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a b s t r a c t
Minimizing water consumption and optimizing wastewater treatment of the sugar industry is one of 
the most water consuming industries that have significant importance. In this research, the advanced 
treatment of sugar factory wastewater in a three-step process was carried out using a combined 
process integrating a moving-bed biofilm reactor (MBBR) and membrane separation processes. 
The integrated system yields a high-quality effluent by resulting 99.25%, 98%, and 99.2% removal for 
chemical oxygen demand (COD), nitrate, and total suspended solids, respectively. Determining the 
level of wastewater treatment requires laboratory equipment with sophisticated measuring devices 
which is time-consuming and costly. Hence, equations for predicting the removal rate of COD and 
nitrate are derived from the data obtained from the treatment of sugar wastewater with the inte-
grated system. The equations provide a quick and easy initial estimation for researchers. In this 
regard, wastewater with COD of 2,000 mg/L and nitrate of 55 mg/L were synthesized. The treatment 
is performed for five filling ratios (FR) of 40%, 45%, 50%, 55%, and 60% of MBBR with the Kaldnes 
k2, and four hydraulic retention times (HRT) of 6, 8, 10, and 12 h. Artificial intelligence called multi 
expression programming (MEP) was used to develop models for predicting the COD and nitrate. 
The input variables are FR and HRT, and the output variable is the final removal level of organic mat-
ters. Excellent correlation between the MEP-based models and the experimental results was achieved 
which indicates that COD and nitrate models are capable of effectively estimating the amount of 
COD and nitrate removal. Parametric sensitivity analysis was used to determine the impact of input 
parameter changes on the output parameter.

Keywords:  Wastewater; Sugar; Moving-bed biofilm reactor; Membrane separation; Multi expression 
programming

1. Introduction

Due to the discharge of various wastewater into the 
environment, today, many regulations have been legislated 
for environmental protection and health reasons. Thus, the 
municipal and industrial wastewaters have to be purified to 
reach the standard limit of toxic composition levels. In order 
to reach the standard limit, the combination of biological 
processes and small footprint separation technologies have 

received much attention in the last decade from wastewater 
treatment professionals [1].

The sugar industry is known as one of the most 
water-consuming industries producing a high organic load. 
The effluent production of this industry has a high cost of 
treatment and can cause serious environmental problems, 
which requires new methods and technologies to treat sugar 
wastewater [2,3]. So far, researchers have used a variety of 
methods for the treatment of sugar factory wastewater [3–7]. 
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For example, for the treatment of the sugar factory wastewa-
ter Ragen et al. [8] and West Stewart used up-flow anaerobic 
sludge blanket reactor, Farhadian et al. [6] and Borghei et 
al. [2] used up-flow anaerobic fixed bed and up-flow aero-
bic immobilized biomass reactor, respectively [9]. Chemical 
oxygen demand (COD) and turbidity reduction in sugar 
wastewater were investigated by Sahu and Chaudhari [3] 
utilizing catalytic thermal treatment (thermolysis) and 
Güven et al. using the electrochemical treatment.

In recent years, considerable innovations have been 
observed in the biological wastewater treatment sector. The 
biological process is one of the best and most applicable 
methods in the treatment of high concentration wastewater 
and the reduction of COD and organic materials [1,10–15]. 
Essentially, the new development goal is to obtain higher 
treatment performance to meet stringent effluent discharge 
limits and easier biosolids–liquid separation [16].

One of the growing technology which can handle high 
loads of particles is a moving-bed biofilm reactor (MBBR) 
[17]. It characterized by the growth of biomass on carri-
ers that move freely in the water volume by aeration or a 
mechanical mixer and are kept within the reactor volume 
by a sieve arrangement at the reactor outlet [18]. After the 
removal of the soluble, biodegradable matter in the bio-
logical process, any biomass formed needs to be separated 
from the liquid stream to produce the required effluent 
quality [19]. High-quality effluent with no particles in sus-
pension will be obtained by the combination of MBBR and 
membrane systems. Pinto et al. [20] and Vijayaraghavalu et 
al. [21] used MBBR with microfiltration/ultrafiltration and 
reverse osmosis (RO) (MF/UF/RO), as separation systems, 
for the treatment of industrial wastewater, but Pervissian 
et al. [22] only used MBBR and UF system. The purification 
of pesticide industry wastewater was carried out utilizing 
a membrane technology, MF and RO, in combination with 
MBBR by Cao et al. [1]. Wang et al. developed an innova-
tive process integrating moving bed ceramic membrane 
bioreactor and RO to treat municipal wastewater [23]. 
The membrane technologies used in this research, such as 
slow sand filtration (SSF) and RO, are examples of compact 
separation systems which have a semipermeable mem-
brane and allows the passage of liquid while the suspended 
solids are fully retained inside the bioreactor [24].

Laboratory experiments are challenging to carry out 
due to budget, time, or complexity. Therefore, numerous 
studies have presented methods to model, predict, or opti-
mize the treatment processes to assist in better understand-
ing of the bio-system and reducing costs and increasing the 
system performance [2,25–28]. In this paper, we present 
equations to assess the COD and nitrate for the integrated 
system so that they can be designed more economically and 
an estimation of the results of the waste treatment systems 
of sugar factory can be obtained. The data for the artificial 
intelligence (AI) method is obtained by performing several 
laboratory tests.

Genetic programming (GP) is a model of programming 
that uses the ideas of biological evolution to handle a com-
plex problem [29,30]. Of several possible programs, the most 
effective programs survive and compete or cross-breed with 
other programs to continually approach closer to the needed 
solution. GP is an approach that seems most appropriate 

with problems in which there are a large number of fluctuat-
ing variables such as those related to AI. GP can be viewed as 
an extension of the genetic algorithm (GA), a model for test-
ing and selecting the best choice among a set of results, each 
represented by a string. GP goes a step farther and makes 
the program or “function” the unit that is tested. So far, var-
ious studies have been conducted using various methods of 
AI and GP that have proven the superiority of GP methods. 
Recently, multi expression programming (MEP) as a vari-
ant of GP that uses a linear representation of chromosomes, 
has emerged. MEP differentiates from other GP techniques 
by encoding multiple solutions on the same chromosome 
[31]. The MEP approach is able to outperform similar meth-
ods of AI [32] significantly. There have been limited studies 
focused on applying MEP to civil engineering tasks [32–36].

The innovative aspects of this paper are (i) enhancing 
the biological treatment process of sugar industry wastewa-
ter using MBBR, (ii) using SSF system to remove biological 
particles grew in MBBR, (iii) removing nitrate, which was 
not significantly removed in the biological reactor, in denitri-
fication process utilizing RO reactor, (iv) obtaining a new 
MEP-based model for determining the final concen tration of 
COD and nitrate in the effluent. The proposed model used, 
filling ratio (FR) and hydraulic retention time (HRT) as the 
predicted variables.

2. Materials and methods

2.1. Specifications of the used sugar wastewater

The sugar wastewater used in this study is synthesized 
according to the range recommended by [25]. So that, to 
obtain 55 mg/L of nitrate (NO3) and 2,000 mg/L of COD, 0.2 g 
of ammonium chloride (NH4Cl) and 2 g of sugar were used 
per 20 L of water, respectively.

2.2. Input sludge to the reactor

In order to ensure the stability of the process and short-
ening the startup period, the selection of proper sludge in 
the installation stage is important. The biological sludge of 
the aerial pool of the wastewater treatment plant was used 
in the reactor. This sludge has characteristics of, pH = 7.92, 
temperature of 23 C, dissolved oxygen (DO) = 2.3 mg/L O2, 
COD = 392 mg/L, total suspended solids (TSS) = 208 mg/L.

2.3. MBBR system operation

This system was presented for the first time by the 
Norwegian-university of science and technology and 
Kaldnes biotechnology. The MBBR process is used to remove 
organic matters. This process quickly decomposes organic 
soluble substances. However, insoluble organic substances 
that are suspended as fine particles are absorbed and con-
sumed in biofilms, or discharge from the tank without being 
used [18]. Also, the advanced percentage of these parti-
cles hydrolyze. Hydrolysis in MBBR is a function of HRT. 
The number of hydrolysis increases by the increase in HRT.

In this study, a series of experiments in similar conditions 
are performed using Kaldnes k1 and k2 media. Comparing 
the formed biofilm on both Kaldnes at an equal time, it is 
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concluded that more biofilm is formed on k2 than k1, illus-
trating k2 is a more appropriate medium for the experiment. 
The MBBR is filled with Kaldnes k2 media with volumes of 
40%, 45%, 50%, 55%, and 60%. The Kaldnes are approximately 
19 × 14 mm. They have been used to provide suitable condi-
tions for the growth and reproduction of bacteria and better 
formation of the biological layer on them. In this research, 
in order to provide aeration condition and mixing Kaldnes 
with wastewater, an air compressor along with air stones 
were used in the tank floor. The remaining COD and nitrate 
concentration in the wastewater after exiting the MBBR pilot 
are illustrated in Fig. 1 for five FRs and four HRTs.

2.4. Slow sand filtration

Filters play a vital role in water treatment plants, and 
they are generally referred to as water filtration processes. 
Filtration is a physical method that includes the operation 
of removing suspended fine particles from water that is 
not separated from it in the previous stages of the treatment, 
through passing from different layers such as gravel, sand, 
anthracite, and diatomite [37]. In this study, the sand with a 
coefficient of uniformity (Cu) of 3.8 and coefficient of cur-
vature (Cc) of 1.25 to a height of 40 cm in the upper layer, 
pea gravel to a height of 10 cm in the middle, and finally a 
layer of 10 cm of rubble on the bed, was used. As illustrated 
in Fig. 2, the amount of COD and nitrate concentration after 
passing through sand filters are decreased compared to 
the MBBR outputs.

2.5. Reverse osmosis

In this process, high-pressure water passes through a 
series of semi-permeable membranes. This external pressure 

is higher than the normal osmotic pressure, which results 
in smaller molecules passing through the membrane pores. 
In RO, microorganisms are also removed from the water. 
In general, this process is used for desalination of water, but 
in recent years it has been considered to remove specific pol-
lutants such as nitrates. In this method, in addition to nitrate, 
total soluble solids (TDS) also decrease. Operation of the 
RO membrane and nano-filtration in high-pressure cause 
severe clogging of the orifices, hence the experiments were 
carried out at a constant pressure of 10 bar [38]. According 
to Fig. 3, the COD and nitrate concentration of wastewa-
ter are declined substantially after passing through the RO 
pilot under high pressure for all FRs and HRTs. The obtained 
values of concentration after this pilot are the output for 
the total integrated system.

2.6. Testing method

2.6.1. MBBR acclimation period

In the acclimation period, 10 L synthesized sugar 
wastewater is loaded to the MBBR pilot, which 50% of its 
volume is filled with Kaldnes k2 media. After one week, the 
wastewater is added to the reactor, on every other day period, 
so that the nutrient and organic load is provided for microor-
ganisms’ growth. In MBBR, the aerobic bacteria use oxygen 
to convert ammonium chloride of the wastewater to nitrite 
and nitrate using Nitrosomonas and Nitrobacter bacteria, 
respectively. Meantime, the controlling parameters, includ-
ing temperature, pH, and DO, are continuously measured 
to maintain them in the standard controlling condition, that 
is, 23°C, 7–8, and 3–4 mg/L, respectively. This process con-
tinues until the initial formation of the biofilm layer on the 
Kaldnes and reaching the mixed liquor volatile suspended 
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Fig. 1. Remaining COD and nitrate concentration in wastewater after the MBBR process.
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solids to steady-state, as illustrated in Fig. 4, which indicates 
the equilibrium of the system and the end of the adaptation 
period.

2.6.2. Integrated system operation

In the second stage of the experiment, five FRs of 40%, 
45%, 50%, 55%, and 60% of Kaldnes, and four HRT of 6, 8, 

10, and 12 h were used to examine the effects of them on 
the removal percentage. In the testing process, at first, the 
wastewater enters the MBBR with a specific percentage of 
filling with Kaldnes, and after the retention time, enters the 
sedimentation pond. After the sedimentation tank is filled, 
it enters the sand filter, and after passing through the RO 
membrane, the final outlet is taken. During the test, the 
parameters of COD, TSS, TDS, pH, NO3, DO and turbidity 
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are measured. Note that throughout this stage temperature, 
aeration, and pH levels should be constant.

3. Genetic programming

GP is a relatively new evolutionary method [39] that 
creates computer programs to solve a problem using the 
principle of Darwinian natural selection [40]. It was intro-
duced by Koza, which is an applied method due to its 
precision [40]. GP is an extension of the GA [41]. In GA, 
decision variables are entered into the search process in the 
form of genes.

Nevertheless, in optimization problems, it is possible 
that in addition to numbers, mathematical or logical oper-
ators also participate as decision variables in the optimiza-
tion process. Typically, when the mathematical relations are 
unknown, a set of numbers and operators enter the search 
process. Generally, GP is used to determine the structure 
of natural or artificial phenomena in order to explain the 
mathematical model of problems.

Unlike GA, GP operates on the tree structure of the 
equations rather than a series of binary numbers. Tree 
structures are created from a set of functions (mathemat-
ical operators used in equations), and terminals (prob-
lem variables and constant numbers) [40]. Fig. 5 shows a 
typical representation of two chromosomes in GP.

GP defines an objective function in the form of qualita-
tive criteria and then solves it for measuring and compar-
ing different methods. Next, corrects the data structure in a 
step-by-step process and finally, provides the right solving 
method. GP has successfully been applied to some of the 
civil engineering problems [42–46].

4. Multi expression programming

Many advances have been made in GP in recent years. 
A new variant of GP is MEP that was developed by Oltean 
and Dumitrescu [31]. MEP is a method for automatic 
generation of computer programs. Mainly it can be used 
for generating mathematical expressions for data analy-
sis (regression and classification). MEP differentiates from 
other GP techniques by encoding multiple solutions on the 
same chromosome. In the simplest variant, MEP chromo-
somes are linear strings of instructions. The three-address 
code inspired this representation. MEP strength consists in 
the ability to encode multiple solutions, of a problem, in the 

same chromosome. In this way, one can explore larger zones 
of the search space. For most of the problems, this advan-
tage comes with no running-time penalty compared with 
GP variants encoding a single solution in a chromosome.

An example of an MEP chromosome will show how 
MEP individuals are translated into computer programs. The 
first symbol in a chromosome must be a terminal symbol, 
as stated by the proposed representation scheme. It should 
be noted that numbers to the left stand for gene labels that 
do not belong to the chromosome. Using the set of arith-
metic operators as F = {+, –, ×} and the set of terminals as 
T = {x1, x2, x3}, the example is given as follows:

0: x1
1: x2
2: – 0, 1
3: x3
4: × 2, 3
5: – 3, 4

The translation of the MEP chromosomes into computer 
programs can be obtained by parsing the top-down chro-
mosome starring with the first position. A terminal symbol 
specifies a simple expression. A function symbol specifies a 
complex expression obtained by connecting the operands 
specified by the argument positions with the current func-
tion symbol [47]. In the present example, genes 0, 1, and 3 
in the previous example encode simple expressions formed 
by a single terminal symbol. These expressions are:

E0 = x1,
E1 = x2,
E3 = x3,

Gene 2 indicates the operation – on the operands located 
at positions 0 and 1 of the chromosome. Therefore, gene 2 
encodes the expression:

E2 = x1 – x2 (1)

Gene 4 indicates the operation × on the operands located 
at positions 2 and 3. Therefore gene 4 encodes the expression:

E4 = (x1 – x2) × x3 (2)

Gene 5 indicates the operation – on the operands located 
at positions 3 and 4. Therefore gene 5 encodes the expression:
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M
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Fig. 4. Duration of reactor operation in the acclimation period. Fig. 5. A typical representation of the GP model.
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E5 = x3 (x1 – x2) × x3 (3)

Fig. 7 shows the forest of the tree of the MEP chromo-
some which is because of its multi expression representa-
tion. Each of these expressions (E0~E5) can be considered 
as a possible solution to the problem. The fitness of each 
expression encoded in an MEP chromosome is defined as 
the fitness of the best expression encoded by that chromo-
some. The fitness of an MEP chromosome (f) may be com-
puted using the following equation symbol [47]:

f F O
i m j j

i

j

n

= −










=
=
∑min

,1 1
 (4)

where n is the number of fitness cases, Fj is the expected 
value for the fitness case j, Oj

i is the value returned for the 
jth fitness case by the ith expression encoded in the current 
chromosome, and m is the number of chromosome genes.

5. Result and discussion

5.1. Experimental results

Fig. 6 shows the COD, nitrate, and TSS for the different 
FR and HRT.

The first and the most convenient feed for decompo-
sition by bacteria is sugar content. Therefore, in the least 
retention time, a large proportion of the COD of the waste-
water is reduced. Also, increasing the FR causes the Kaldnes 
to encounter more and prevent the formation of biofilms 
on their surface. In this paper, as can be seen, by Fig. 6, the 
removal efficiency is decreased with increasing the retention 
time and FR, that in the least retention time (6 h) and the low-
est FR (40%) the most removal occurs, that is, 99.25% COD 
removal.

The anoxic condition which needs at least 0.5 mg/L of 
DO is needed to remove nitrate in the biological treatment. 
Since the bioreactor of this research is aerobic and its DO 
is about 3–4 mg/L, 60%–70% of the nitrate removal is due 
to biological treatment in the MBBR, and the rest of the 
removal process is with physical treatment (RO membrane). 
In biological treatment, the ammonium converts to nitrite 
and then to nitrate, by two nitrification and denitrification 
reactions, respectively. These reactions require more reten-
tion time than the COD removal process. As a result, most 
removal occurs in the most retention time (12 h), that is, 98% 

nitrate removal. The FR discussion for the COD removal 
stands for nitrate removal as well.

5.2. Development of the MEP model

In this section, the modeling of COD and nitrate with 
the MEP approach will be explained. Out of the 20 sample 
data, 15 data (75%) were taken randomly for the training 
process and the remaining 5 data were used for evaluation 
of model performance [48,49]. The application of the MEP 
approach includes the following steps. In the first step, the 
training and test dataset are introduced into the program. 
This dataset consists of the set of terminal T which contains 
independent variables: T = {FR, and HRT}. Secondly, the 
selection of the appropriate set of function F. The function 
selection is not obvious and depends on the user experience, 
the user understanding of the problem domain and nature, 
or other researches in the field. Given the fact that in the 
field of this study so far no similar study has been done, 
the necessary functions can be selected as a good guess for 
modeling and a good knowledge of laboratory tests process. 
In this study, for building the MEP model, several kinds of 
function sets including addition, subtraction, division, mul-
tiplication, sine, cosine, logarithmic, and exponential func-
tions, were examined. The best function set was found as 
addition, subtraction, division, and multiplication.

In the third step, as the model generalization capability 
of MEP will be affected by parameter selection [33], the MEP 
parameter setting (i.e., population size and chromosome 
length) and the MEP operators (i.e., mutation and crossover 

Fig. 7. Expressions encoded by an MEP chromosome.
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probabilities) during evolution have been selected based on 
some previously suggested values and also after several runs 
of trial and error in multiple replications and monitoring 
the training and testing performance of each model.

Several runs are conducted to come up with an optimal 
parameterization of MEP. The MEP parameters are changed 
for different runs, a parameter changed in its logical range 
while the other parameter settings were set to a constant 
value suggested by Oltean and Grosan [47], and the values 
of the fitness function and error for each model are extracted 
[50]. A relatively large number of generations are tested on 
each run to find models with minimum error. In this method, 
the results were compared in each model to select the optimal 
value for each parameter setting. Finally, for the MBBR and 
nitrate model, the population size was set to 500 and 600, the 
chromosome length was set to 57 and 47, the crossover prob-
ability was set to 0.7 and 0.8, and the mutation probability 
was set to 0.01 and 0.02, respectively. Table 1 shows the var-
ious parameter settings involved in the MEP model and the 
resulted setting obtained in the replications trial and error.

After finding the specified values for the parameter 
settings, the final model was executed with the possibil-
ity of generating a large number of generations (i.e., 15,000 
generations).

5.3. MEP-based prediction models for COD and nitrate

To evaluate the capabilities of the proposed MEP 
models, coefficient of determination (r2) and root mean 
square error (RMSE) was used as follows:

R
x x y y

x x y y

i i i i
i

n

i i i
i

n

i

n

2 1

2 2

11

=
− −

− −( )
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
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
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∑

∑∑
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( )


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 (5)

RMSE =
−( )

=
∑ x y

n

i i
i

n 2

1  (6)

where n is the number of data, xi, yi are measured and pre-
dicted output values, and x� is the average of the measured 
outputs. The coefficient of determination, in statistics, 
R2 (or r2), is a measure that assesses the ability of a model 

to predict or explain an outcome in the linear regression 
setting. R2 ranges from 0 to 1. The RMSE is a frequently 
used measure of the difference between values predicted 
by a model, and the values observed from the environment 
that is being modeled. RMSE can range from 0 to ∞ and 
is indifferent to the direction of errors.

The prediction equations for COD and nitrate, for the 
best results by the MEP algorithm, are as given below:

COD COD

HRT FR FR
HRT

HRT FR
final initial= −

×
+ + − + +

−
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0 02
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0 000425 2 2
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
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
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
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




−

+
HRT

HRTZ X.  (7)

where Z and T are:

Z = × × + ×








0 020624 1 0 0206242. .FR FR

HRT
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X Z= − − +FR FR
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2
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where A is:

A
X

X
=

−0

1

0 976232
0 976232

.
.

 (11)

In these equations, filling rate FR is in percentage, and 
hydraulic resistance time HRT is in an hour.

The best evolved MEP-based model for COD pro-
duced the least errors (R2 = 0.994, and RMSE = 1.42) for 
the training data (Fig. 8) and for the test data (R2 = 0.997, 
and RMSE = 0.965) (Fig. 9). Also, the nitrate model yields 
(R2 = 0.8609, and RMSE = 0.957) for the training data (Fig. 10) 
and for the test data (R2 = 0.896, and RMSE = 1.0864) (Fig. 11).

5.4. Parametric sensitivity analysis

In this study, a parametric sensitivity analysis was per-
formed for verifications of the MEP-based prediction equa-
tions. This technique determines how independent variable 
values will impact the predicted COD and Nitrate from 
MEP models under a given set of input data and assump-
tions. The simplest way to approach parametric sensitivity 
analysis is to vary each factor one at a time. In this approach, 
while one factor is being varied from –100% to 100% of its 
average value, the others are kept constant at the average 
values of their entire datasets. After obtaining a set of syn-
thetic data for a single varied parameter, the percentage 

Table 1
Parameter settings for the MBBR and nitrate models

Parameter Range of 
changing setting

MBBR 
setting

Nitrate 
setting

Population size 10–1,000 500 500
Chromosome length 10–100 31 35
Crossover type Uniform
Crossover probability (%) 0–100 70 70
Mutation probability (%) 0–100 1 1
Function set +, –, ×, /
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of the change in the output of the model was obtained by 
introducing this variable to the prediction equations of the 
COD and nitrate models. This procedure is repeated using 
another variable until the model response is tested for the 
entire predictor variables. Results for parametric sensitiv-
ity analysis of COD and nitrate models are presented in 
Fig. 12. According to Fig. 12b, COD decreases due to the 
increasing FR and HRT. As can be seen in Fig. 12a, Nitrate 
increases due to the increasing HRT. Also, it decreases with 
increasing FR.

The results of the parametric analysis for FR and HRT 
have generally expected cases as was described in section 2.7.

6. Conclusions

In this paper, sugar industry wastewater was success-
fully treated by a combined process integrating an MBBR 
and membrane separation processes (namely SSF and RO). 
The separation systems were utilized to separate the formed 
biomass from obtaining a suitable effluent. The MEP-based 

models for predicting COD and nitrate were derived by the 
data obtained from treating sugar wastewater. Parameter 
settings of the models were obtained by several runs of trial 
and error and considering a large number of generations 
as the stopping criteria. The following conclusions can be 
drawn from the findings of this study:

• Sequential MBBR/SSF/RO treatment process proposed 
in this study is significantly compact and allows the pro-
duction of the high-quality effluent with the reduction of 
99.25%, 98%, and 99.2% in COD and nitrate, and TSS con-
centration, respectively.

• Performance measures (RMSE, R2) of prediction models 
indicate good results in the training and testing dataset.

• Parametric sensitivity analysis was used for verification 
of the COD and nitrate models. The result showed that, 
for the COD model in the least HRT (i.e., 6 h) and the 
lowest FR (i.e., 40%) and for the nitrate model the in the 
most HRT (i.e., 12 h) and the lowest FR (i.e., 40%) the 
most removal occurred.
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Fig. 8. Comparison of the predicted COD values with the experimental measured for training data.
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• Using the derived MEP models, the removal level of the 
COD and nitrate can readily be estimated, which elimi-
nates the needs of complicated and time-consuming lab-
oratory tests.
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