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a b s t r a c t
Artificial neural network model was developed to obtain the fluid outlet temperature of the parabolic 
trough collector (PTC) with a grooved absorber tube. To improve the accuracy of the model, an 
analysis of the transfer functions was performed at different normalization intervals to choose the 
best model capable of estimating the PTC outlet temperature. A first model was developed that 
was used as a base model from 1,155 concordant experimental data. The variables were input tem-
perature of the fluid, ambient temperature, irradiance, hour, day, configuration, volumetric flow, 
feeding temperature, and storage temperature. To validate the accuracy and the adaptability of the 
model proposed, statistical tests (coefficient of determination (R2), root mean square error (RMSE), 
and mean absolute percent error (MAPE), significance test (F-Fisher and t-student), and linear-
ity test (slope- intercept)) were performed. The base model was validated, having an R2 = 0.9961, 
RMSE = 0.14706, MAPE = 0.00795, also approved significance and linearity tests. Consequently, ten 
models were developed for the analysis of the proposed normalization intervals using the same 
architecture as the base model at five areas of interest with a hyperbolic tangent sigmoid (TANSIG) 
and log- sigmoid (LOGISIG) functions. The results show that a model has higher accuracy; this model 
was the TANSIG of [0.1,0.9] with R2 = 0.9974, RMSE = 0.12123, MAPE = 5.93 × 10–5, and approved 
significance and linearity.

Keywords:  Parabolic trough solar collector; Artificial neural network; Normalization; Transfer function; 
Linearity test

1. Introduction

To reduce the environmental consequences by use of 
energy coming from the consumption of fossil fuels, the 
majority of countries and their researchers have promoted the 

use of renewable energies [1]. Among all the energies source 
considered renewable, solar energy is the cleanest energy 
with high potential and a possible sustainable alternative that 
could satisfy global energy demand [2], taking into account 
that it needs to be collected and stored efficiently [3]. One 
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way to take advantage of the Sun’s energy is through solar 
thermal collectors STC, whose exists several types depending 
on its application and design.

Solar thermal collectors are a particular type of heat 
exchangers used to absorb incoming solar radiation, trans-
forming it into heat, and then transfer it to a working fluid. 
Are mainly classified into two types according to the concen-
tration ratio: concentrated and non-concentrated [4]. Within 
the classification of solar concentrating collectors, the para-
bolic trough solar collector parabolic trough collector (PTC) 
stands out due to its wide acceptance angle, a high capacity 
to take advantage of diffuse light, and low cost. PTCs have 
a wide range of thermal availability that allows meeting the 
heat energy requirements of some industrial processes or 
electric power generation [5].

The PTC uses a parabolic reflector to concentrate the 
incident sun rays along a focal line in which an absorber 
tube is placed. The PTC’s primary function is to transform 
the solar radiation and convert it to thermal energy through 
increasing the temperature of a heat transfer fluid that cir-
culates into the absorber tube. Then, the thermal energy 
collected is stored or used in some processes. Generally, 
the absorber tube has a selective coating to decrease the 
emittance and reduce thermal losses [6].

Moreover, through active or passive techniques, the 
energy absorbed in the tube can increase. On one side, the 
active techniques require an external energy source, and 
their use is limited due to the difficulties of implementing 
them. On the other hand, passive techniques are simple and 
less expensive [7]. These consist of changing or increasing 
the heat exchange surface employing fins, braided inserts, 
corrugations, grooves, among others [8]. The grooved tubes 
or with internal fins have better thermo-hydraulic perfor-
mance due to their higher heat transfer coefficient with lower 
pressure loss compared to twisted inserts, corrugated pipes, 
or dimpled tubes [9].

In particular, grooved tubes are that have an arrange-
ment of channels on the inner surface that can be as circu-
lar, rectangular, trapezoidal, or triangular geometry [10]. 
These grooves generate turbulence and mixing in the flow 
in addition to periodic interruptions of the boundary layer, 
which improves the transfer of heat by forced convection. 
Therefore, to increase the thermal performance of the PTC 
system, grooves are a viable option to consider because of 
their effortless design, low cost, and high thermo- hydraulic 
performance depending on the geometry or size of the 
groove.

In regard to the thermal efficiency of the PTC system, 
numerous researches have been focused on understanding 
how the different operating parameters affect the amount 
absorbed of concentrated solar radiation within the receiver. 
Given that, the experiments are constrained by the process-
ing time and operating costs [11], studies have been inclined 
towards the use of empirical models to describe the phe-
nomenon with high accuracy and whit it replaces some 
experiments.

One of the most used tools in empirical modeling of 
non-linear phenomena has been the artificial neural net-
works (ANN) [12]. Specifically, the data coming from renew-
able energy systems are good candidates to be managed with 
ANN, since it is difficult to identify a precise mathematical 

function when some parameters vary by time and envi-
ronmental factors [13]. Furthermore, Kalogirou [14] sug-
gested that models based on ANN have demonstrated the 
effectiveness of its use in hypothetically designed solar col-
lector systems.

ANN has been widely used to simulate solar collectors, 
as in the work of Sözen et al. [15], where he developed a new 
formula based on ANN to determine the efficiency of a flat 
plate solar collector with experimental data that were mea-
sured in July to September, obtaining a coefficient of deter-
mination of 0.983. The variables used in the input layer of 
the network were collector surface temperature, date, time, 
solar radiation, declination angle, azimuth angle, and tilt 
angle. The results were acceptable compared to the exper-
imental data through statistical tests.

In a study developed by Caner et al. [16], an ANN 
model was created with eight normalized input variables 
between –1 and 1 to estimate the thermal performance of 
two air collectors. Experiments are carried out between 
10:00–17:00 h in August and September. The statistical 
results of the comparisons between the predicted data and 
experimental data have been demonstrated the effective-
ness of the proposed ANN.

In another work, Heng et al. [17] used ANNs with the 
superposition principle for transient thermal prediction in 
a PTC. The ANN model obtained was used to predict the 
temperature at the PTC output for a single pulse. The back-
propagation network was trained with an architecture of 
three neurons in the input layer, two hidden layers with 
68 neurons each one, and one neuron in the output layer. 
By gradient descent training algorithm with a total of 29,884 
samples, an R2 of 0.9999 was obtained. The input variables 
were heated flow, fluid velocity, and time.

On the other hand, the prediction of the performance 
parameters of flat-plate solar collectors by the use of ANN 
has been realized by Kalogirou [14]. In this work, with 6 
ANN models developed, was obtained the prediction of 
the performance coefficients, both at the wind and no-wind 
conditions, the incidence angle, modifier coefficients at lon-
gitudinal and transverse directions, the collector time con-
stant, the collector stagnation temperature and the collector 
heat capacity.

An ANN model was obtained by Reyes-Tellez et al. [18] 
to predict the hot-water outlet temperature of PTC with 
low-cost components. The best-fitting of training data was 
acquired with the architecture of nine neurons in the input 
layer, nine neurons in the hidden layer, and 1 in the out-
put layer; considering a hyperbolic tangent sigmoid transfer 
function (TANSIG) in the hidden layer and a linear transfer 
function (PURELIN) in the output. Also, the combination 
of the inverse neural network coupled with genetic algo-
rithms was used to predict the optimal operating condi-
tions in a low-cost solar collector as a strategy to optimize 
the feeding tank temperature, being able to predict an exit 
temperature of up to 49°C from a supply temperature of 
19°C. Additionally, May Tzuc et al. [19] developed a model 
to obtain the thermal efficiency of the PTC with a different 
normalization proposed. The model was achieved with an 
architecture of seven neurons in the input layer, three neu-
rons in the hidden layer, and one neuron in the output layer; 
then, combining ANN with genetic algorithms, the optimal 
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water flow was estimated at the PTC array for a determined 
efficiency with errors below 2%.

The present work aimed to develop an accurate model 
based on ANN to determine the fluid outlet temperature in a 
parabolic trough solar collector, which used a tube grooved 
as an absorber tube. The accuracy model was carried out 
considering analyses on ten model ANN which applied dif-
ferent transfer functions as well as different normalizations. 
The main contributions of this work have been: (1) the devel-
opment of a model based on ANN to determine the fluid 
outlet temperature of the PTC with an absorber grooved 
tube (2). The evaluation of different combinations of acti-
vation functions and normalizations to obtain an optimal 
model with the minimum error. The (3) statistical analysis 
to determine the model that had the best performance.

2. Description of experimental equipment

The PTC is a solar thermal concentrator, which is mainly 
consisting of a parabolic reflector 16-gauge type 316L 
stainless steel with mirror polishing on the inside. The con-
centrator consists of a vertically cut steel sheet drum with 
dimensions of 85 cm long by 57 cm in diameter. The receiver 
tube is made of a 1/2 inch long grooved copper tube and 
painted black to have a higher absorptivity. A second surface 
that is concentric to the receiver tube covers it externally 
and consists of two concentric glass tubes with different 
diameters. The characteristics of the PTC and the grooved 
absorber are shown in Table 1 and Fig. 1, respectively.

The PTC was instrumented with thermocouples type T 
duly calibrated for the measurement of temperature in the 
regions of interest: at the input of the grooved tube receiver 
(Tinput), at the ambient (Tamb), at the tank of feeding or of 
cold water (Tfeed), and at the hot water storage tank (Tstorage). 
Likewise, it was registered the temperature at the outlet of 
the grooved receiver tube (Toutput), which was the output 
variable or target for the ANN model. An Agilent 34970A 
card and the Agilent Benchlink Data Logger software were 
used to acquire and record experimental data.

The tanks of feeding and storage are 750 and 450 L, 
respectively. They are interconnected to have recirculation 
and thus raise the temperature of the feed tank when hot 
water is unused. Valves and a pressurizing motor pump 
model AQC-15 with a power of 2/15 HP were installed to 

control the flow. A Blue-White F-400 flowmeter with a 
capacity of 20 LPM was used to measure the volumetric flow 
at the outlet of the grooved tube.

2.1. Operating conditions

The PTC is located on the facilities of the CIICAp-UAEM 
Morelos [20], Mexico with latitude and longitude coordi-
nates of 18.981655–99.23418, respectively. The PTC has an 
inclination of 19° and is oriented toward the East–West with 
the face of the reflecting plate pointing toward the South to 
better exploit the incidence of solar radiation. Fig. 2 shows 
a schematic diagram of the experimental system PTC with 
low-cost components.

As can be seen in Fig. 3, was realized four configurations 
in the PTC arrangement: (a) with glass cover that protects 
the PTC from the weather and dust, (b) without glass cover 

Table 1
Geometric characteristics of the PTC experimental system

Variable Value

Receptor length 0.85 m
Receptor internal diameter 0.0138 m
Receptor external diameter 0.0159 m
Internal diameter of the first cover 0.034 m
External diameter of the first cover 0.036 m
Internal diameter in of the second cover 0.048 m
External diameter of the second cover 0.05 m
Focal distance 0.025 m
Receptor absorbance 0.906
Receptor emittance 0.14
Glass cover transmittance 0.95
Reflectivity surface 0.93
Shape factor 0.92
Tilt angle 18.5°
Incident angle modifier 1
Optical efficiency 0.56
Glass cover emittance 0.95
View factor 1

Fig. 1. Geometric characteristics of the grooved tube.
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to avoid optical losses, (c) with glass lid and receiver tube 
located in a second focal line, and (d) without glass lid and 
receiver tube situated in second focal line. The experimental 
tests were carried out at different volumetric flows: 0.7, 1, 2, 
3, 4, and 5 LPM using water as a working fluid. A total of 
1,155 samples were recorded during October and November 
from 10:00 to 18:00 h, with intervals of 5 min between mea-
surements. Table 2 shows the operating ranges to which 
the PTC system was subjected.

Irradiance data were collected using a pyranometer 
located at a Meteorological Station [21]. The calculation 
of the day of the year was made based on Table 3, where i 
is the day of the month calendar, and the time of day was 
established in minutes.

3. Development of the neural network model

ANNs are computational algorithms inspired by the 
learning process of the human brain. Like a biological neu-
ral network, ANNs are formed by parallel processing units 
called neurons, which generate and send information signals 
to produce a specific response output [22]. In different fields 
of knowledge, it has been defined as an efficiently mathe-
matical modeling tool of linear and nonlinear multivariate 
regression problems [23].

From a certain amount of information, the ANNs have 
the capacity to discern the relationship between the variables 
of a process and recognize behavior patterns when they are 
challenging to describe them mathematically [24]. They are 
useful when the data comes from nonlinear processes, which 
inherently have noise; specifically, the data coming from 
renewable energy systems since it is difficult to identify a 
precise mathematical function when some parameters vary 
by time and environmental factors [13].

To develop an ANN model requires three fundamental 
tasks. The first task is the creation of a working database pro-
vided by the measurement of operation variables through 
instrumentation equipment. It is essential to mention that 
the variables considered for the model should preferably be 
representative of the phenomenon to reduce the size of the 
network and avoid redundancy in training data. Besides, 
its analysis with statistical processes is recommended [25].

The second task is to obtain an adequate network con-
figuration to reach an accurate prediction. In this step, the 
size and normalization of the data set, the number of hidden 
neurons, the training algorithm, and the activation function 
are essential parameters to be considered. So that later, 
in the third task, the correlation between obtained and 
experimental variables is established.

Three layers mainly characterize the neural network 
model configuration. The first layer, known as the input 
layer, contains the variables that will be considered as input 
neurons in the model. A normalization or standardization 
process should be applied to input data to adjust them on 
the same scale. This process allows comparing its propor-
tions instead of their magnitudes and offers a considerable 
decrease in the calculation time [26].

Fig. 2. Schematic diagram of the PTC experimental system.

Fig. 3. Arrangement configurations of the PTC experimental 
system.

Table 2
Operating conditions of the PTC system

Experimental variables Working range

Day 287–318
Flow, LPM 0.7–5
Configuration 1–4
Hour, min 595–1,085
Irradiance, W/m2 2–1,043
Tinput, °C 20.01–38.11
Tenv, °C 19.27–39.02
Tfeed, °C 18.18–28.95
Tstorage, °C 18.75–30.72
Toutput, °C 20.02–41.99

Table 3
Calculation of the day of the year

Month Day of the year
January i
February 31+i
March 59+i
April 90+i
May 120+i
June 151+i
July 181+i
August 212+i
September 243+i
October 273+i
November 304+i
December 334+i



27E.D. Reyes-Téllez et al. / Desalination and Water Treatment 200 (2020) 23–41

The normalization of the database prevents mathe-
matical saturation since sigmoid transfer functions tend to 
become saturated when presenting values higher than +3 or 
less than –3. Having a high number of values on the input 
variables, the amount assigned to the weights must be min-
imal what would make the training very slow [27]. The nor-
malization interval of the input variables must be related to 
the activation function that is decided to be used. Usually, it 
is done in intervals from –1 to 1, for which there are differ-
ent equations in the literature.

The second layer is the hidden layer, where are one or 
more processing units called hidden neurons. The accurate 
prediction of the ANN model is determined by the num-
ber of these units associated with their activation function. 
Lastly, in the output layer, through a matrix of weights and 
bias, be interconnected all the neurons of the model for gen-
erating the variable(s) to predict.

To each hidden neuron is required the network input 
term nj that consists of a group of connection links called 
synapses; where each of these has an adjustable connection 
value, called synaptic weight Wi, which can be positive if 
the neuron increases the activation state of the adjacent or 
negative neuron if it inhibits it. The weight product and its 
respective input P are summed for each neuron by adding an 
offset value b known as bias [28], as shown in the following 
expression:

n P P P bj j j j r r j= ⋅ + ⋅ +…+ ⋅ +( ) ( ) ( ) ( ) ( ) ( ) ( )Wi Wi Wi, , , ,1 1 2 2 1  (1)

where Wi are the coefficients of the connection weights 
between the input layer and the hidden layer, P are the input 
variables, j is the number of neurons in the hidden layer, r is 
the number of input neurons, and b is the bias corresponding 
to each neuron in the hidden layer.

An activation or transfer function is applied to nj in order 
to determine the magnitude of response of each hidden neu-
ron. There are a different transfer or activation functions as 
hard-limit, linear, logarithmic sigmoid, hyperbolic tangent 
sigmoid, Gaussian, among others. The most prominent 
functions for the hidden layer are the tangential-sigmoidal 

function (TANSIG, τ) and the logarithmic-sigmoidal 
(LOGSIG, δ). Their equations are shown in Table 4. Normally, 
a linear transfer function (PURELIN, λ) is used for the out-
put layer [29]. An ANN model is generally represented 
according to the activation function selected.

For the learning process, the most common architec-
ture used has been multilayer perceptron trained with the 
Levenberg–Marquardt backpropagation training algorithm 
in a feed-forward multilayer network [30], which have been 
recommended for heat exchanger analysis [31] and the per-
formance of a solar collector [32].

To validate the accuracy and the adaptability of the 
model proposed, statistical tests are performed to analyze 
the experimental data and simulated data obtained. The test 
parameters that commonly used are the root mean square 
error RMSE, mean absolute percent error MAPE, and the 
coefficient of determination R2 [17]. The optimal model is the 
one with the highest R2, and the lowest MAPE, and RMSE.
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Significance tests are applied to the relation of experi-
mental and simulated databases to corroborate the fit of the 
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the two databases have the same variance or similar variance 
(F-test), or if the mean of two databases are equal or comes 
from the same population (t-test). Likewise, the H1 deter-
mines that the variance or mean of databases is different. The 
critic value computed must be less to critic value from the 
statistical tables to accept H0. For calculate F-test and t-test, 
the following equations are used:
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The parameter S is the standard deviation combined. 
For the F-test, the calculated F must always be ≥1. In case 
it is lower, it must be recalculated with the inverted terms. 
The numerator must always be higher or equal to the denom-
inator. When the F-test is approved, the student’s t-test is 
carried out. Otherwise, it is not applied, and the model 
must be rejected [34].

To validate the relationship between the simulated 
data with the ANN model and the experimental data, lin-
earity tests are performed. It is known in advance that the 
linear regression analysis is used to obtain a relationship 
between two variables (one dependent and the other inde-
pendent) and thus estimate the coefficients of the slope and 
the intercept, which determines the equation of the line. 
Statistically, the slope must be equal to 1 and the intercept 
equal to 0 [33].

The slope-intercept linearity test also called the standard 
deviation of the linear regression or standard error, establishes 
the confidence limits of the slope and intercept. These limits 
or intervals should ideally be one and zero for the slope and 
the intercept, respectively [35]. By the following equations, 
the errors on the linear regression coefficients are estimated:
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where xsim(i) is the simulated value and x isim( )�  the value of xsim 
calculated by linear regression for the same value at xsim(i) 
( expx a bx isim = + ( )ˆ ) [36]. The expression x xi isim sim( ) ( )− ˆ  is called 
residual, which comes from the original data with respect to 
the regression line.

At this point, it is important to remember that the slope 
b is given by:
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The intercept a for:

a x bx= −sim exp  (11)

where xexp and x isim( )�  are the mean of the experimental and 
simulated data, respectively.

Therefore, the confidence intervals or limits of the slope 
and the intercept will be defined as:

to slope b t s b t sn b b n b− ( ){ } < < + ( ){ }−( ) −( )2 2µ  (12)

to intercept a t s a t sn a a n a− ( ){ } < < + ( ){ }−( ) −( )2 2µ  (13)

where t(n–2) is the critical value t of Student that comes from 
statistic tables, at a certain level of confidence or signifi-
cance of 95% or 99% (recommended) with n–2 degrees of 
freedom. For n bivariate data, the degrees of freedom will 
be reduced by two because of at least two data or points 
are required to draw a straight line of regression [33]. 
However, an adjustment is necessary when the data exceeds 
one thousand samples; this adjustment is mainly for 98% 
and 99% levels (for both sides). The expressions are as  
follows [34]:

Less or equal than 1,000 data and a 98% confidence  
level:

t ts98 4 94002103 0 00012294 4 5022554 0 0018112cv( ) = ±( ) − ±( )
int

. . . . ×× ( )( )( ) + ±( )× ( )( )( ) −

±

ln ln . . ln ln

. .

n n2 785764 0 008079

0 485943 0

2

0016415 0 3051890 0 017282 0
3 4

( )× ( )( )( ) − ±( )× ( )( )( ) +ln ln . . ln lnn n .. .

ln ln . . ln l

216257 0 009455

0 0506048 0 0022587
5

±( )×

( )( )( ) − ±( )×n nn lnln . . ln lnn n( )( )( ) + ±( )× ( )( )( )6 8
0 00132479 0 000062583

 (14)
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To more than 1,000 data and a 98% confidence level:

t ts98 4 94237021 0 00014897 4 5412456 00 0007948cv

ext
( ) = ±( ) − ±(. . . . ))× ( )( )( ) + ±( )× ( )( )( ) −ln ln . . ln ln

.

n n2 9690047 0 0013459

0 865855

2

55 0 0008820 0 09497881 0 00019659
3

±( )× ( )( )( ) + ±( )× (. ln ln . . ln lnn n))( )( )4  (15)

Less or equal than 1,000 data and a 99% confidence level:

t ts99 6 48557253 0 00017748 7 3462223 0 0026146cv( ) = ±( ) − ±( )
int

. . . . ×× ( )( )( ) + ±( )× ( )( )( ) −

±

ln ln . . ln ln

. .

n n5 418770 0 011663

1 721741 0

2

0023697 0 0930165 0 024949 0
3 4

) ln ln . . ln ln .× ( )( )( ) − ±( )× ( )( )( ) +n n 2274850 0 013649

0 0779639 0 0032607
5

±( )×

( )( )( ) − ±( )×

.

ln ln . . ln lnn nn n( )( )( ) + ±( )× ( )( )( )6 8
0 00221624 0 00009035. . ln ln  (16)

and, more than 1,000 data and a 99% confidence level:

t ts99 2 94230900 0 00003147 1 1213450 0 00018085cv

ext
( ) = ±( ) − ±(. . . . ))× ( )( )( )( ) + ±( )×

( )( )( )( )
ln ln ln . .

ln ln ln

n

n

0 78201429 0 00031542
22 3

0 3639632 0 0009774 0 20510287 0 000+ ±( )× ( )( )( )( ) − ±. . ln ln ln . .n 448796

0 1945693 0012343

4

( )× ( )( )( )( ) −

±( )× ( )( )(
ln ln ln

. ln ln ln

n

n ))( ) − ±( )× ( )( )( )( )5 6
0 04167330 0 00042639. . ln ln ln n  (17)

Finally, the Garson equation [37] was used to deter-
mine the importance of the input variables within the net-
work; this equation is based on the partition of the weight 
connections.
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where IP is the relative importance of the input variable 
P over the output variable.

4. Neural network model

For a neural network model to learn to calculate the out-
put variable with high precision is necessary to establish the 
topology or architecture accurately. The normalization of 
the input data, the number of neurons in the hidden layer, 
and the degree of connectivity obtained through the transfer 
function are essential parameters to be determined.

Like a biological neuron, the artificial neuron calculates 
its degree of connectivity from the activation function. In 
simple terms, a transfer or activation function of a neuron 
represents the potential rate at which a neuron is activated or 
not. Its primary purpose is to relate an output response to the 
input signals varying in the range of –1 to 1, depending on 
the selected transfer function. Therefore, the normalization 

interval of the input variables must be related to the activa-
tion function that is decided to be used.

As mentioned earlier, the normalization process pre-
vents mathematical saturation when transfer functions are 
used. When the values of the input variables are very high, 
the weight values obtained will be very small. Therefore, 
the descending gradient in the process will be short, which 
leads to prolonged training [27]. This behavior is indepen-
dent of what the bias has, since these only act as compensa-
tion or counterweight value for the network.

In the literature, various equations of normalizations 
have been applied for some transfer functions. In a paper 
reported by Hernández and Colorado [38], different transfer 
functions were evaluated varying intervals of normalization 
in an absorption heat transformer with energy recycling. 
It was determined that the TANSIG function with a normal-
ization range [0,1] showed better results compared to others. 
However, it exists some uncertainty choosing the appropriate 
transfer function and normalization process, as well as the 
optimal number of neurons in the hidden layer. Therefore, 
in this work, in order to discern the best topology, it was 
required to make an analysis of the transfer functions at dif-
ferent normalization intervals and find the best model capa-
ble of estimating of PTC outlet temperature.

A first network model was developed that was used as a 
base model from 1,155 concordant experimental data. Nine 
variables were selected, which was being considered signifi-
cant for our PTC system. The input variables were the input 
temperature of the fluid, ambient temperature, irradiance, 
hour, day, configuration, volumetric flow, feeding tempera-
ture, and storage temperature.

This model was trained with 50% of the data, validated 
with 25%, and tested with the remaining 25%. The percent-
ages above are those recommended for randomly dividing 
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the original sample into three sub-samples and thereby gen-
erating results with statistically significant precision [39]. 
This type of stratified sampling ensures that each element 
of the population has the same probability of being selected 
to integrate each one of the subsamples. When proposing an 
ANN model based on a single data sample, it could pres-
ent significant errors. A multilayer feedforward backprop-
agation architecture was used with nine input neurons in a 
normalization interval from –1 to 1, the specified range for 
the TANSIG function. The general form of the normalization 
equation is represented as follows:

x y y
x x
x x

yn
i= −( )× −
−









 +max min

min

max min
min  (19)

where ymax and ymin are the limit values of the normalization 
interval. For this model, the values of ymax and ymin were 1 
and –1, respectively. Once the neuronal model was obtained, 
the comparison between the simulated data and the experi-
mental data was performed using the R2, MAPE, and RMSE 
statistical tests described above.

Table 5 shows the comparison of the statistical analysis 
to determine the number of neurons in the hidden layer. 
It is observed that both the RMSE and the MAPE show a 
slight decrease for the five and six neuron configurations. 
Therefore, continuing to increase the number of neurons in 
the hidden layer would reduce in minimum values the error 
and increase the number of coefficients in the output equa-
tion, which generates over-fitting. Fig. 4 shows the architec-
ture employed in the neural model of Toutput with six hidden 
neurons.

Additionally, the F-test and t-test significance tests were 
performed on the ANN model. A significance level of 0.01 

(99% confidence) was selected to indicate an acceptable 
error of 1%, and the p-value was determined to establish the 
minimum level of significance to accept the model. Table 6 
shows the values obtained from the Fisher and t-student 
F-tests and the p-value.

The slope-intercept test was performed to verify that 
the simulated data is within the range defined by the 
limits of the target and not outside it. The values of the 

Table 5
Statistical analysis of the neurons number in the hidden layer for 
base ANN model

Number of 
neurons

R2 RMSE MAPE

1 0.970366963 0.411245901 0.022058509
2 0.977060605 0.361024753 0.028778328
3 0.984686936 0.294146581 0.040628118
4 0.988624436 0.253367799 0.019870286
5 0.995204523 0.164814324 0.009307217
6 0.996191094 0.147062448 0.007954328

Fig. 4. Neural model architecture of the PTC with nine inputs.

Table 6
Significance tests (Fisher test, t-student test, and P-value)

Fisher test t-student test

Calculated value (Eqs. (6) and (7)) 1.00583512 0.44966639
Critic value (from tables) 1.14688062 2.32958361
If computed value < critic value Yes Yes
P-value 0.92129576
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pending-intercept test are presented in Fig. 5, where the 
base model is ratified. Where the lower intercept must be 
less than zero, and the upper intercept must be greater than 
zero. Similarly, the lower and upper slope must be less than 
and greater than 1, respectively. When averaging the result-
ing values should be close to zero for the intercept and one 
for the slope.

Fig. 6 shows the simulation of the outlet temperature 
of the collector using the base model on October 20 and 27, 
where it is observed that the model fits the experimental 
data satisfactorily despite the noise in the measurements.

To determine the influence of the normalization pro-
cess influenced transfer functions, five areas of interest 
were identified for the use of TANSIG and LOGSIG func-
tions, which are the most widely employed. The train-
ing process for the comparison is shown in Fig. 7, and the 
normalization intervals analyzed are shown in Fig. 8.

Consequently, ten models were developed for the anal-
ysis of the proposed normalization intervals using the same 
architecture as the base model. In the same way, the statis-
tical parameters were calculated in order to validate them, 
and the results are shown in Table 7 for each normalization 
interval. As can be seen, similar values of R2, RMSE, and 
MAPE were obtained in comparison with the base model, 
and even some reached a better value, as was the case with 
normalization in the interval [0.1,0.9] for TANSIG or with 
[0.1,0.5] for LOGSIG.

Fisher and Student t-tests were successfully applied 
and approved for most models. The results of significance 
tests are shown in Table 8. With respect to the slope-inter-
cept test, the TANSIG model with normalization [–0.5, 0.5] 
and the LOGSIG model with [0.5,0.9] did not pass the test 
with any confidence level; despite having chosen 99%, 98%, 
and 95% of confidence. The results of the slope-intercept test 
for all models are exhibited in Table 9.

As shown in Figs. 9 and 10, the comparison between all 
data simulated by the models proposed with the experimen-
tal data reveals that, for this case, the slope-intercept test 
does not have importance in obtaining an accurate predictive 
model of our system. However, as can be observed, the model 
that got the smallest error, approved all tests and, showed the 
best fit was the TANSIG model with normalization [0.1,0.9].

The normalization process also has been suggesting 
used in the output variables. Hence, the normalization of 

the output variable was implemented in the models previ-
ously proposed. This procedure is not often used due to the 
PURELIN linear transfer function is the most handled in the 
output layer. The PURELIN transfer function has no restric-
tions; that is, it can take values from −∞ to +∞. However, the 
normalization of the output variables could improve model 
predictions but is necessary to denormalize output data 
for being used. The validation of these models was carried 

Fig. 5. Linearity test of the base ANN model.
Fig. 7. Normalization intervals for TANSIG and LOGSIG transfer 
functions.

Fig. 6. Comparison between experimental and simulated data by 
base ANN model.
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out through statistical tests, and Table 10 shows the results 
obtained.

Evidently, the models with normalized output 
acquired similar results who get with the base model. 
Note that when the modeling with ANN used normalized 
output, the RMSE is very smallest. The model with nor-
malization in the interval of [–0.9, 0.9] for TANSIG was 
discarded because it did not approve the significance tests, 
as exhibits in Table 11. Figs. 11 and 12 show a comparison 
between the data simulated by models with normalized 
output and experimental data; as can be seen, the rejected 
model presented more dispersion compared to the other  
models. 

Contrary to what happens with models with non- 
normalized outputs, Table 12 shows that there were very 
few models that approved the slope-intercept test. Only 
the models TANSIG of [–0.5,0.5], LOGSIG of [0.5,0.9], 
LOGSIG of [0.2,0.8], and LOGSIG [0.25,0.75] approved the 
test. It is essential to highlight that when the model ANN 
uses the TANSIG transfer function, avoiding the output 

normalization, normalizations that consider negative inter-
vals had worse performance.

As it may be noted, all models fit right but have been 
considered that the best model was the TANSIG model 
with normalization in an interval of [0.1,0.9], which was 
that got the smallest error by statistical tests, approved 
the significance tests, and submitted minor dispersion. It 
has the highest R2, the smallest MAPE, and the minimal 
RMSE without considering the models with standard-
ized output (R2 = 0.997405465, RMSE = 0.121237247, and 
MAPE = 5.9341 × 10–5). In fact, this normalization interval 
has been wide reported by some authors [18,26,29,38,40]. 
Fig. 13 shows the accuracy check of the best ANN model.

Once the model was validated, the equation was 
obtained to determine the outlet temperature of the collec-
tor. The final architecture of the model was of nine neurons 
in the input layer, six neurons in the hidden layer, and one 
in the output layer. As it has a TANSIG transfer function in 
the hidden layer and PURELIN transfer function in the out-
put layer, the equation is described as follows:

Fig. 8. Numerical method for the ANN learning process.
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Fig. 9. Comparison between experimental and simulated data by TANSIG models.

Fig. 10. Comparison between experimental and simulated data by LOGSIG models.
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Table 10
Statistical analysis for the comparison at the same intervals TANSIG and LOGSIG with output normalized

Statistical 
analysis

TANSIG with normalized output LOGSIG with normalized output

[–0.9,0.9] [–0.9,–0.1] [0.1,0.9] [0.2,0.8] [–0.5,0.5] [0.1,0.9 [0.1,0.5] [0.5,0.9] [0.2,0.8] [0.25,0.75]

R2 0.996040 0.994909 0.996359 0.996011 0.996737 0.996021 0.996188 0.987329 0.997721 0.996639
RMSE 0.012302 0.006173 0.005227 0.004100 0.006179 0.005458 0.002689 0.004879 0.003111 0.003137
MAPE 0.476835 0.005938 0.038955 0.023999 0.321890 0.024467 0.054940 0.017070 0.019419 0.042913

Fig. 11. Comparison between experimental and simulated data by TANSIG models with normalized output.

Table 11
Significance tests (Fisher test, t–student test, and P-value) for the comparison at the same intervals TANSIG and LOGSIG with output 
normalized

Function Intervals F-calculated 
(Eq. (6))

t-student 
calculated (Eq. (7))

If calculated value < critic 
value [F-test, t-test]

P-value 
(α = 0.01)

TANSIG with 
normalized output

[–0.9,0.9] 1.01015006 2.73958746 [Yes, Not] 0.00624644
[–0.9,–0.1] 1.00806719 0.33356398 [Yes, Yes] 0.73876920
[0.1,0.9] 1.00994680 0.08944406 [Yes, Yes] 0.92874453
[0.2,0.8] 1.00000431 0.55675852 [Yes, Yes] 0.57780038
[–0.5,0.5] 1.00095651 0.7103265 [Yes, Yes] 0.47764521

LOGSIG with nor-
malized output

[0.1,0.9] 1.00715098 0.39782846 [Yes, Yes] 0.69083021
[0.1,0.5] 1.01597356 2.29983889 [Yes, Yes] 0.02163516
[0.5,0.9] 1.00132610 0.84987004 [Yes, Yes] 0.39557363
[0.2,0.8] 1.00649484 0.78383054 [Yes, Yes] 0.43330040
[0.25,0.75] 1.00274888 1.48134423 [Yes, Yes] 0.13878785

Critic value (from tables) 1.14688062 2.32958361 Significance lvl. 99% (α = 0.01) p-value > α
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Fig. 12. Comparison between experimental and simulated data by LOGSIG models with normalized output.

Fig. 13. Comparison between experimental and simulated data by best ANN model.
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Expressed in simple terms:
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where
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The values in Eq. (21) are replaced by weights and biases that are given in Table 13.
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T
e ex xoutput =

( )
+

+
−( )

+
+
( )

2
2 468148
1

3 205328
1

19 874896
11 2

. . .
( ) ( ) ++

+
−( )

+
+

−( )
+

+
( )

e e ex x x( ) ( ) ( )

( . . .
3 4 5

19 918823
1

0 184265
1

1 061698
11

2 468148 3 205328 19 874896 19 91

6+












−

( ) + −( ) + ( ) + −

e x( )

. . . . 88823 0 184265 1 061698 41 508457 21( ) + −( ) + ( )  + ( ). . . .b  (24)

and

x
P P P

1
1 2 32

8 181033 2 322151 19 318793 2 2337
= − ⋅

−( ) ⋅ + ( ) ⋅ + −( ) ⋅ + −. . . . 557 1 30984 0 444677

22 902622 2 89
4 5

6 7

( ) ⋅ + −( ) ⋅ + −( ) ⋅
+ ( ) ⋅ + −

P P

P P

. .

. . 88441 5 252849
5 569662

8 9( ) ⋅ + −( ) ⋅











+

P P.
.

 (25)

x
P P P

2
1 2 32

1 010914 0 711492 10 320357 1 08540
= − ⋅

( ) ⋅ + −( ) ⋅ + −( ) ⋅ +. . . . 99 0 535034 0 034638

4 421108 0 2444
4 5

6 7

( ) ⋅ + ( ) ⋅ + ( ) ⋅
+ −( ) ⋅ + −

P P

P P

. .

. . 666 0 937116
1 848974

8 9( ) ⋅ + ( ) ⋅











+

P P.
.  (26)

Fig. 14. Relative importance of the input variables in the best ANN model of PTC system.
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The Garson equation was used to realize the sensitivity 
analysis, which determine the importance of the input vari-
ables over the best model obtained. The sensitivity analysis 
depends exclusively on the weight given to each connection 
during training, that is, the values may vary from model 
to model with similar R2, RMSE, and MAPE and the same 
architecture. The reason is that, during training, the connec-
tions are adjusted to be able to represent the experimental 
output variable. The results of the sensitivity analysis for the 
best model obtained are shown in Fig. 14.

As to be expected, with the result of the sensitivity anal-
ysis, it was determined that the variable with greater pre-
ponderance over the best model was the input temperature 
with 34%. It is known that the outlet temperature acquires 
values in relation to the inlet temperature of the fluid. The 
variables that follow in order of importance, such as irradi-
ance and day of the year, reiterating how the season of the 
year represents an essential variable for the PTC system. The 
position of the Earth with respect to the Sun, significantly 
influences the amount of radiation absorbed by the PTC.

The next two variables, which are the time of day and the 
ambient temperature, clearly represent how the performance 
of the PTC system is closely related to the exposure time. On 
the other hand, the configuration shows a small impact over 
the model, which means that convection losses could be com-
parable to optical losses.

Even though the temperature of the feed tank and 
volumetric flow had a lower similar percentage than oth-
ers, it could be variables to consider to increase the outlet 
temperature. Finally, the least important variable was the 
storage temperature, which can be depreciated because it 
represented directly by the inlet temperature due to there is 
a system in recirculation.

Other studies could be realized in the future to evaluate 
the relative importance of input variables over the model and 
determine numerically what variables are necessary to con-
sider in the input layer.

5. Conclusions

A low-cost parabolic trough solar collector with an 
absorber grooved tube was installed as a cheap option for 
residential use. By experimental measurements of a water 

heating process, the PTC was modeled with ANNs in order 
to predict the output temperature.

To obtain a model with high precision, a training analy-
sis using the TANSIG and LOGSIG transfer functions in the 
hidden layer was performed, considering different normal-
ization intervals in both the input and output variables.

The best model was the one that obtained outstand-
ing behavior according to the statistical, significance, and 
slope-intercept tests. This model used TANSIG as a trans-
fer function with a normalization interval of [0.1,0.9]. A 
multilayer feedforward backpropagation architecture was 
proposed with a structure of nine neurons in the input 
layer, six neurons in the hidden layer, and one in the out-
put layer. The input variables were the input temperature of 
the fluid, environment temperature, irradiance, hour, day, 
configuration, volumetric flow, feeding temperature, and 
storage temperature. The statistical results obtained were 
R2 = 0.9974, RMSE = 0.12123, and MAPE = 5.93 × 10–5.

It should be noted, all models with normalized output 
had the smallest RMSE compared with non-normalized 
output models. Also, proper normalization of the database 
accelerates training and could improve the accuracy of ANN 
models.

With the sensitivity analysis, it was shown that most 
variables influence the model. However, the input tempera-
ture is the variable that most influenced in addition to the 
variables that are related to the season of the year. The tem-
perature at the tank of the feeding and the volumetric flow 
are variables that can be considered as possible opportuni-
ties to increase the outlet temperature.
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Symbols

b1 — Bias in the hidden layer
b2 — Bias in the output layer
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F — F-Fisher test
IP — Importance of the input variable
LM — Levenberg–Marquardt training method
MAPE — Mean absolute percent error
n — Samples number
nj — Network input term
P — Input variable
PTC — Parabolic trough collector
R2 — Coefficient of determination
RMSE — Root mean square error
S — Standard deviation combined
t — t-student test
T — Temperature (°C)
Wi — Weights
x — Value data
x̄ — Mean data
x̂ — Linear regression data
y — Value of interval normalization

Greek

δ — LOGSIG function
λ — PURELIN function
τ — TANSIG function

Subscript

amb — Ambient
exp — Experimental
feed — Feed/cold water tank
input — Fluid inlet
j — Neurons in the hidden layer
k — Neurons in the output layer
max — Value maximum
min — Value minimum
norm — Normalized
output — Fluid outlet
r — Neurons in the input layer
sim — Simulate
storage — Storage/hot water tank
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