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a b s t r a c t
Attapulgite modified with Keggin ions was successfully synthesized to remove Cu(II) in aqueous 
systems. The original and modified attapulgite samples were characterized by X-ray diffraction, 
Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron 
spectroscopy, and the adsorption capacity for Cu(II) of both materials was compared in this study. 
The parameters, such as contact time, initial pH, temperature, and initial Cu(II) concentration, 
affecting the adsorption efficiency of Cu(II) on the modified composite were evaluated using anal-
ysis of variance, aggregated boosted tree analysis, and random forest analysis. To obtain the max-
imum efficiency of Cu(II) removal from simulated wastewater, response surface methodology, a 
back propagation artificial neural network, and a genetic algorithm combined with a back propa-
gation neural network (GA-BP) were utilized to optimize the operating parameters (temperature, 
contact time, initial pH, and initial Cu(II) concentration). The results showed that initial pH was the 
most influential variable for Cu(II) removal from aqueous solutions. GA-BP was the most suitable 
approach for modeling Cu(II) removal from aqueous solutions because its absolute error between 
the experimental and predicted values was the smallest. For GA-BP optimization, the maximum 
removal efficiency of Cu(II) reached 91.35% at temperature = 29.73°C, contact time = 69.60 min, 
initial pH = 6.46, and initial Cu(II) concentration = 100.00 mg/L. The results of adsorption iso-
therm, kinetics, and thermodynamics analysis showed that the Langmuir isotherm and pseudo- 
second-order kinetic model could describe the adsorption process, which was a spontaneous and 
entropy-driven process. The regeneration experiments showed that the attapulgite modified with 
Keggin ions for Cu(II) removal from simulated wastewater are an effective and reusable adsorbent 
within four regeneration cycles.

Keywords:  Attapulgite; Keggin ion; Response surface methodology; Back propagation artificial 
neural network; Genetic algorithm combined with back propagation neural network
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1. Introduction

Copper (Cu) is an essential element for humans and 
plants, and there are several materials containing various 
forms of copper compounds in the human living environ-
ment [1,2]. The amount of Cu emissions is increasing, leading 
to excessive Cu concentrations in plants, which will insig-
nificantly damage human health and destroy the ecological 
environment through food chain enrichment [3]. The toxicity 
of divalent copper is greater than that of copper, especially 
Cu(COOH)2 and Cu2SO4 [4]. Symptoms such as abdom-
inal pain, diarrhea, and vomiting will emerge when exces-
sive Cu is ingested by mistake [5]. Therefore, it is urgent to 
treat high concentrations of Cu(II) in wastewater.

Attapulgite (Mg5Si8O20(OH)2(OH2)4·4H2O) has a large 
specific surface area and high surface activity [6]. However, 
its application in environmental remediation is limited 
due to a large amount of hydroxyl groups on its surface 
and its easy agglomeration. Thus, it is necessary to modify 
attapulgite using several methods. Feng et al. [7] reported 
that porous attapulgite (ATP)/polymer beads were used to 
remove Cu(II) and Cd(II) from aqueous solutions, and the 
maximum adsorption capacities of the beads for Cu(II) and 
Cd(II) were 25.3 and 32.7 mg/g, respectively. Additionally, 
the beads were millimeter-sized and could float on the 
water surface, making such beads easy to handle and fac-
ile to recover without loss of mass. Falayi and Ntuli [8] 
utilized attapulgite calcined at 973.15 K as an adsorbent 
for the removal of heavy metals. After 2 h, the removal 
rates of Cu(II), Fe(II), Co(II), Ni(II), and Mn(II) were 100%, 
99.46%, 96.20%, 86.92%, and 71.52%, respectively, using 
a loading of 2.50% w/v activated attapulgite. Zheng et al. 
[9] described that polyacrylic acid/attapulgite (PAA/ATP) 
composite hydrogels were used for the removal of heavy 
metal ions from aqueous solution. The results showed that 
the composite hydrogels had a large adsorption capacity 
for Ni(II) ions, and the average adsorption capacity reached 
72.8 mg/g. Furthermore, Keggin ions have a high-charge 
polymerized ring shape, a high degree of neutralization and 
a strong bridging effect on colloids and particles in water 
and are suitable for the removal of micro poisons and heavy 
metal ions [10]. To date, Keggin ion-modified attapulgite 
has been rarely reported. Therefore, Keggin ion-modified 
attapulgite will be further investigated in this study based 
on previous works.

The operating conditions of the removal process greatly 
influence the removal efficiency. To obtain the maximum 
removal efficiency, response surface methodology (RSM) 
[11], back propagation artificial neural networks (BP-ANN) 
[12,13], and back propagation-genetic algorithm (BP-GA) 
neural networks [14,15] have been used to optimize the 
removal conditions. Hazime et al. [16] reported that the 
optimization of the photocatalytic degradation of a car-
cinogenic pesticide, imazalil, was carried out in an aqueous 
solution using TiO2 as a photocatalyst under UV irradiation 
in the presence of persulfate. The optimal experimental con-
ditions found for imazalil (25 mg/L) removal were an acidic 
pH of 3–4, persulfate concentration of ≈2.5 g/L, and TiO2 
loading of 2.5 g/L. The experimental design allows obtain-
ing the maximum efficiency with the minimum amount 
of persulfate. This study systematically demonstrates the 

utility and benefits of the experimental design approach 
for screening and modeling reaction parameters. Liu et al. 
[17] created a back propagation (BP) neural-network model 
to estimate chlorophyll concentrations in rice under heavy 
metal stress. The results showed that the optimum BP neu-
ral-network prediction model had a 4-10-2-1 network archi-
tecture with a gradient descent learning algorithm and an 
activation function including a sigmoid tangent function in 
the input layer, a hidden layer and sigmoid logistic func-
tions in the output layer. Awad et al. [18] investigated the 
capability of a real genetic algorithm to remove a heavy 
metal pollutant plume from an aquifer. A new system was 
developed for removing Hg and Cd from groundwater in 
a real problem and was proven to be optimal. The results 
showed that real-coding genetic algorithms are a practical 
means of optimizing engineering solutions to problems 
related to groundwater quality management, particularly 
those involving discontinuous functions. Nevertheless, the 
performance of ANNs should still be significantly improved 
due to the ease of falling into a local optimum. To avoid this 
problem, an ANN combined with a genetic algorithm (GA) 
will be used in this study.

Analysis of variance (RSM), random forest (RF) analy-
sis, and aggregated boosted tree (APT) analysis can be used 
to evaluate the importance of factors, which has commonly 
been ignored in previous studies [19,20]. In contrast with 
previous reports, this study is devoted to applying artifi-
cial intelligence tools (BP-ANN, GA-BP, RF, and APT) in 
environmental remediation (Cu(II) removal from simula-
tion wastewater). Generally, the purposes of this study were 
to (1) remove Cu(II) from aqueous solution using Keggin 
ion-modified attapulgite; (2) investigate the mechanism 
of the removal process through isothermal adsorption, 
kinetics, and thermodynamic parameters; (3) optimize the 
removal parameters to obtain the maximum Cu(II) removal 
efficiency by using RSM, a BP-ANNand BP-GA; and 
(4) evaluate the factor importance using RF (R language), 
the ABT gbmplus package (R language) and analysis of 
variance (RSM).

2. Materials and methods

2.1. Materials

The A1Cl3 and NaOH used in this study were of 
analytical grade, and all solutions were prepared using 
deionized water. Attapulgite was obtained from Xuyi, 
(Jiangsu, China). Cu(II) stock solution (1,000 mg/L) was 
prepared by dissolving a known amount of CuSO4·5H2O 
in deionized water.

2.2. Preparation of Keggin ions

First, 0.2 mol/L A1Cl3 and 0.5 mol/L NaOH solutions 
were prepared. Then, a certain amount of A1Cl3 solution 
was put in a beaker, and the solution was heated and rap-
idly stirred in a constant temperature water bath at 60°C. 
NaOH solution was gradually dropped into the A1Cl3 solu-
tion according to the ratio OH–/Al3+ = 2.4 mol. The mixtures 
were transferred into a conical flask and then continuously 
stirred and heated for 2 h. After the end of stirring and 
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heating, the mouth of the flask was sealed with a rubber 
plug. Finally, colorless and transparent Keggin ion solutions 
were obtained after aging at 60°C for 2 d.

2.3. Preparation of Keggin ion-modified attapulgite

The purified attapulgite was weighed according to 
the ratio Al3+/attapulgite = 5 mmol/g. The weighed atta-
pulgite was added to Keggin ion solutions under contin-
uous stirring and heating (the temperature was controlled 
at 80°C). Mixing was stopped after 2 h, the bottle mouth 
was plugged, and the mixture was left at 80°C for 48 h. 
The upper clear liquid was removed, and the flocculent 
precipitate was repeatedly washed with distilled water 
and filtered until the pH value of the filtrate was neutral. 
After natural drying, the filter cake was put in a constant 
temperature drying oven and dried at 105°C for 2 h to 
obtain Keggin ion-modified attapulgite.

2.4. Characterization of as-prepared Keggin ion-modified 
attapulgite

The Keggin ion-modified attapulgite was examined 
on X-ray diffraction (XRD) instrument for phase iden-
tification using a LynxEye array detector with a Cu-Kα 
X-ray source (accelerating voltage = 40 kV, current 40 mA, 
Bruker Corporation, Karlsruhe, Germany). The morphol-
ogy was examined using TEM (TecnaiG2 F20, FEI Co., Ltd., 
Hillsboro, OR, USA). XPS measurements were recorded 
on an ESCALAB 250Xi spectrometer using monochroma-
tized Al-Kα radiation (hν = 1,486.6 eV), and all binding 
energies were calibrated by using the contaminant car-
bon peak (C1S = 284.8 eV) as a reference (Thermo Electron 
Corporation, Waltham, MA, USA). FTIR measurements 
were performed using a Nicolet 6700 spectrometer (Nicolet 
Instrument Corporation, Madison, WI, USA). Magnetization 
measurements were carried out using a SQUID magnetom-
eter (MPMS XL-7, Quantum Design, Inc., San Diego, CA, 
USA) under an applied magnetic field at room temperature. 
Brunner–Emmet–Teller (BET) surface areas of the Keggin 
ion-modified attapulgite were obtained from N2 adsorp-
tion isotherms at 77 K with a Micromeritics 3 Flex surface 
characterization analyzer (outgas time: 3.0 h, outgas tem-
perature: 300.0°C, Micromeritics Instrument Corporation, 
Norcross, GA, USA). Excel, Origin 8.6, and RSM (2011) were 
used for statistical data analysis, drawing, and experimental 
design, respectively. Random forest and integrated boosted 
tree analyses were carried out using the “random forest” 
and “gbmplus” packages in R2.9.2 software, respectively.

2.5. Adsorption experiments

The prepared 1,000 mg/L Cu(II) stock solution was 
gradually diluted to 100, 150, and 200 mg/L. Modified 
attapulgite (0.5 g) was added to 50 mL of Sb(III) solution 
(100, 150, and 200 mg/L). The initial pH of the mixture was 
adjusted to the desired value by using 0.1 mol/L HCl or 
0.1 mol/L NaOH. The factors, including initial Cu(II) concen-
tration, initial pH, contact time, and operating temperature, 
affecting the removal efficiency of Cu(II) were investi-
gated using batch adsorption experiments (single-factor 

experiments). The Cu(II) concentration of the sample solu-
tions was determined using inductively coupled plasma 
optical emission spectrometry (Optima 5300 V). From 
among all experiments, 20% were randomly selected for 
replication, and the average values of the results were used 
for data analysis. For each heavy metal, the accuracy and 
precision of the methods and results were checked by using 
the certified Standard Reference Material (GNM-M17270-
2013), which was purchased by the Guobiao (Beijing) 
Testing and Certification Co., Ltd.

The removal efficiency of Cu(II) from stock solution 
using modified attapulgite was calculated from Eq. (1):
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where P is the removal efficiency of Cu(II), Ct is the Cu(II) 
concentration after removal, and C0 is the initial Cu(II) 
concentration (mg/L).

The Cu(II) adsorption quantity was calculated by Eq. (2):
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where qe is the quantity of Cu(II) adsorbed on the modified 
attapulgite at equilibrium (mg/g); C0 and Ct are the initial 
and equilibrium Cu(II) concentrations (mg/L), respec-
tively; v is the volume (L) of the solution; and m is the 
adsorbent mass (g).

2.6. RSM used for experimental design

In order to reduce the number of experiments, a Box–
Behnken design (BBD) approach of RSM was used in this 
study. The interaction effect of four factors was analyzed 
by a 4-factor-5-level BBD, and the process parameters were 
optimized, that is, contact time (A), initial Cu(II) concentra-
tion (B), temperature (C), and initial pH (D). The BBD design 
consists of two cube points (1 and +1) and a center point (0). 
Each variable changes at three levels (–1, 0, and +1), and a 
second-order model (Eq. (3)) was established to evaluate 
the impact of process parameters [21].
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where Y is the calculated response associated with each 
factor level combination; β0, βi, βii, and βij are the regression 
parameters (β0 is the intercept, βi is the linear effect term, 
βii is the square effect term and βij is the interactive effect 
term); xi and xj are the coded levels of independent vari-
ables; and the terms xixj and (xi)2 (i = 1 to k and j = 2 to k) 
represent the interaction and quadratic terms, respectively. 
The range of each factor is determined by a single-fac-
tor experiment, the results of which are shown in Table 1. 
According to the experimental design, 29 sets of conditions 
needed to be carried out in this study, among which the 
data from 24 data sets were used for modeling, and the 
remaining five data sets were used to verify the model.
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2.7. GA-BP used for optimizing parameters

BP neural networks are a kind of multilayer feedforward 
neural network (Fig. 1). The main characteristics of these 
networks are signal forward transmission and error back 
propagation [22]. In the process of forward propagation, the 
input signal is processed from the input layer to the output 
layer through the hidden layer [23,24]. The state of neurons 
in each layer only affects the state of neurons in the next 
layer. If the output layer cannot produce the expected out-
put, back propagation will occur, and the network weight 
and threshold will be adjusted according to the prediction 
error so that the predicted output of the BP neural network 
will keep approaching the expected output.

In the process of network initialization, according to 
the input and output sequence of the system, the number 
of network input layer nodes, the number of hidden layer 
nodes, the number of output layer nodes, the sum of the 
connection weights between the input layer, the hidden 
layer, and the output layer neurons, the threshold a of the 
hidden layer and the threshold of the output layer are ini-
tialized, and the learning rate and the neuron excitation 
function are given. In the second step, according to the input 
variable x, the connection weight wij of the input layer and 
hidden layer, and the hidden layer threshold a, afterwards, 
the hidden layer output H is calculated.
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where l is the number of nodes in the hidden layer and f is the 
excitation function of the hidden layer. A sigmoid function 
was employed in this study.
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In the third step, according to the output H of the hidden 
layer, the connection weight wjk, and threshold b, the output 
O of the BP neural network is calculated.
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where m is the output layer node number.
For the fourth step, the prediction error e is calculated 

according to the prediction output O and the expected 
output y.
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In the fifth step, the network connection weights of wij and 
wjk are updated according to the network prediction error E.
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where v is the learning rate.
In the sixth step, the node thresholds a and b are updated 

according to the network prediction error e.
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Table 1
Level of parameters in Box–Behnken experimental design

Code Parameters Maximum values Middle values Minimum values

A Contact time (min) 70 60 50
B Initial Cd(II) concentration (mg/L) 30 20 10
C Temperature (°C) 30 25 20
D Initial pH values 7 6 5

Fig. 1. BP network operation diagram.
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The genetic algorithm (GA) approach is a parallel ran-
dom search optimization method that simulates the genetic 
mechanism of nature and the theory of biological evolu-
tion (Fig. 2) [25]. Individuals with good fitness values are 
retained, and individuals with poor fitness are evaluated 
according to the selected fitness function and through 
selection, crossover, and mutation in genetics [26]. The new 
population not only inherits the information of the previ-
ous generation but also exceeds the previous generation. 
Three parts of the BP network, that is, neural network struc-
ture determination, genetic algorithm optimization, and BP 
neural network prediction, are optimized by the genetic 
algorithm [27]. Among these steps, the genetic algorithm 
was used to optimize the initial weight and threshold of 
the BP neural network, rendering the optimized BP neu-
ral network better able to predict the function output. 
The objective of the genetic algorithm in optimizing a 
BP neural network is to obtain better initial weights and 
thresholds. Generally, the main idea is to use an individual 
value to represent the initial weights and thresholds of the 
network, use the prediction error of the BP neural network 
initialized with the individual value as the fitness value of 
the individual value, and find the optimal individual value 
through selection, crossover and mutation operations, that 
is, the optimal initial BP neural network weights in this 
study. where N is the number of output nodes of the net-
work; Yi is the expected output of the ith node of the BP 
neural network; Oi is the actual output of the ith node; k 
is the coefficient; Fi is the fitness value of individual i; n is 
the number of individuals in the population; b is a random 
number between 0 and 1; amax is the upper bound of aij; 
and amin is the lower bound of aij.

3. Results and discussion

3.1. Characterization of attapulgite modified with Keggin ions

As shown in Fig. 3, the characteristic diffraction peaks 
of attapulgite are at 2θ = 8.65°, 26.91°, and 34.87° [28]. 
The characteristic diffraction peaks of SiO2 are found 
at 2θ = 19.99° and 20.83° [29]. The characteristic peaks at 
31.19° and 66.62° are attributed to Al2O3 [30]. In addition, 
quartz and montmorillonite impurities associated with 
attapulgite are found. The strongest peak at 26.91° is the 
characteristic diffraction peak of quartz [31], and the dif-
fraction peaks of montmorillonite are located at 50.39° and 
61.94° [32]. The diffraction peaks of quartz and montmo-
rillonite in the modified attapulgite obviously decreased in 
comparison with those of attapulgite before modification 
using Keggin ions. This decrease showed that some impuri-
ties in the original attapulgite material can be separated by 
Keggin ion modification. Moreover, XRD analysis showed 
that the structure of attapulgite did not change significantly 
after Keggin ion modification.

An obvious absorption peak of pure attapulgite is found 
at approximately 3,500 cm–1 (Fig. 4), which is the absorp-
tion peak of different hydroxyl stretching vibrations in the 
attapulgite structure. The absorption peak at 1,656 cm–1 is 
attributed to the bending vibration absorption of carbonyl 
groups. The absorption peak at 1,197 cm–1 may be caused by 
the stretching vibration of (Mg, Al)–O bonds. The absorption 
band at 1,027 cm–1 may be caused by the stretching vibra-
tion of Si–O bonds, and the absorption peak at 982 cm–1 may 
be attributed to the stretching vibration of Si–O–Si bonds. 
The absorption bands at 1,027 and 512 cm–1 are caused by 
the stretching vibration of Si–O bonds. The absorption peak 

Fig. 2. GA-BP network operation diagram.
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near 800 cm–1 is attributed to the stretching vibration of 
Si–O–Al bonds.

The microstructure of attapulgite exhibits three layers 
(Fig. 5). First, the basic structural unit of attapulgite, that 
is, rod-shaped single crystals, is shown. Then, rod clusters 
are formed by close and parallel aggregation of rod crys-
tals. Finally, various aggregates are formed by aggregation 
of rod crystals and rod clusters. After the attapulgite was 
modified with Keggin ions, the stacking degree of rod crys-
tals decreased, and the material exhibited a loose fibrous 
crystal structure with a fiber length of 300–700 nm and a 
diameter of approximately 30–70 nm.

Fig. 6a illustrates that the original soil contains Mg, 
Al, Si, C, O, and Fe. After adsorption of Cu(II), the Keggin 
ion-modified attapulgite exhibits a peak of Cu2p in Fig. 6b, 
and the other elements do not change. Furthermore, accord-
ing to the high-resolution XPS spectrum of Cu2p, there 
are three characteristic peaks of Cu2p (933.10, 943.20, and 
953.10 eV) after Cu adsorption by the Keggin ion-modified 
attapulgite (Fig. 6c) [33]. Cu(II) was successfully adsorbed 
on the modified material. Fig. 6c shows that the C1s spectrum 
is divided into three peaks corresponding to C=C (284.8 eV), 

C–OH (286.7 eV), and C=O (288.4 eV) of carboxyl or epoxy 
groups [34].

3.2. Original attapulgite and attapulgite modified with Keggin 
ions for Cu(II) removal

To compare the Cu(II) removal efficiency of the two 
materials, the original attapulgite and attapulgite modified 
with Keggin ions were employed for Cu(II) removal from 
aqueous solutions. First, 0.5 g of the original attapulgite was 
added to a 150 mL triangular bottle containing a Cu(II) con-
centration of 50 mL. The Cu(II) removal efficiencies of the 
two materials under fixed conditions (temperature of 25°C, 
initial Cu(II) concentration of 100 mg/L, initial pH of 7, 
and contact time of 1–60 min) are exhibited in Fig. 7. The 
Cu(II) adsorption capability from aqueous solutions using 
attapulgite modified with Keggin ions was significantly 
enhanced in comparison with that of the original attapulg-
ite. Because Keggin ions are mainly composed of OH–/
Al3+, the number of OH– and COO– groups on the surface 
of attapulgite will increase after the attapulgite is modified 
with Keggin ions [35]. Furthermore, complexation reac-
tions can occur between OH– functional groups and metal 
ions on the surface of attapulgite. Additionally, heavy metal 
ions in solution will replace cations in the mineral layer 
of attapulgite, and ion exchange will occur [36]. Finally, 
negative COO– on the surface of attapulgite undergoes 
electrostatic interactions with positive Cu(II), which was 
one of the reasons for the successful adsorption of Cu(II).

3.3. BBD for optimizing the process parameters of Cu(II) removal

According to BBD and response surface modeling, a qua-
dratic polynomial model was obtained as follows:

F = 76.18 + 1.57A + 0.17B – 2.24C – 2.30D + 1.04AB +  
  0.99AC – 2.52AD + 2.48BC – 4.44BD – 1.27CD +  
  1.43A2 – 4.56B2 – 0.011C2 + 3.64D2 (12)

where positive and negative values represent promotion 
and inhibition of the removal efficiency of Cu(II), respectively. 
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The order of influence of the four factors on Cu(II) removal 
was initial pH > initial Cu(II) concentration > reaction 
time > temperature because the F values of A, B, C, and D 
were +1.57, +0.17, –2.24, and 2.30, respectively. The constant 
(76.18) in the model was not affected by the four factors. 
The removal efficiency of Cu(II) increased with increases 
in the linear terms A and B, quadratic terms A and D, and 
interaction terms AB, AC, and BC, while the other terms 
had the opposite effect.

The developed RSM model is shown in Tables 2 and 3. 
The significance between the model response values and 

the regression equation was evaluated by the p-value. The 
low p-value (p ≤ 0.0001) and low lack of fit (0.5395) indicated 
that the model was significant. A good correlation between 
the experimental and predicted values was revealed by the 
high R2 value (0.9380), which also indicated that the response 
value of the model has a distinctive relationship with the 
regression equation. The signal-to-noise ratio can reflect the 
calculation accuracy of a model, which is generally evalu-
ated by the precision [37]. When the precision is greater than 
or equal to 4, the model in this study can meet the require-
ments of the signal-to-noise ratio [38]. The signal-to-noise 
ratio of the model in Table 3 is greater than Table 4 (15.146), 
indicating that the calculation results are in good agree-
ment with the test results. In addition, the low coefficient 
of variation showed that the calculated results of the model 
coincided with the experimental results. After RSM optimi-
zation, the maximum Cu(II) removal efficiency was 87.78% 
at temperature = 29.49°C, reaction time = 69.92 min, initial 
pH = 6.00, and initial Cu(II) concentration = 200.00 mg/L. 
Under these conditions, the actual removal efficiency was 
86.28%. Fig. 8 shows the relationship between the inter-
nal experimental residuals and normal probability, and 
Fig. 9 shows the degree of conformity between actual and 
predicted values. Fig. 10 shows the 3D response surface of 
the interaction term, which can directly reflect the effects 
of the interaction term on the removal of Cu(II) from 
aqueous solutions by Keggin ion-modified attapulgite.

3.4. BP-ANN for optimizing the process parameters 
of Cu(II) removal

BP is one of the most effective learning methods of 
multilayer neural networks. The main feature of BP is the 
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0 10 20 30 40 50 60

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ad
so

rp
tio

n 
qu

al
iti

es
(m

g/
kg

)

Contact time (min)

 Attapulgite modified by keggin ion
 Origin attapulgite

Fig. 7. Origin attapulgite and modified attapulgite by ion for 
Cu(II) removal (attapulgite dosage = 0.5 g, temperature = 25°C, 
initial Cu(II) concentration = 100 mg/L, and initial pH = 7).



277W. Xie et al. / Desalination and Water Treatment 207 (2020) 270–286

forward transmission of the signal and the backward trans-
mission of the error [39]. The final output of the network 
is made to be as close as possible to the expected output 
by continuously adjusting the weight value of the network, 
thereby achieving the purpose of training. The process of 
the BP-ANN is mainly divided into two stages. The first 
stage is the forward propagation of the signal from the 
input layer to the hidden layer and finally to the output 
layer. The second stage is the back propagation of error from 
the output layer to the hidden layer and finally to the input 
layer, successively adjusting the weight and bias from the 
hidden layer to the output layer and from the input layer 
to the hidden layer [40]. The neural networks in this study 
included the three layers, that is, an input layer, hidden 
layer, and output layer [41] (Fig. 11). The number of neurons 
in the input layer was the same as the dimension of the input 
data, and the number of neurons in the output layer was set 
to 1. The number of neurons in the hidden layer should be 
set according to the needs of the analysis, and 8 neurons 
were set in this study. After BP optimization, the maximum 
removal efficiency was 83.69% at temperature = 30°C, contact 

time = 60 min, initial pH = 6.83, and initial Cu(II) concentra-
tion = 150 mg/L. Under these conditions, the actual removal 
efficiency was 82.51%.

3.5. GA-BP network for optimizing the process parameters of 
Cu(II) removal

The simulation performance of the neural network 
model increased with the number of neurons in the hid-
den layer. More neurons, however, will lead to overfitting, 
thus reducing the stability and generalization ability of 
the neural network model [42]. According to the relation-
ship between the MSE value and the number of neurons, 
the optimal network structure was determined by using 
different numbers of neurons in the hidden layer (1–10). 
Six neurons in the hidden layer were selected in this 
study (Fig. 12). In our proposed model, several parame-
ters were set, including epoch (2,000), learning rate (0.1), 
goal (1e–5) and momentum factor (0.9) [43]. Fig. 13 shows 
that the training converged after 1,746 epochs to yield the 
lowest MSE (0.0014527) for the developed GA-BP model.  

Table 2
Experimental design matrix and results

Code Contact 
time (min)

Temperature 
(°C)

Initial Cu(II) 
concentration(mg/L)

Initial pH 
value

Cu(II) removal 
efficiency (%)

Predicted 
values (%)

Absolute 
error (%)

1 70 25 100 7 77.89 76.96 0.93
2 70 25 200 7 75.55 74.46 1.09
3 70 30 150 7 71.30 72.35 1.05
4 60 30 200 7 70.03 71.42 1.39
5 60 25 200 6 81.54 80.54 1.00
6 60 20 100 7 75.62 75.55 0.07
7 60 25 100 6 83.44 82.47 0.97
8 70 25 150 8 75.39 74.53 0.86
9 60 25 100 8 79.84 80.42 0.58
10 50 25 150 8 76.88 76.42 0.46
11 60 25 150 7 73.96 75.56 1.60
12 60 20 150 8 75.40 76.62 1.22
13 60 25 150 7 74.78 75.56 0.78
14 60 30 100 7 69.75 70.94 1.19
15 60 20 150 6 72.20 72.33 0.13
16 60 25 150 7 74.71 75.56 0.85
17 60 25 150 7 76.24 75.56 0.68
18 50 25 150 6 73.80 75.98 2.18
19 60 30 150 8 69.13 68.08 1.05
20 60 20 200 7 66.00 66.13 0.13
21 50 25 200 7 69.33 69.34 0.01
22 60 30 150 6 83.69 81.55 2.14
23 50 30 150 7 67.59 67.13 0.46
24 70 20 150 7 69.90 69.94 0.04
25 50 20 150 7 70.34 68.87 1.47
26 50 25 100 7 75.63 75.80 0.17
27 70 25 150 6 82.38 84.16 1.78
28 60 25 200 8 72.86 73.41 0.55
29 60 25 150 7 78.10 75.56 2.54
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In addition, the R2 value of the fit between experimental 
and predicted values was 0.99387, which implied that the 
established model can meet the prediction requirements. 
The parameters of GA were set as follows: population 

size = 20, cross probability = 0.8, mutation probability = 0.01, 
genetic probability = 0.9, and maxgen = 500 [43].

Based on the model developed by GA-BP, the Cu(II) 
removal efficiency in aqueous solutions by Keggin ion- 

Table 3
ANOVA for response surface quadratic model

Source Sum of squares Degree of freedom Mean square F-value P-value

Model 580.01 14 41.43 15.12 <0.0001 Significant
A 29.58 1 29.58 10.8 0.0054
B 60.12 1 60.12 21.95 0.0004
C 0.34 1 0.34 0.13 0.7286
D 63.25 1 63.25 23.09 0.0003
AB 4.31 1 4.31 1.57 0.2305
AC 3.92 1 3.92 1.43 0.2514
AD 25.35 1 25.35 9.25 0.0088
BC 24.5 1 24.5 8.94 0.0097
BD 78.85 1 78.85 28.79 <0.0001
CD 6.45 1 6.45 2.36 0.1472
A2 13.2 1 13.2 4.82 0.0455
B2 134.6 1 134.6 49.13 <0.0001
C2 7.85 × 10–4 1 7.85 × 10–4 2.87 × 10–4 0.9867
D2 86.17 1 86.17 31.46 <0.0001
Residual 38.35 14 2.74
Lack of fit 27.55 10 2.75 1.02 0.5395 Not significant
Net error 10.8 4 2.7
Total dispersion 618.36 28

R2 = 0.9380, R2(adj.) = 0.8760, R2(pre.) = 0.7161, adequate precision = 15.146 and C.V% = 2.22

Table 4
Kinetics fitting parameters of Cu(II) adsorption onto modified attapulgite

Experimental 
value

Pseudo-first-order  
kinetics

Pseudo-second-order  
kinetics

Intraparticle diffusion  
model

q∞ k1 qe R2 k2 qe R2 k3 C R2

3.7724 0.0338 3.2665 0.8710 0.0255 3.6193 0.9806 3.4442 12.407 0.8215

Fig. 8. Internal study of the relationship between residual and 
normal probability. Fig. 9. Relationship between actual and predicted values.
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modified attapulgite was predicted to be the highest at 
approximately 250 iterations (Fig. 12). The maximum 
removal efficiency of Cu(II) was 91.35% at a temperature 
of 29.73°C, contact time of 69.60 min, initial pH of 6.46, and 
initial Cu(II) concentration of 100.00 mg/L. Under these con-
ditions, the actual removal efficiency was 90.06% (Fig. 14).

3.6. Factor importance analysis

Random forest is an integrated learning algorithm 
based on a decision tree [44]. The RF algorithm in machine 
learning can output the importance of each feature after 
the model is trained. The importance of the attribute can 
be judged by the obtained feature importance (Fig. 15). 
The order of importance of influencing factors was initial 
pH value > temperature > initial Cu(II) concentration > 
contact time.

ABT, based on stacked probability boosting mode, was 
used for the evaluation of the factor importance using the 
gbmplus function package in R [45]. The relative influence 

Fig. 10. (a–f) Relationship between removal rate and experimental parameters.

Fig. 11. BP structure diagram under R language running.
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between independent variables and dependent variables 
can be eliminated through the relative importance dia-
gram. Fig. 16 shows that the contribution to removal effi-
ciency of each influencing factor was as follows: initial 
pH value (33.15%) > temperature (32.54%) > initial Cu(II) 
concentration (18.93%) > reaction time (15.37%).

3.7. Kinetics study

Pseudo-first-order kinetics, pseudo-second-order kinet-
ics, and the intraparticle diffusion model were used to study 
the rate-controlling steps and adsorption mechanism [46].

Pseudo-first-order kinetics:

ln lnq q q k te t e−( ) = − 1  (13)

Pseudo-second-order kinetics:

t
q k q

t
qt e e

= +
1

2
2  (14)

Intraparticle diffusion model:

q k t Ct = +id
1 2/  (15)

where qe is the equilibrium adsorption capacity, mg/g; qt is 
the adsorption capacity at t, mg/g; k1 is the adsorption rate 
constant of the pseudo-first-order kinetic equation, h–1; 
k2 is the adsorption rate constant of the pseudo-second- 
order kinetic equation, g/(mg h); kid (mg/g/min1/2) is the 
intraparticle diffusion rate constant; and C is a constant. All 
heavy metals exhibit a larger slope at a lower equilibrium 
concentration (Fig. 17). The adsorption quantities of heavy 
metals increased with contact time. The removal quantity 
of Cu(II) were the largest, followed by those of As(III), 
Pb(II), and Hg(II), which were dramatically adsorbed and 
then slowly adsorbed. The reason may be that the adsorp-
tion sites on the surface of the modified attapulgite grad-
ually became saturated with increasing contact time [47]. 
However, the capacity of each heavy metal to combine 
with the modified attapulgite was different since these 
heavy metals have different properties. Hence, the maxi-
mum adsorption capacity of each heavy metal differed sub-
stantially, among which Cu(II) exhibited the most obvious 
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effect with increasing contact time. In this study, Cu(II) 
was selected for specific discussion due to the sensitivity of 
Cu(II) adsorption by the modified attapulgite.

Pseudo-second-order kinetics can well describe the 
adsorption behavior of Cu(II) on the modified soil surface 
because of the high R2 value (0.9806) and low absolute 
error between the fitted value (3.6193 mg/g) and the exper-
imental value (3.7724 mg/g). According to the adsorbed 
amounts of Cu(II) by the modified soil at different con-
tact times (Fig. 18), the adsorbed amount of Cu(II) by the 

modified soil increased rapidly in a short time, and then there 
was a relatively gentle change trend, reaching equilibrium 
at approximately 60 min. The adsorption capacity of the 
modified soil for Cu(II) reached approximately one-third 
of the equilibrium adsorption capacity within 10 min, and 
the Cu(II) adsorbed amount slowly increased after 50 min. 
This phenomenon may be due to the higher concentration 
of Cu(II) in the initial stage and the stronger concentra-
tion driving force, which increased the contact probability 
between Cu(II) and the surface of the modified soil [48]. 

Fig. 16. Importance of APT assessment characteristics. (a) Initial pH, (b) temperature, (c) initial Cu(II) concentration, and 
(d) contact time.
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Additionally, there were many adsorption sites on the sur-
face of the modified soil at the beginning of the adsorption 
experiment with a strong adsorption capacity for Cu(II). 
Equilibrium was gradually approached as the reaction 
progressed. The lower the number of adsorption sites was, 
the lower the adsorption capacity was [49]. In addition, 
dynamic equilibrium between desorption and adsorption 
was reached, and the reaction may be dominated by chem-
ical adsorption [50]. It was found that the slope of the first 
part of the fitting curve was larger than that of the second 
part. The slope of the former part indicated the transfer of 
Cu(II) from the Cu(II)-containing solutions to the surface of 
the modified soil, and the latter part corresponded to inter-
nal diffusion. This result showed that internal diffusion 
was not a process limiting the adsorption rate.

3.8. Adsorption isotherm study

The Langmuir, Freundlich, and Temkin adsorption iso-
therm models were employed to investigate the nature of 
Cu(II) removal by adsorption [51].

Langmuir adsorption isotherm model:

C
q K q

C
q

e

e L

e= +
1

max max
 (16)

Freundlich adsorption isotherm model:

ln ln lnq K
n

Ce F e= +
1  (17)

Temkin adsorption isotherm model:

q B AC
B RT b
e e= ( )
=

ln
/

 (18)

where Ce is the adsorption equilibrium concentration, 
mg/L; qe is the adsorption amount at equilibrium concen-
tration, mg/g; qmax is the maximum adsorption amount 
at saturation(mg/g); KL (L/mg) is the binding constant of 
the Langmuir adsorption model, L/mg; KF (mg/g) is the 
Freundlich constant; 1/n is the Freundlich adsorption 
intensity parameter; A (L/g) is the binding constant corre-
sponding to the maximum binding energy; and B (J/mol), 
R, T, and b are the Temkin constant, gas constant, absolute 
temperature, and adsorption heat, respectively.

Adsorption isotherms are an important method in the 
design of adsorption processes and are used to describe 
the equilibrium relationship between the adsorbent and 
adsorbate and the affinity and adsorption capacity of the 

adsorbent [52]. The Langmuir model assumes that the 
adsorbent surface is homogeneous and there are no inter-
actions between particles, so monolayer adsorption occurs 
[53]. The Freundlich model assumes that the enthalpy of 
adsorption is distributed unevenly on the adsorbent surface 
and increases with surface coverage [54]. The Temkin model 
is a real adsorption model that assumes that the adsorp-
tion heat on the surface of the adsorbent decreases linearly 
with increasing coverage [55]. However, the Temkin model 
is not suitable for cases with a high vapor pressure or cov-
erage of adsorbate. The Langmuir, Freundlich, and Temkin 
models were used to fit the experimental data from the 
adsorption process. According to Table 5 and Fig. 19, the 
Langmuir isotherm model was the most suitable to describe 
the adsorption process of Cu(II) onto the surface of the mod-
ified soil. The process of surface adsorption involved a sin-
gle molecular layer, and the maximum adsorption capacity 
was 6.5675 mg/g. The term 1/n can be used to describe the 
degree of deviation of adsorption from linearity. Values of 
1/n > 2 and 0.1 < 1/n < 2 indicate that adsorption is difficult 
and easy, respectively. The modified soil easily adsorbed 
Cu(II) in this study because 1/n was 0.6672. In addition, 
the low KF value (1.1477) indicated that the adsorption 
capacity of the modified soil for Cu(II) was weak [54]. 
A value of RT/b = 203.22 was obtained from Temkin model, 
which indicated that the adsorption process included 
both physical and chemical adsorption [55] (Table 5).

3.9. Thermodynamic analysis

The change in Gibbs free energy related to a chemi-
cal reaction can be used to evaluate the spontaneity of the 
reaction process [56]. The Gibbs equation was used to 
calculate the thermodynamic functions in this study.

lnK S
R

H
RTT =

°
−

°∆ ∆  (19)

∆G RT KT° = − ln  (20)

K
C
CT
e

= 0  (21)

where ∆G° is the standard adsorption free energy change. 
ΔH° is the standard adsorption enthalpy change. ∆S° is the 
standard adsorption entropy change. R is the gas constant, 
8.314 J/(mol K). T is the absolute temperature, and KT is the 
adsorption coefficient. The values of ΔH° and ΔS° were 
10.715 kJ/mol and 48.5739 J/(mol K), respectively (Table 6). 
The adsorption process was spontaneous due to ΔG° < 0 
in this study. The value of ΔG° decreases with increasing 

Table 5
Adsorption isotherm fitting parameters of Cu(II) adsorption onto modified attapulgite

Langmuir model Freundlich model Temkin model

qmax KL R2 KF 1/n R2 a b R2

6.5675 0.0203 0.9481 1.1477 0.6672 0.9806 12.198 1.1961 0.8536
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absolute temperature since an increase in temperature can 
promote the dehydration of hydrated metal ions, making 
it easier for Cu(II) to interact with the active sites on the 
surface of the modified soil [57]. The adsorption process of 
Cu(II) onto the surface of the modified soils was endother-
mic due to ΔH° > 0, and an increase in temperature was con-
ducive to the reaction. In addition, solute adsorption and 
solvent desorption will occur in a solid/liquid adsorption 
system [58]. The former will reduce the degrees of freedom, 
that is, the process of entropy reduction, and the latter is 
the process of entropy increase. The entropy of an adsorp-
tion process is the sum of solute adsorption and solvent 
desorption [59]. Therefore, the entropy value of a process 
may be negative or positive. The entropy change for Cu(II) 
adsorption onto the surface of the modified soil was greater 
than 0, which indicated that the entropy increase caused by 
solvent desorption was greater than that caused by Cu(II) 
adsorption, thus increasing the degree of disorder of the 
adsorption system [60].

The adsorption qualities of Cu(II) from simulated waste-
water removal by the modified attapulgite was improved 
with the increase of temperature. The number of adsorption 
sites on the surface of adsorption materials will increase 
with the increase of temperature, thus increasing the contact 
between heavy metal ions and adsorption sites on the surface 
of adsorption materials (Fig. 20) [61]. Therefore, the increase 
of temperature can increase the adsorption capacity of atta-
pulgite to Cu(II) in solution.

3.10. Influence of pH value on Cu(II) removal efficiency

The free energy and active groups on the surface of an 
adsorbent are significantly affected by different acidities 
(Fig. 21). The surface energy and form of a solute in solution 
will also change, which determines the different adsorption 
capacities of adsorbents for solutes at different pH values 
[62]. Although the efficiency of Cu(II) removal by the mod-
ified attapulgite continuously increased from pH values of 
2–12, the value was relatively low at pH < 6. The reason may 
be that Cu(II) and H+ competed for the adsorption sites of 
the surface of the modified attapulgite at higher acidity in 
solution. The efficiency of Cu(II) removal by the attapulg-
ite modified with Keggin ions was relatively high at pH > 8, 
which may be caused by the main form of Cu(II) being 
hydroxyl-coordination ions (Cu(OH)+) in alkaline solutions. 
Hydrolyzed metal ions of multivalent metal ions are more 
easily adsorbed than non-hydrolysed metal ions by the 
solid particles in solution.

3.11. Regeneration of the attapulgite modified with keggin ions

The regeneration of an adsorbent is an important factor 
in assessing its possibility for practical applications. Cu(II) 

adsorption was repeated for three cycles using an eluent of 
0.1 mol/L HCl. As shown in Fig. 23, the removal efficiencies 
of the first regeneration cycle, second regeneration cycle, 
third regeneration cycle, and fourth regeneration cycle were 
92.36%, 89.24%, 85.98%, and 79.25%, respectively. This result 
reveals that a gradual decline in the adsorption capacity 
of the attapulgite modified with Keggin ions for Cu(II) for 
four consecutive adsorption cycles, and a dramatic decline 

Fig. 19. Adsorption quantity of Cu(II) by the modified attapulgite 
at equilibrium concentration (attapulgite dosage = 0.5 g, 
temperature = 25°C, contact time = 60 min, and initial pH = 7).
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Fig. 20. Temperature influencing on the Cu(II) adsorption 
qualities (attapulgite = 0.5 g, contact time = 60 min, initial Cu (II) 
concentration = 100 mg/L, and initial pH value = 7).

Table 6
Thermodynamic state function values of adsorption of Cu(II) by modified attapulgite

ΔH°  
(kJ/mol)

ΔS°  
(J/(mol K))

ΔG° (kJ/mol)

293.15 K 298.15 K 303.15 K 308.15 K 313.15 K 318.15 K

10.715 48.5739 –3.7896 –4.0728 –4.2814 –4.6891 –4.7748 –5.016
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was observed after four regeneration cycles, indicating that 
attapulgite modified with Keggin ions is an effective and 
reusable adsorbent. Although the lower maximum adsorp-
tion capacity of Cu(II) in comparison with the other liter-
atures, the modified attapulgite is still of huge potential 
application in environmental remediation because of the 
cheap and easy raw material (Table 7).

4. Conclusion

The present study used Keggin ions to modify atta-
pulgite to improve the removal efficiency of Cu(II) at high 
concentrations in aqueous solutions. XRD analysis showed 
that the structure of attapulgite did not change prominently 
after Keggin ion modification. XPS revealed that Cu(II) was 
successfully adsorbed on the modified attapulgite. According 
to the experimental results, the Cu(II) adsorption capabil-
ity from aqueous solutions using attapulgite modified with 
Keggin ions was dramatically enhanced in comparison with 

that of the original attapulgite. In summary, GA-BP was the 
most suitable approach for modeling Cu(II) removal from 
aqueous solutions because its absolute error between exper-
imental and predicted values was the smallest. According 
to GA-BP optimization, the maximum removal efficiency of 
Cu(II) was 91.35% at a temperature of 29.73°C, contact time of 
69.60 min, initial pH of 6.46, and initial Cu(II) concentration 
of 100.00 mg/L. The three analysis methods (analysis of vari-
ance, ABT, and random forest) revealed that initial pH was 
the most influential variable in Cu(II) removal from aqueous 
solutions. The fitting results showed that the Langmuir iso-
therm and pseudo-second-order kinetic model could describe 
the adsorption process, which was a spontaneous and entro-
py-driven process. The mechanism study on the removal of 
Sb(III) demonstrated that the adsorption process was accom-
panied by a redox reaction. The regeneration experiments 
showed that the attapulgite modified with Keggin ions for 
Cu(II) removal from simulated wastewater are an effective 
and reusable adsorbent within four regeneration cycles.
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Table 7
Comparison of the adsorption capacity for Cu(II) on the modified attapulgite by Keggin ions with those of other adsorbents

Materials Cycles Maximum 
adsorption capacity

References

Poly(amidoamine) dendrimer-functionalized nanocrystalline cellulose composites 5 92.07 mg/g [63]
NaP zeolite 3 69.93 mg/g [64]
Porous hydroxyapatite ND 69.90 mg/g [65]
Iranian natural zeolite ND 4.70 mg/g [66]
Bentonite (coated with magnetite Fe3O4) 3 46.95 mg/g [67]
Coconut tree sawdust ND 3.89 mg/g [68]
Sugarcane bagasse ND 3.65 mg/g [68]
Activated carbon prepared from Hazelnut husk 4 6.65 mg/g [69]
The modified attapulgite by Keggin ions 4 3.77 mg/g This study

“ND” represents no data.
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To further explore the mechanism of the adsorption 
process, X-ray absorption near edge structure (XANES) 
analysis based on synchrotron radiation could be used 
to identify the local atomic environment (i.e., valence and 
coordination) of Cu(II) before and after the adsorption of 
Cu(II) onto the modified attapulgite. Synchrotron radiation 
is produced when high-energy particles, including electrons, 
are accelerated and forced to travel in a curved path by a mag-
netic field. Small-angle XRD analysis could also be used to 
obtain information concerning the state (e.g., ordered meso-
pores) of the samples on a nanometre scale. Finally, the reuse 
potential of these nanocomposites should be investigated 
to reduce costs, and a scaled-up system (e.g., permeable 
reactive barrier) needs to be developed for Cu(III) removal 
with the aid of more advanced optimizing techniques.
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