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a b s t r a c t
Raw landfill leachate was treated using an enhanced microwave oxidation process for removals of 
total organic carbon (TOC), color, and organic compounds with double bonds (UV254). Experimental 
factors, microwave (MW) power setting, reaction time, and initial persulfate (PS) concentration, 
were optimized via response surface methodology (RSM) with a Box–Behnken design. The analysis 
of variance was used to derive the prediction correlation coefficient and the relationship of each 
factor on the test parameters. The contour-line plots and surface plots revealed the optimal oper-
ating conditions for removals of three parameters. The initial PS concentration had the most sig-
nificant effect on the removals of all three parameters. The highest removals of 79.5%, 100%, and 
68.4% for TOC, color, and UV254 attained under separate optimal operating conditions, respectively. 
The optimal operating conditions for TOC, color, and UV254 removals as a whole were derived to be 
447.7 W, 20.0 mM, and 116.3 min with removals of 78.8%, 100%, and 66.4%, respectively.

Keywords:  Leachate degradation; Microwave; Chemical oxidation; Response surface methodology; 
Box–Behnken design

1. Introduction

Leachate is being produced from waste degradation and 
surface water infiltration in a typical landfill. Landfill leach-
ate typically has elevated concentrations of compounds of 
concern, and its characteristics are changing with time [1]. 
It would have adverse impacts on the environment and 
human health without proper collection and treatment. 
Various leachate treatment methods have been developed 
and applied, including biological [2,3], physical-chemical 
[4,5], membrane [6,7], and advanced oxidation processes 
(AOPs) [8,9].

Microwave (MW) heating involves electromagnetic 
waves radiation and heat transfer. Under MW irradiation, 
dipolar molecules such as water will absorb MW energy, 

oscillate back and forth, and then convert the absorbed 
MW energy into thermal energy [10,11]. The principle of 
MW heating differs from traditional heating, and the heat 
conduction is from inside out [12]. Therefore, MW heating 
can increase the reaction rate to reduce the required treat-
ment time. MW treatment technologies are being widely 
used in lignocellulosic biomass pyrolysis [13], direct dyes 
[14], and 4-nitrophenol degradation [15], to name a few.

Persulfate (S2O8
2–, PS) is a strong oxidizing agent, with 

a high oxidation-reduction potential (ORP) of 2.01 V [16], 
but it is quite stable under ambient conditions. It has been 
applied to the degradation of perfluorooctanoic acid (PFOA) 
[17], sulfadiazine (Sdz) [18], and polychlorinated biphe-
nyls (PCBs) [19,20]. PS generates sulfate free radicals (SO4

−•) 
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through activation processes (e.g., heat in Eq. (1)), and then 
reacted with organic matters [17,19].

S O SO SO or SO2
heat

8
2

4 4 4
2− −• −• − → + ( )  (1)

Sulfate radical (SO4
−•) has a redox potential of 2.43 V 

[21], close to that of hydroxyl radical (HO•), 2.8 V [22]. 
Sulfate radical is more stable than hydroxyl radical (with 
a longer half-life) so that it has a better opportunity to 
react with organic matters when present [23].

Response surface methodology (RSM) is a statisti-
cal and optimization method for experimental design to 
obtain experimental data efficiently. It contains a two-di-
mensional (2D) graph and a three-dimensional (3D) graph. 
The former provides a 2D view where all points that have 
the same response are connected to produce contour-lines 
of constant responses. The latter displays the 3D view rela-
tionship in two dimensions with the factors on the x- and 
y-scales, while the response (z-scale) variable represented 
by a smooth surface. The 3D graph would be generated by 
calculating fitted removal responses (z-values) using the 
x- and y-variables while holding any additional factors con-
stant at the values specified in the setting conditions [24]. 
Briefly, RSM can display the surface curvature changes in 
the response between two factors. It can tell whether the 
experiment of range understudy has a curvature. When 
the experimental region is near the optimal reaction con-
ditions, the curvature of the real reaction surface increases. 
A multivariate quadratic regression equation (quadratic 
model) is used to fit the relationship between the experi-
mental factors and the response values, and then to find 
the optimal operating conditions through regression anal-
ysis. Using RSM has many advantages, including a smaller  
number of experiments, less experimental costs, and more 
efficient experiments. In a multiple-factor experimental 
design, single or multiple response values of design optimi-
zation, as well as co-optimization, are the mainstreams of the 
RSM study. In recent years, the RSM has been widely used 
in biosorption technology [25], amoxicillin removal [26], and 
low-density polyethylene pyrolysis [27], to name a few.

The main RSM design approaches are Box–Behnken 
design (BBD) and central composite design (CCD). The for-
mer often used in the design of experiments with more than 
three factors and the levels setting values of these factors 
must be continuous. The design should generate sufficient 
data to fit a quadratic model; in other words, containing sin-
gle, squared, and cross-product terms of three or more fac-
tors. The three experimental factors are considered as the 
graph variables for three axes (X, Y, and Z) with a center 
point of (0,0,0) and edge center points (X ± 1, Y ± 1, Z ± 1) 
to constitute a cube and a sphere inside with a radius of 2  
[28]. Therefore, the sphere should be rotatable (or nearly 
rotatable) and require 3 levels of each factor. In other words, 
all the experimental points are located on the equidistant 
endpoints without containing the level of the variables gen-
erated by the cube vertex (corner point) in the experiment. 
Each design can be thought of as a combination of a two-level 
(full or fractional) factorial design with an incomplete block. 
In each block, a certain number of factors are put through 
all combinations for the factorial design, while the remain-
ing factors are kept at the central values. In short, a BBD 

design has treatment combinations for the RSM that are at 
the midpoints of the edges of the experimental space and at 
the center. Because the BBD does not contain corner points 
(the design points are all inside the sphere), it is thus assured 
that all design points are within the safe operating area.

Our research team has previously conducted several 
landfill leachate treatment studies using MW technology 
[29–31]. However, the RSM was not used in those stud-
ies to optimize the operating parameters. Optimization of 
such parameters is main desirable so that the treatment 
time, chemical usage, and cost can be reduced. The overall 
objective study was to use the RSM to optimize three fac-
tors (MW power setting, irradiation time, and initial PS con-
centration) for removals of three parameters (total organic 
carbon (TOC), color, and organic compounds containing 
double bonds (UV254)) from landfill leachates. In a graph-
ical analysis, using the software would generate either a 
contour plot for a single pair of variables or separate con-
tour plots for all possible pairs of variables. In this paper, 
only the core component of BBD experimental design in 
informative response surfaces are presented to save space. 
There will show the surface curvature changes in removals 
of these three parameters.

2. Experimental approaches

2.1. Materials and methods

Leachate samples used in this study were taken from the 
Sanjuku Sanitary Landfill, located in Taipei, Taiwan. This 
site occupies an area of about 65 ha. It started its operation 
in 1994 and closed in 2010. The leachate samples were col-
lected in 25 L plastic containers and stored at 4°C before 
being used in the experiments. Table 1 summarizes the 
characteristics of the raw landfill leachate from August 
2013 to August 2014. As shown, the BOD5/COD ratios were 
relatively low and constant at 0.126−0.127, implying that 
the organic matters present in the leachate are not read-
ily biodegradable [32]. When a specific UV absorbance 
(SUVA) value is greater than 4, leachate has more humic 
(larger organic molecules) fraction, while when smaller 
than 2, non-humic (smaller organic molecules) substances 
dominate. SUVA values of the raw leachate samples were 
3.07−3.38, in the range between 2 and 4, implying that the 
contained organics were a mixture of humic and non-hu-
mic substances [33]. The averaged concentrations of TOC, 
color, and UV254 were 56.5 mg/L, 121 Pt-Co color units, and 
1.648 cm–1, respectively.

In our previous studies, each experiment used 50 mL 
of leachate (pre-filtered) with a specific initial PS (S2O8

2–) 
concentration of 4, 10, or 20 mM. The MW irradiation was 
provided by a Milestone Ethos plus MW system (Milestone 
Inc., USA). The MW power setting was 325, 550, or 775 W 
at 85°C, the irradiation time was 40, 70, or 130 min, which 
included preheating at the reaction temperature for 
10 min [29–31].

For leachate analysis, TOC concentrations were deter-
mined following the W532.52C method (National Institute 
of Environmental Analysis, NIEA) by using an Aurora 1030 
TOC analyzer (OI Analytical Co., USA). Color and UV254 
measurements followed the NIEA W223.52B method, using 
a Helios Beta UV–Vis spectrophotometer (Thermo Fisher 
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Scientic Inc., USA). Removals of TOC, color and UV254 were 
calculated using Eq. (2) below:

Removal %( ) =
−







×

C C
C
i f

i

100  (2)

where Ci and Cf are the initial and final concentrations of 
the parameters, respectively.

2.2. Experimental design and analytical methodology

MW power setting, PS concentration, and irradiation 
time were chosen as the critical factors (variables) and des-
ignated as X1, X2, and X3, respectively. There were three 
levels of each factor, and coded as “–” (low level), 0 (center 
level), and “+” (high level) and these levels were set with 
appropriate distances apart from the corresponding center 
levels (Table 2). For example with 70 min as the center point 
of the irradiation time and the level of irradiation time gap 
as 60 min, 130 min would be at +1 unit (a 60 min increase 
from the center point) and 40 min would be at –0.5 unit 
(a 30 min decrease from the center point). A total of 15 runs 
were conducted to optimize the level of the chosen factors. 
The number of experiments (n) required for the develop-
ment of the BBD was determined below [34]:

n k k C= −( ) +2 1 0
 (3)

where k is the number of the factors and C0 is the num-
ber of repetitions of the center point. The details of the 
experiment design are given in Table 2 and three repli-
cates (no. 9, 11, and 15) were used to evaluate the extent of 
random experimental errors.

In a BBD optimization process, responses are the running 
results of experimental combinations relative to the chosen 
factors. Using the second-order polynomial model to show 

their relationships, which also includes the linear model, can 
be expressed as [35]:

Y X X X X X X X
X X X X

= + + + + + +

+ + +

β β β β β β

β β β
0 1 1 2 2 3 3 12 1 2 13 1 3

23 2 3 11 1
2

22 2
2 ββ ε33 3

2X +  (4)

where Y is the response; X1, X2, and X3 are the effect of the 
independent factors; X12, X22, and X32 are the square effects; 
X1X2, X1X3, and X2X3 are the interaction effects; β1, β2, and 
β3 are the linear coefficients; β11, β22, and β33 are the squared 
coefficients; β12, β13, and β23 are the interaction coefficients 
between the three factors; β0 is the constant; and e is the 
random error, respectively. In order to estimate the β param-
eters, the experimental matrix notation of the model is 
shown below [36]:

Y X R= +α  (5)
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where Y is the response vector, X is the design matrix con-
taining the experimental points, α is the vector constituted 
by the parameters, R is the residual value, n is the number 
of experiments, and k is the number of factors, respectively. 
The system of equations was solved using the least-squares 
method.

A standardized residual plot was used to determine if 
an observed point was normal or not in statistical analyses. 
The x-axis of the standardized residual plot corresponded 
to each point’s standardized residual value, while the y-axis 
corresponded to its normal probability. A normal probabil-
ity plot of standardized residual was used to recheck the 
experimental data before statistical analyses. If the stan-
dardized residual trend exhibited a normal distribution, 
all the experimental response points would locate at or 
cluster around the straight line of 45° from the horizontal 
line and pass through the origin [24]. If one response point 
was far away from the standardized line, it meant the sta-
tistical trend was not normally distributed. The standard-
ized residual equals to the value of a residual, divided by 
an estimate of its standard deviation. Standardized residual 
values were normal in the interval between +2 and -2, which 
can be helpful in detecting abnormal value. If one response 
data deviated from all the other observed data, it could be 
inferred that the absolute value of this response’ standard-
ized residual was large (greater than +2 and smaller than -2).

Analysis of variance (ANOVA) is a statistical method 
commonly used in an RSM data analysis. The main output 
from an ANOVA study is typically arranged in a table that 
lists the sources of variation, degrees of freedom, a total sum 
of squares, and the mean squares. A typical ANOVA table 
also includes the F and p values with a 95%-confidence level 
to indicate whether the predictors or factors are significantly 
related to the response. An adequacy check of the RSM model 

Table 1
Characteristics of raw landfill leachate

Parameters Values Units

COD 137–233 mg/L
BOD5 17.3–29.7 mg/L
BOD5/COD ratio 0.126–0.127

TOC 48.8–56.5 mg/L
pH 7.2–7.4 

Color 87–121 Pt-Co color units
UV254 1.648–1.735 cm–1

SUVA (UV254/TOC × 100) 3.07–3.38 L/mg-m
Zn 0.008–0.05 mg/L
Cr 0.004–0.007 mg/L
Cu 0.001–0.008 mg/L
NO3–N 0.9–0.11 mg/L
NH3–N 265–325 mg/L
Total phosphorus 0.348–0.683 mg/L
TSS 3,670–4,280 mg/L
SS 31.7–36.3 mg/L
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is to diagnose the adequacy of the curve that is used to esti-
mate the quadratic regression model [25,35]. The coefficient 
of determination (R2) is defined as the percentage of the total 
variation in the response (Y) that is explained or accounted for 
by variation in the independent factors. However, when the 
number of factors increases, the residual decreases and the R2 
value increases [36]. Therefore, one can not depend entirely 
on the R2 value to determine the most appropriate regression 
model. In order to solve this problem, the R2 value needs to be 
corrected. After the correction of the R2 value, any factor is 
not randomly added into the model to increase the R2 value. 
Thus, to obtain a more accurate determination of the regres-
sion model, an adjustment on the coefficient of determination 
(Adj. R2) is often used to compare the residual per unit degree 
of freedom [37]. When the factor has a certain degree of con-
tribution to the explanatory ability of the model, the Adj. R2 
value will near the R2 value. Moreover, Adj. R2 value should 
be less than or equal to the corresponding R2 value. According 
to the results of Adj. R2, the applicability of the regression 
model under different parameters can be compared.

The desirability function was used to simultaneously 
optimize the responses of all the design factors to translate 
the functions to a common scale ([0,1]) [25]. The desirability 
value would be between 0 and 1; and a value closer to 1 indi-
cates a greater chance of achieving the response values. The 
individual desirability (d) used in the study is [38]:
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where μ, ω and t are the lowest, highest, and target val-
ues, respectively. The constants S, S1, and S2 have positive 
values and known as the weights. On the other hand, the 
composite desirability function (D) was used to simulta-
neously optimize the responses of all target parameters. 
The value is also on a ([0,1]) scale as [38]:

D dn
n

k k

=










=
∏

1

1/

 (9)

Once D was defined and the prediction equations for each 
of the k equations had been computed, it could be used to 
optimize or rank the predictors. 

The experimental design, all the normal distributions 
of the standardized residuals, the two-dimensional (2D) 
and response optimization plots (including the desirabil-
ity function) of the BBD quadratic model and the ANOVA 
analysis were done by using the Minitab 17.0 software. 
In this study, the three-dimensional (3D) response surface 
plots were done by using the SigmaPlot 12.0 software. 
Fig. 1 illustrates the schematic diagram of this study.

Table 2
BBD matrix with three independent factors and the corresponding responses of three parameters

Run 
no.

Independent factors and coded Variables and levels Actual responses 
(removal, %)

Predicted responses 
(removal, %)

MW power 
setting; X1 (W)

PS concentration; 
X2 (mM)

Irradiation 
time; X3 (min)

X1 

(W)
X2 

(mM)
X3 

(min)
TOC Color UV254 TOC Color UV254

1 −1 0 +1 325 10 130 74.42 86.78 51.04 71.65 85.29 50.36
2 0 −0.6 −0.5 550 4 40 32.58 09.92 04.80 27.78 13.52 13.57
3 0 +1 −0.5 550 20 40 79.60 89.26 65.98 74.74 83.78 59.17
4 +1 +1 0 775 20 70 75.11 92.29 62.39 78.35 95.26 66.18
5 −1 0 −0.5 325 10 40 32.19 73.00 47.51 41.13 72.84 43.21
6 0 −0.6 +1 550 4 130 42.28 28.37 26.24 48.93 31.93 28.79
7 +1 0 +1 775 10 130 66.64 88.98 53.49 59.76 88.59 56.13
8 0 +1 +1 550 20 130 82.24 96.42 66.10 85.24 94.74 61.59
9 0 0 0 550 10 70 62.75 93.39 52.37 61.39 93.66 52.43
10 +1 −0.6 0 775 4 70 29.94 33.88 40.75 32.87 29.27 31.98
11 0 0 0 550 10 70 62.48 94.21 52.43 61.39 93.66 52.43
12 +1 0 −0.5 775 10 40 55.26 67.77 40.09 55.97 69.81 42.43
13 −1 +1 0 325 20 70 71.21 94.21 66.16 69.82 98.41 73.69
14 −1 −0.6 0 325 4 70 33.27 31.41 27.77 28.49 28.86 25.22
15 0 0 0 550 10 70 58.94 93.39 52.49 61.39 93.66 52.43
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3. Results and discussion

3.1. Optimization by using the BBD

MW power setting, initial PS concentration, and irritation 
time are the most important factors of MW-assisted oxida-
tion. BBD analysis was applied in the experimental design 
of this study while the Minitab software was applied in the 
statistical analyses of factors’ interaction. Removals of TOC, 
color, and UV254 were chosen to be the responses, and the 
experimental results are tabulated in Table 2. Using the data 
shown in Table 2 and the second-order polynomial model of 
Eq. (4), the results of the regression analysis are shown below:

Y X X X X X
X X

TOC = − + + + +

−

73 7 0 1762 6 43 0 768 0 00058
0 00066

1 2 3 1 2

1 3

. . . . .
. −− − −
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where YTOC, Ycolor, and YUV254
 are the values of the above func-

tions (10) to (12), respectively; while each function is com-
posed of the three factors: MW power setting (X1), initial PS 
concentration (X2), and irritation time (X3).

Fig. 2 illustrates the normal probability plots of stan-
dardized residuals in the MW-assisted oxidation process. 
All the three parameters’ responses (TOC, color, and UV254 
removals) were close to their corresponding straight lines, 
which implies that most responses are normally distributed 
and their standardized residuals values on X-axis are in 
the interval between +2 and –2. Besides, the rationality of 

all the experimental results could be assessed in advance by 
these analyses of normal probability plots of standardized 
residuals. As shown in Table 2, there are a total of 15 sets of 
responses in the BBD matrix, which includes three indepen-
dent factors (MW power setting (X1), initial PS concentra-
tion (X2), and irritation time (X3)) and their corresponding 
responses. The center of the BBD matrix was at the point 
(550 W, 10 mM, and 70 min), and all the predicted analyses 
of Table 2 were conducted and calculated by using Eqs. (9) 
to (11). In statistical analysis, if the Pearson correlation coef-
ficient (r) is larger than 0.95, it implies a highly positive 
correlation among the observed data. By looking at the col-
umn of actual response and that of predicted response, the 
Pearson correlation coefficients of TOC, color, and UV254 
were 0.97, 0.995, and 0.959, respectively. They imply that 
good relationship between the actual and the predicted 
values.

3.2. ANOVA statistical analysis

In an ANOVA statistical analysis, if the probability 
p-value is less than 0.05 (~0.0001), it means that if is sig-
nificant at a >95% probability level. Table 3 tabulates the 
ANOVA test results using the RSM with the model term, 
linear terms (X1, X2, X3), squared terms (X1

2, X2
2, X3

2), and 
interaction terms (X1X2, X1X3, X2X3) vs. three parameters 
(TOC, color, and UV254). Since all the p-values are less than 
0.05 in the model term, the results indicate that the remov-
als of three parameters are all significant and effective, inde-
pendent of the models being linear terms, squared terms, 
or interaction terms [39].

The linear terms demonstrate the effect of a single factor 
on each parameter. The smaller the p-value is; the more 
influence it has on the removal of the parameter. For the case 
of the X2 model, the p -values of TOC, color, and UV254 param-
eters were less than 0.05, which implies that X2 has the most 
significant effect on pollutant removals. For the case of X1 
model, the results show that the p-values of TOC and color 
parameters were larger than 0.05, which implies that the 

 

Fig. 1. Schematic diagram of the MW-enhanced oxidation process and optimization by response surface methodology (BBD).
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effects of X1 were insignificant on TOC and color removals. 
For the case of the X3 model, the effects of X3 were insignif-
icant on TOC and UV254 removals, but significant on color 
removal. The order of significance is as follows: X2 > X3 > X1.

The squared terms demonstrate the additional effects 
of each factor. These additional effects could be observed 
from the bend phenomena on the plane response curves of 
the second-order polynomial model. One of the advantages 

Fig. 2. Normal probability plots of the standardized residuals for removals of (a) TOC, (b) color, and (c) UV254.

Table 3
Analysis of variance (ANOVA) test for response surface quadratic model for three parameters removals of leachate

Source aDF

TOC Color UV254

bAdj. SS cAdj. MS F p Adj. SS Adj. MS F p Adj. SS Adj. MS F p

Model 9 4,578.73 508.75 8.83 0.014 12,468.6 1,385.4 57.83 <0.0001 3,807.16 423.02 6.29 0.028
X1–MW power 
setting (W)

1 1.88 1.884 0.03 0.864 1.1 1.08 0.05 0.840 47.89 47.887 0.71 0.437

X2–PS concen-
tration (mM)

1 801.89 801.885 13.91 0.014 6,882.7 6,882.73 287.3 <0.0001 915.47 915.469 13.62 0.014

X3–Irradiation 
time (min)

1 247.22 247.221 4.29 0.093 441.4 441.41 18.43 0.008 269.42 269.415 4.01 0.102

X1
2 1 117.21 117.213 2.03 0.213 55.1 55.09 2.3 0.19 13.47 13.474 0.2 0.673

X2
2 1 277.62 277.62 4.82 0.08 4,477.4 4,477.44 186.9 <0.0001 376.38 376.38 5.6 0.064

X3
2 1 7.72 7.723 0.13 0.729 618.3 618.28 25.81 0.004 227.39 227.387 3.38 0.125

X1X2 1 4.43 4.425 0.08 0.793 3.3 3.28 0.14 0.727 52.33 52.335 0.78 0.418
X1X3 1 188.36 188.365 3.27 0.13 10.6 10.57 0.44 0.536 11.3 11.299 0.17 0.699
X2X3 1 30.81 30.813 0.53 0.497 15.1 15.09 0.63 0.463 44.48 44.484 0.66 0.453
R2 0.94 0.99 0.92
Adj. R2 0.83 0.97 0.77

aDF: degree of freedom; bAdj. SS: an adjusted sum of squares; cAdj. MS: adjusted mean of squares.
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of the RSM model is that it is more convenient to observe 
the relationship between factors and parameters. A smaller 
p-value has a larger curvature on the plane response curve 
by means of a significant bend phenomenon. For exam-
ple, in the case of the X2

2 model shown in Table 3, the 
p-values are smaller among these three parameters; in other 
words, X2 has a more significant curvature on the plane 
response curve when compared to the other two factors.

The interaction terms are usually used to evaluate 
if there is an interaction between two factors. As shown 
in Table 3, most interaction terms (X1X2, X1X3, X2X3) have 
larger p-values, and the results imply that interaction 
effects are less significant in the MW oxidation process. 
Similar to the cases of the squared terms, a smaller p-value 
has a larger curvature on the plane response curve. For the 
case of the X1X3 model, the p-value is 0.13, and the curva-
ture of TOC response is the largest among the three param-
eters. Comparatively, the curvature of TOC response has 
the smallest p-value of 0.793 in the case of the X1X2 model. 
In summary, the results shown in Table 3 indicate that 
the key effects on TOC, color, and UV254 removals are due to 
each factor by itself, not the interactions among them.

Table 3 also shows the Adj. R2 values of TOC, color, UV254 
parameters are 0.83, 0.97, and 0.77, respectively. The Adj. 
R2 values are smaller than their corresponding R2 values. 
From a statistic point of view, its performance on the color 
removal (Adj. R2 = 0.97) is better than those of TOC (Adj. 
R2 = 0.83) and UV254 (Adj. R2 = 0.77), which also implies that 
the RSM model is more suitable in predicting the color 
removals.

3.3. Analysis of contour-line

The Minitab software was used to plot the 2D con-
tour-line to model the relationship between the three fac-
tors and the three parameters. The parameters’ removals 
could be calculated by the density of both contours in 
Fig. 3 to observe their spatial gradient changes. As shown 
in Table 3, the ANOVA test indicates that X2 in the linear 
terms has the largest significance with p < 0.05, X1 vs. X3 
was chosen to plot the 2D contour-line under three dif-
ferent X2 of 4, 10, and 20 mM. It should be noted that the 
right-hand side of the dotted line in Fig. 3 indicates the 
modeling errors, and these errors would never happen 
in real situations. In other words, removal rates would 
never decrease with increases of X2.

Fig. 3a illustrates the cases of TOC removal rates under 
various X1 and X3. The TOC removal efficiencies of three X2 
were weak at lower MW power and shorter illumination 
time settings. Only when both MW power and irradiation 
time increased, the TOC removals rose. Under the same 
condition, the average TOC removal rates in 20 mM (65%–
85%) were greater (e.g., twice or so) than those in 4 mM 
(20%–50%). Chou et al. [30] mentioned that more intensive 
MW energy input would cause more PS ions being heat- 
catalyzed to initiate sulfate-free radical chain reactions to 
cause the decay of PS ions sooner. This could explain why 
TOC removal rates only slightly increased with increasing 
MW powers as shown in Fig. 3a.

Fig. 3b illustrates the color removal rates under various 
X1 and X3. Gaps in removal rates show obvious dense/sparse 

changes and isopleth contour-lines have a nearly-vertical 
arrangement. It indicates that color removal rates varied 
significantly with irradiation times. In addition, in the cases 
of higher and lower MW power settings with the same irra-
diation time, color removal was 75% at PS concentration of 
10 mM and near 100% at 20 mM, respectively. It has been 
reported in the literature that the long-chain structures and 
unsaturated groups of colors could be decomposed under 
higher PS concentrations [40]. When the X2 was less than 
4 mM, color removals were insignificant.

Fig. 3c illustrates UV254 removal rates under various X1 
and X3. The removals of organic compounds with double 
bonds in the leachate were less apparently affected by X2. 
Removals of some UV254 require a longer irradiation time 
and higher PS concentrations. As shown in Fig. 3c, UV254 
removals increased slightly with increasing PS concentra-
tions. In the case of 20 mM X2, the UV254 removal rates were 
in the range of 60%–72%, which were almost twice those 
of 4 mM X2, only 20%–35%.

3.4. Analysis of response surface

Eqs. (9) and (10) were used to plot three 3D response 
surfaces of X1, X2, and X3, with the center of the BBD, set 
at 550 W, 10 mM, and 70 min, respectively. As shown in 
Figs. 4a–c, the 3D response surfaces are useful to pro-
vide important information about the optimal settings for 
removals.

In the case of X1 at 550 W (Fig. 4a), the results show 
that the TOC, color, and UV254 removals were 86% (20 mM, 
130 min), 100% (lots of points), and 70% (19 mM, 130 min), 
respectively. In addition, color removals were nearly com-
plete decomposition and stable at high PS concentrations. 
It should be noted that lots of points in the 3D response 
surfaces show that the color removals were greater than 
100%, which are impossible [40]. They actually should be 
viewed as complete decomposition. It was also found that 
TOC and UV254 removals increased with the PS concentra-
tion and irradiation time. Fig. 4a illustrates that X2, exerted a 
more significant effect on removals than X3, as indicated by 
the 3D response surfaces’ curvatures.

For X2 of 10 mM (Fig. 4b), the average color removal 
was greater than 70%; it implies that most long-chain 
structures and unsaturated groups of color compounds 
could be decomposed with a PS concentration of 10 mM. 
The results show that the maximum TOC, color, and UV254 
removals were 73% (433 W, 130 min), 99% (566 W, 97 min), 
and 60% (775 W, 102 min), respectively. Fig. 4b also shows 
that TOC, color, and UV254 removals increased slightly 
with X1 and X3, due to self-scavenging of free radicals under 
longer irradiation times and higher MW powers [29]. It is 
plausible that X2 is a more significant factor than X1 and 
X3. From the increasing trend of 3D response surfaces’ cur-
vatures, it indicates that the effect of X3 on removal was 
only slightly greater than that of X1.

For X3 of 70 min (Fig. 4c), the results show that the max-
imum TOC, color, and UV254 removals were 81% (638 W, 
20 mM), 100% (lots of points), and 74% (325 W, 20 mM), 
respectively. It should be noted that the color removals 
had a well and stable performance at this irradiation time 
coupled with higher PS concentrations. Under lower PS 
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concentrations, TOC, color, and UV254, the removals were the 
worst. From the increasing trend of 3D response surfaces’ 
curvatures, it indicates that the effect of X2 (fast increas-
ing) on removal was greater than that of X1, especially in 
color removal.

All the results have been discussed by using the fixed 
center factor method. If three factors were discussed by the 
individual parameters’ point of view, the analysis results 
were as follows. For the case of TOC removal in Figs. 4a–c 
as an example, the maximum value in each figure minus the 
corresponding minimum value is defined as difference value. 
The difference values of Figs. 4a–c were 58% (i.e., 86%–28%), 

32% (i.e., 73%–41%), and 52% (i.e., 81%–29%), respectively. 
Fig. 4b has the smallest difference of 32%, which means that 
the x-axis (X3) and y-axis (X1) had an insignificant effect on 
the TOC parameter. The variation of TOC removals was the 
smallest at a fixed X2. In other words, X2 was a more signif-
icant factor in the TOC removal than X1 and X3. Similarly, 
for the cases of color removal in Figs. 4a–c, the differences 
were 86% (i.e., 100%–14%), 29% (i.e., 99%–70%), and 71% 
(i.e., 100%–29%), respectively. Similarly, X2 was a more sig-
nificant factor on color removal than the other two. For the 
case of UV254 removal in Figs. 4a–c, the differences between 
Figs. 4a–c were 56% (i.e., 70%–14%), 19% (i.e., 60%–41%), 

 
Fig. 3. 2D contour-line plots of the quadratic model for removals of (a) TOC, (b) color, and (c) UV254 in different initial PS concentra-
tions (4, 10, 20 mM) at 85°C.
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and 49% (i.e., 74%–25%), respectively. Similarly, X2 was a 
more significant factor in the UV254 removal.

As shown in Table 3, the more significant factor could be 
derived from the p-value (PS factor, X2) of the ANOVA lin-
ear terms. Otherwise, 3D response surfaces’ curvatures could 
be obtained by the ANOVA interaction terms. Compared a 
comparison with Table 3 and Fig. 4, TOC had the greatest 
curvature change in X1X3 with p = 0.13, which implies that 
the TOC response surfaces in Fig. 4b had a maximum cur-
vature phenomenon and a minimum p-value. Most RSM lit-
erature offered a few discussions on the relationships between 
3D response surfaces’ curvature and ANOVA [24–28].

3.5. Response optimization

Fig. 5 illustrates the response optimizations of TOC, 
color, and UV254 removals from the single– and multiple–
parameters analysis by using the Minitab software. In Fig. 5, 
the rows indicate whether TOC, color, or UV254 removals 
are the maximum or the target values; while the columns 
are the response optimizations of X1, X2, and X3, respec-
tively. Besides, the gray vertical lines are the optimal oper-
ational lines; the gray number values with square brackets 
are optimal operational values. The gray horizontal dotted 
lines and Y-values in Fig. 5 are optimal response values. 
The letters d and D are for the desirability and composite 
desirability values, respectively. The results of Nayak and 
Pal [25] indicated that a higher“d” value could be employed 
effectively for the estimation of optimal influences of the 
independent treating parameters. There are three response 
values (TOC, color, and UV254) and their corresponding 
desirability function values D [Eqs. (6) and (7)]. It has been 
reported that the bending level of curves depending on the 
p-values in Table 3, where a larger curvature corresponds 

to a smaller p-value. In other words, the optimal response 
reflects an increased curvature of the response surface, and 
this finding was not shown in our previous studies [29–31].

Fig. 5a shows the response optimizations of X1, X2, and 
X3; they were 456.8 W, 19.5 mM, and 130 min, respectively, 
for the highest TOC removal rate of Y = 86.22% with d = 0.937. 
Higher TOC removals relied on increasing free radicals con-
centrations with higher PS concentrations, longer oxidation 
times, and longer MW irradiation times. These findings cor-
respond well to those reported by Chou et al. [29]. Observed 
TOC response curve, the setting values on both sides of the 
inflection point were smaller than 86.22%, and it had a lin-
ear proportion between TOC removals and irritation time 
(X3 < 130 min). For the case of color removals, the response 
optimizations of three factors were 752.3 W, 15.2 mM, and 
54.5 min, with the highest color removal rate of Y = 99.99% 
with d = 0.999. It should be noted that the points above the 
dotted line indicating a complete color removal. For the 
color response curves, the setting values on both sides of the 
inflection point were smaller than 100%, indicating that X1 
had weak influences on color removals. For the case of UV254 
removals, the response optimizations of three factors were 
325 W, 20 mM, and 83.6 min, with the highest UV254 removal 
rate of Y = 74.55% with d = 1.0. Under the operational set-
ting of X2 = 20 mM and X3 = 83.6 min, the response curve of 
X1 had a minimum difference value in remove rate (6.49%), 
that is 74.55% at 325 W minus 68.06% at 740 W. In other 
words, X1 had weak influences on UV254 removals, whereas 
X2 was more important on UV254 removals. The response 
curve of X2 had the largest difference value of removal, 
and this curve rose with increasing PS concentrations.

The ultimate goal of the RSM was to provide the opti-
mization for single– or multiple–parameters. As shown in 
Fig. 5b, the common optimizations of three factors were 

 
Fig. 4. 3D response surface plots of a quadratic model at 85°C for removals at (a) MW power setting = 550 W, 
(b) PS concentration = 10 mM, and (c) irradiation time = 70 min.
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448 W, 20 mM, and 116.3 min. The results corresponded to 
removals of 84.52, 100, and 67.23% of TOC, color, and UV254, 
respectively. Based on Eq. (8), the optimal results occurred 
when the single desirability function value (d) and common 
desirability function values (D) were both close to 1.0. If the 
results of multiple optimizations compared with the results 
of single optimization, TOC and UV254 removals decreased 
1.7% (i.e., 86.22%–84.52%) and 7.32% (i.e., 74.55%–67.23%), 
respectively, while color removals showed little variations.

3.6. An offer of the technology verification in optimal conditions

According to Kirmizakis et al. [39], their study provided 
the optimal treatment conditions for removals of COD in 
the landfill leachate with the assisted design tool of RSM 
successfully and proved that the RSM theory was applica-
ble for wastewater treatment. Compared to our research 
group’s previous microwave studies [29–31], the highlight 
of this study is to use statistical verification to explore the 
feasibility of previous experimental results. The main treat-
ment technology is the MW-enhanced oxidation process, 
with simultaneous use of the RSM to infer the optimal MW 
power settings. Under the optimal operation settings, PS 
could release more sulfate radicals and provide sufficient 
oxidizing capability to remove the target compounds effec-
tively in the MW-enhanced oxidation process. Unnecessary 
oxidant overdose was avoided and better pollutant remov-
als (color, long-chain and unsaturated organic compounds) 
were achieved in the RSM-forecasted condition. Due to the 
limitations of the instrument settings, the MW power setting 
is adjusted to an integer value for experimentation in Table 4. 
In the case of single parameter optimization, 79.48% of TOC 
removal was achieved under the settings of 457W, 19.5 mM, 
and 130 min; near 100% of color removal was achieved 
under the settings of 752 W, 15.2 mM, and 54.5 min; and 

68.39% of UV254 removal was achieved under the settings of 
325 W, 20 mM, and 83.6 min. From the results of the RSM 
modeling, color removals showed less differences when 
compared to the actual experimental results. It implied that 
color most compounds included long-chain structures and 
unsaturated groups could be decomposed completely in 
the optimal operating conditions. Although larger relative 
differences were found in TOC and UV254 predictions, they 
were less than 10% and it also means this treatment technol-
ogy is valuable. MW oxidation treatment could mineralize 
most TOCs in the leachate; nevertheless, it is still difficult 
to destroy all the organic compounds completely; even if 
the operational settings were optimal. However, organic 
compounds with double bonds could be readily degraded 
by sulfate radicals and persulfate oxidation. The results are 
comparable to those of Chou et al. [31] and Ishak et al. [5], 
while the TOC and color removals of this study are better 
than those of Saleem et al. [6] and Yusoff et al. [4], respec-
tively. In the case of multiple–parameter optimizations, 
78.81% of TOC removal, near 100% of color removal, and 
66.44% of UV254 removal were found under the settings of 
448W, 20 mM, and 116.3 min. These results show very small 
differences from the color and UV254 predictions, whereas a 
larger difference in TOC prediction. In addition, the color 
removals were higher in the quadratic regression analysis 
of the RSM for both single– or multiple–parameters opti-
mization. The high MW power settings and excessive addi-
tions of PS oxidants reduced the target compound remov-
als. Compared to those in our previous studies [29,31], MW 
power settings were lower with lower oxidant concentra-
tions, but with a longer irradiation time; and these operating 
conditions led to better removal efficiencies in this study.

Under this treatment technology, most experimen-
tal trends showed that the predicted results were close to 
the corresponding actual results. The results show that if a 

 
Fig. 5. (a) Individual and (b) multiple optimal conditions in the response curves for removals at 85°C with the Box–Behnken design 
(High: highest value; Cur: current value (optimal value); Low: lowest value; d: desirability value; D: composite desirability value).
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multi–parameter was considered as the optimal removal 
condition, the removals in both predicted and actual values 
of TOC and UV254 would be decreased than those of single–
parameter’ optimization. If the optimal removal condition 
efficiency of a single–parameter was considered, the results 
of this study suggest that a single optimized treating condi-
tion in the Minitab software should be chosen.

3.7. Analysis of treatment technology cost

The treatment cost is a major issue for MW-enhanced 
oxidation processes. In addition to capital costs, the oper-
ational costs of electricity and chemicals should be consid-
ered. In each experiment, eight 50 mL bottles were used 
to treat 400 mL of the leachate at a time. Taking the multi- 
parameter results as an example, 20 mM of PS was used, that 
is 0.243 g of PS in a 50 mL sample or 4.8571 kg of PS per m3 
of leachate. With a cost of USD $1.33 per kg of PS, the chem-
ical cost would be USD $6.48/m3 of leachate. With regards 
to electricity, in the case of MW 448 W power setting with 
an irradiation time of 116.3 min, the power consumption 
would be 0.8684 kWh for 400 mL; that is 2,170.9 kWh for 
1 m3 of leachate. With an electricity cost of USD $0.082/kWh, 
the cost of electricity would be USD $177.2/m3 of leachate. 
Consequently, the combined chemical and electricity cost 
was roughly USD $183.6/m3 of leachate on the laboratory 
scale. There is a biogas power generation system in Sanjuku 
Landfill, which could provide electricity to the treatment 
system, so the cost could be cheaper.

4. Conclusion

This study successfully used MW-assisted PS oxidation
to treat landfill leachate and amalgamated with the RSM 
and the ANOVA statistical analysis to find the optimal 
operational settings. With an offer of the technology, the 
optimum removals of TOC, color, and UV254 were 79.48%, 
near 100%, and 68.39%, respectively. Initial PS concentra-
tions had significant influences on TOC, color, and UV254 
removals. RSM helps this treatment technology to find the 
best removal efficiency and analyze the information about 
the treatment technology. Higher R2 and Adj. R2 values 
were observed in the quadratic regression analysis and the 

ANOVA analysis. ANOVA table and 3D response surfaces 
are useful to derive useful information on optimal settings 
for removals. Each parameter’ removals and its relationship 
among experimental factors could be clearly observed in the 
3D response surfaces of the RSM inference. For all MW oxi-
dation experimental runs, color removals were higher than 
those of TOC and UV254. This study offer efficiency the tech-
nology in treating landfill leachate and not only indicates 
the optimal conditions through the BBD design and the 
ANOVA test, but also provides an important consideration 
for selecting single– or multi–parameter removal efficiency, 
operating conditions, and the cost assessment.
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