoised by wavelet denoising to improve 
the quality of the sequence.

Fig. 3. Location of the study area.
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Due to the use of wavelet analysis for rotor fault signal 
noise reduction, it is difficult to determine the number of 
wavelet decomposition layers, and the effect of noise reduc-
tion is closely related to the speed of the fault rotor and 
signal sampling frequency, so the noise reduction process is 
difficult to complete automatically. This paper aims at this 
problem by means of a large number of experiments.

First, the original data are resampled and then decom-
posed to the specified number of layers by wavelet trans-
form. Finally, the Donoho soft threshold method is used to 
achieve automatic noise reduction. The continuity of the 
wavelet coefficients obtained by the soft threshold is good, 
so the signal does not generate additional oscillations. 
The data after wavelet denoising is shown in Fig. 6.

As can be seen from Fig. 6, the wavelet denoising can 
denoise the non-stationary signal, and the effect is very good, 
which improves the quality of the sequence very well.

4.4. Annual precipitation prediction

The IMF components and trend items from 1951 to 2012 
were used as training samples, and the IMF components and 

Fig. 4. Annual precipitation of Zhengzhou city from 1951 to 2017.

Fig. 6. IMF components and trend items from 1951 to 2012 are 
denoised by wavelet denoising.

Fig. 5. CEEMD decomposition results of annual precipitation in Zhengzhou City from 1951 to 2017.
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trend items from 2013 to 2017 (5 y) were used as test sam-
ples. The activation function of the hidden layer is traingdx, 
the learning function is pure in, the number of iterations is 
1,000, the number of hidden layer nodes is 20, and the num-
ber of input layer neurons is 4. The training target error 
tolerance is 10–5. The network prediction effect and absolute 
error are shown in Fig. 7.

It can be seen from Fig. 7, after CEEMD decomposition 
and wavelet denoising, the fluctuations and non-stationarity 
of the annual precipitation time series in Zhengzhou 
have been greatly reduced, and the fitting effect of the 
true and predicted values of the IMF 1 ~ residual is getting 
better and better, except for a few years of relative error 
is bigger, the relative error of the other component index 

  

  

 

(a)
(b)   

(c)
(d) 

(e)

Fig. 7. Prediction effects and absolute errors of (a) IMF1, (b) IMF2, (c) IMF3, (d) IMF4, and residue.
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showed a trend of a gradual decline, which enabling the 
Elman network to better predict its components and trend 
terms.

The prediction results of IMF1–IMF4 and residue are 
reconstructed into the prediction values of annual precip-
itation and compared with the original values of annual 
precipitation. The calculation prediction error is shown in 
Table 1.

As shown in Table 1, the absolute error and relative 
error of the CWE coupling model in predicting annual 
precipitation in Zhengzhou are within a reasonable range; 
the maximum and minimum of relative errors are 17.14% 
and 4.96%, and the average relative error is 11.77%, the 
model prediction relative error is relatively small.

In order to understand the training and prediction of 
the annual precipitation time series in Zhengzhou more 
intuitively and in more detail, the effect diagram of precipi-
tation forecast from 2013 to 2017 is drawn, and the absolute 
error map of the real value and forecast value from 2013 to 
2017 is made, as shown in Fig. 8. Finally, the MAE, RMSE, 
MRE, and NSE of the true and predicted annual precip-
itation in Zhengzhou from 2013 to 2017 were calculated. 
The results are shown in Table 2.

It can be seen from Fig. 8 and Table 2, the CWE coupling 
prediction model has a good prediction effect, the fitting 
effect between the real value and the prediction value is 
good, the prediction effect in 2016 is slightly poor, and the 
overall error is small. The NSE is 0.71, which is close to 1, 
indicating that the hydrological model has good quality and 
high model credibility [27].

4.5. Discussion

In order to verify the superiority of the CWE model, the 
Elman model, EMD-Elman model, EEMD-Elman model 
and CEEMD-Elman model were used to make predictions, 
and the prediction results of all models were compared 
with the real values. The comparison results are shown in 
Table 3.

From Fig. 9, prediction accuracy of the “decomposi-
tion–prediction–reconstruction” model is higher than that 
of the single neural network prediction model. It can be 
seen that the CWE coupling model is more obvious than 
other models when predicting the annual precipitation in 
Zhengzhou, and the predicted value and the original value 
have the highest fitting degree.

It can be seen from Table 3 that the average absolute 
error, root mean square error and average relative error of 
the CWE coupling model are smaller than the other four 
models when predicting annual precipitation. The CWE 
coupling model overcomes the disadvantages of white noise 
and other noises on other network models, and overcome 
their shortcomings in learning high frequency and non- 
stationary data. At the same time, the errors of the four 
“decomposition–prediction–reconstruction” models are 
significantly smaller than that of a single Elman network. 
The “decomposition–prediction–reconstruction” model has 
obvious advantages in predicting precipitation over a sin-
gle neural network. The reason is that the smoothness of the 
original time series is greatly improved after the decomposi-
tion, and the prediction accuracy is improved.

5. Conclusion

In this paper, a new coupling model of regional annual 
precipitation prediction is constructed, which is based on 
the CEEMD decomposition and wavelet de-noising of 

Table 1
Relative error of annual precipitation in Zhengzhou from 2013 
to 2017

Year Ture value 
(mm)

Predictand 
(mm)

Absolute 
error (mm)

Relative 
error (%)

2013 353.2 404.1 50.9 14.41%
2014 551.6 578.9 27.3 4.96%
2015 689.1 740.6 51.5 7.47%
2016 804.3 942.1 137.8 17.14%
2017 604 693.7 89.7 14.85%
MRE = 11.77%

Table 2
Error analysis of annual precipitation in Zhengzhou

MAE (mm) RMSE (mm) MRE (%) NSE

71.50 81.28 11.77% 0.71%

 

Fig. 8. Predicting effect and error of annual precipitation of 
Zhengzhou from 1951 to 2017.

Table 3
Prediction error analysis of CWE model and other models

Model MAE (mm) RMSE (mm) MRE (%)

CWE model 71.50 81.28 11.77%
CEEMD-Elman 76.18 84.54 13.71%
EEMD-Elman 87.54 106.48 15.51%
EMD-Elman 89.72 112.69 15.58%
Elman 135.18 154.59 27.61%
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non- stationary annual precipitation time series and the 
adaptive ability of Elman neural network. Through the appli-
cation of the annual precipitation prediction in Zhengzhou 
city, the average absolute error, root mean square error and 
average relative error of the model are all lower. The NSE of 
the model reaches 0.71, which indicates that the prediction 
effect is better. Empirical research shows that the proposed 
“decomposition–prediction–integration” model can signifi-
cantly improve prediction performance because it can be 
statistically superior to other popular prediction methods, 
including single popular prediction tools (such as ARIMA, 
ANN, ENN, LSSVR), as well as other data combination tools 
and integration methods in terms of accuracy. This further 
shows that, the proposed CWE-based coupling model has 
effective decomposition algorithms and powerful, fast and 
stable predictive tools. It can deal with complex time series 
prediction tasks, especially high volatility and irregular 
annual precipitation prediction tasks, which have broad 
application prospects. The prediction algorithm based on 
the CWE model proposed in this paper can be used not 
only for forecasting annual precipitation but also for other 
time series forecast situations, such as sediment, runoff, 
stock, and crude oil prices. In addition, this study is based 
on time series analysis and does not consider the physical 
mechanism and long-term forecast of precipitation. How 
to make a more comprehensive analysis and improve the 
prediction accuracy will be the focus of the next research.
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