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a b s t r a c t
In order to study the dynamic model of marine ecosystem and predict the response and impact 
service of marine ecosystem to climate change, this paper uses the method of adjoint assimilation 
function to divide a year into 72 processes and optimize the five key parameters VM, DZ, E, GM, 
and DP (referred to as KP). The correlation coefficients of VM, DZ, and E are 0.99, and so are DP 
and GM. The variation trend of VM, DZ, and E is negatively correlated with that of DP and GM, and 
the correlation coefficient is –0.99. Conclusion: it shows that in the numerical simulation of marine 
ecosystem dynamics, compared with only considering the spatial distribution of parameters or only 
considering the temporal distribution of parameters, the change trend of VM, DZ, and E is negatively 
correlated with that of DP and GM. Considering the spatial and temporal distribution of parameters 
is more reasonable, more physical significance and in line with the ecological mechanism.
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1. Introduction

However, due to the existence of the errors in the 
global mesoscale measurements and the seawater color, 
it can provide a basis for the study of the marine ecologi-
cal system, even if there is an error in the measurement of 
the marine mesoscale and the sea water quality, it can pro-
mote the study of the marine ecosystem. Some key marine 
ecological variables and their vertical distributions and 
fluxes cannot be directly obtained from satellite observa-
tions. The numerical model of marine ecosystem dynamics 
can make up for the defects of observation data, provide 
important information that cannot be obtained by obser-
vation, and provide more complete temporal and spatial 
distribution of ecological variables, ER, the model is still 
insufficient in characterizing the dynamic process and 
interaction of the real ecosystem, and it is difficult to avoid 
the phenomenon that the simulation results deviate from 
the observation. The data assimilation method considers 

the model and observation as an organic whole, compared 
with the system analysis method only using physical 
model or observation results, the data assimilation method 
can obtain better results [1].

2. Literature review

Data assimilation methods are divided into two cate-
gories: sequential method and variational method. The for-
mer is mostly used for state and flux estimation, while the 
latter is mostly used for optimizing parameters, boundary 
conditions, and initial conditions. Compared with the atmo-
spheric and oceanic models, the marine ecological model 
contains a large number of parameters, and slight changes 
in some parameters will lead to changes in the results of 
the overall ecosystem model [2]. Most of the parameters are 
obtained through numerical experiments, which are diffi-
cult to control due to the different complexity of the model, 
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the different sea area studied, and the different amount 
of observed data. The optimization of model parameters 
by using existing observed data is becoming increasingly 
important in the numerical simulation of ecosystem dynam-
ics, and data assimilation technology based on variational 
method has been widely applied in the past 20 y [3]. Among 
many parameter optimization techniques (gradient descent 
method, conjugate gradient method, simulated annealing 
method, micro genetic method, Newton method, and ran-
dom search method), adjoint assimilation method, also 
known as the inverse method (essentially gradient descent 
method), is the most commonly used method. It takes the 
ocean dynamic model as the constraint condition, particu-
larly, we use the method of Lagrange to control the difference 
between the objective function and the objective function 
in order to improve the accuracy of the objective function. 
On the other hand, parameters are not constant in time [4]. 
Especially in large-scale numerical simulation, the simula-
tion time is long, and the ecological variables and ecological 
parameters also change in time, some scholars have begun 
to study the temporal variation of parameters [5]. Matter et 
al. [6] used polynomial chaos expansion method to optimize 
two parameters in a three-dimensional marine ecological 
model: the carbon/chlorophyll ratio of phytoplankton and 
the predation rate of zooplankton and obtained their values 
over time. Solidoro et al. [7] statistically analyzed the seasonal 
and spatial variations of water quality parameters of Venice 
lagoon, fan, and LV applied the adjoint assimilation method 
to the numerical simulation of marine ecosystem dynam-
ics to study the spatial distribution of ecological parame-
ters under the climate state background field of the climate 
coupled model foam. Wang et al. [4] applied the nitrogen, 
phytoplankton, zooplankton, detritus (NPZD) model to the 
Bohai Yellow Sea, and the experimental results showed that 
the ecological parameters changed with time in 1 y [8–12].

The innovation of this paper is based on the previous 
work, the adjoint assimilation method is used to study the 
spatiotemporal distribution of the parameters. Compared 
with the parameters only considering the spatial variation 
and the parameters considering only the time variation, it 
is verified that the spatiotemporal variation parameters 
are more reasonable in the numerical simulation of marine 
ecosystem [13–15].

3. Research methods

3.1. Ecological model and parameter setting

In this paper, a simple NPZD model based on nitro-
gen cycling is established on a global scale. Four state vari-
ables (CI, I = P, N, Z, and d) in the model can be expressed 
as follows:

∂
∂

= +
C
t
i

i iphy Bio 	 (1)

Among them, phyiis is the change of state variable 
caused by physical mechanism (including convection and 
diffusion); bioiis is the change of state variable caused by bio-
logical mechanism. The specific expression form of model 
equation is shown in fan and LV. The model parameters are 
shown in Table 1.

The calculation area of the ecological model is 
0.5 ° e-359.5 ° e, 74.5 ° s-88.5 ° n, the horizontal resolution 
is 1 (°) × 1 (°). There are 14 vertical layers, and the depth 
(unit: m) is 5, 15, 25, 35, 46, 57, 70, 82, 96, 112, 129, 148, 171, 
and 197 (consistent with the background field). A grid is 
used and Z coordinate is used for discretization.

3.2. Adjoint method

In this paper, the adjoint method is used to optimize 
the ecological parameters. CF is defined as a cost function 
to describe the difference between the observed value xs t,  
and the model simulation value xs,t(V) when the parameter 
V is used:

CF = ( ) −( )∑12
2
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where xs t,  and xs,t(V) are surface phytoplankton 
observed and simulated respectively; s is the spatial index; 
t is the time index; Ws is the weight.

The process of parameter optimization is to reduce 
CF by adjusting the control parameters, and CF decreases 
along the negative direction of its gradient with respect to 
the parameters. Therefore, the gradient is used to determine 

Table 1
Parameters and initial values in ecological model

Parameter Description Values

VM, d–1 Maximum phytoplankton growth rate 0.80
KS, mmol × m–3 Semi-satiety and constant of nutrient absorption 0.25
WP, m × d–1 Sedimentation rate of phytoplankton 1.00
GM, d–1 Maximum zooplankton predation rate 0.50
DZ, d–1 Zooplankton mortality 0.05
G Zooplankton assimilation rate 0.30
DP, d–1 Phytoplankton mortality 0.10
E, d–1 Rate of clastic remineralization 0.02
Q Ratio of zooplankton excretion 0.40
WD, m × d–1 Settling rate of debris 1.00
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the direction of parameter optimization. Firstly, the initial 
guess value of control parameters is used to obtain the 
model value to calculate CF; secondly, the adjoint equation 
is derived by using the Lagrange multiplier method, and the 
inverse direction is obtained. Finally, the control parameters 
are adjusted according to Vk+1  =  Vk  + αkdk, k is the number 
of assimilation steps, dk is the direction of adjustment of con-

trol parameters, d V G
Gk
k

k

=
− ⋅

⋅
5

86 400
%

,




, and αk are step factors, 

indicating the adjustment size of control parameters:

αk k k= − −( ) =∗1 0 1 1 1 2 3 10. , , , , , 	 (3)

αk k k= − −( ) =∗0 1 0 01 10 11 12 19. . , , , , 	 (4)

αk k k= − −( ) =∗0 01 0 001 19 20 21 28. . , , , , 	 (5)

Take the adjusted control parameters as the initial 
guess value and repeat the above steps until a convergence 
condition is met.

3.3. Spatial distribution of parameters

The specific implementation process of parameter 
spatial distribution: firstly, some grid points are selected 
as independent points in the study area. The values of 
parameters on independent points are independent, that 
is, they do not affect each other. The values of parameters 
on other grid points are obtained by linear interpolation 
from the values of independent points; secondly, the influ-
ence radius R is selected, and R represents the range of 
observation points that affect the values of independent 
points, i,j relationship between (j) and the other points (j) 
is determined by the independent point (j):

F Ei j i j ii jj ii jj
ii jj

, , , , ,
,

= ⋅∑ϕ 	 (6)

ϕi j ii jj
i j ii jj

i j ii jj
ii jj

w
w, , ,

, , ,

, , ,
,

=
∑

	 (7)

w
R r
R ri j ii jj

i j ii jj

i j ii jj
, , ,

, , ,

, , ,

=
−

+

2 2

2 2 	 (8)

where ϕi,j,ii,jj is the interpolation coefficient; wi,j,ii,jj is the 
weight coefficient; ri,j,ii,jj is the distance between indepen-
dent points and other grid points. The adjoint method is 
used to adjust Eii,jj and linear interpolation is used to obtain 
fij. The model is run with the adjusted parameter values, 
and the process is repeated 28 times.

4. Experimental results

Most of the work on parameter estimation is to reduce 
the error between simulation and observation by assimi-
lating the observed data for a period of time. While mak-
ing full use of these observations, the parameters are also 
reasonably estimated. Therefore, this paper will carry 
out practical experiments to optimize ecological param-
eters and reduce the error between observation and sim-
ulation values. The rationality and necessity of the spatial 
and temporal distribution of parameters are verified by 
comparative experiments.

4.1. Actual experiment

The study area a is defined as 17 ° n-45 ° n, 17 ° n-45 ° n, 
173 ° e-142 ° w (located in the north Pacific) as study area 
a, which contains 1,334 grid points. Finally, the ecosys-
tem near the Antarctic circumpolar current is iron lim-
ited, and the model in this paper does not consider iron 
limitation. Therefore, if the sea area near the Antarctic cir-
cumpolar current is chosen as the area to study the spa-
tiotemporal variation of parameters, there may be errors 
caused by the model itself rather than by the optimization 
method. A year is divided into 72 processes, each of which 
has 5 d and a time step of 6 h, that is, each process needs 
to calculate 20 steps. Five KPS, VM, GM, DZ, DP, and E, 
which affect the ecological mechanism, are optimized to 
reduce the error between the simulated values and the 
observed values of phytoplankton. Other parameters are 
constant, and the values of KP in area a are changed in real 
space by setting independent points. The value of KP is 
obtained by linear interpolation of parameter values and 
constant parameter values in area a. Fig. 1 shows the spatial 

Table 2
Correlation coefficients of time varying parameters shown in 
Fig. 3

E DZ DP GM

VM 0.76 0.92 –0.91 –0.91
E 0.93 –0.94 –0.94
DZ –0.99 –0.99
DP –0.99

Fig. 1. Schematic diagram of the spatial distribution of 
parameters.
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distribution of parameter a, and gray points indicate the 
grid points where independent points are located. The ini-
tial values of KP and other parameters are shown in Table 1.

Before assimilation, the minimum values of CF and 
mean absolute error (MAE) were about 3.9 and 0.007, respec-
tively; after assimilation, the CF and MAE of each process 
decreased significantly, the maximum CF value was no more 
than 2.1, and the maximum MAE was no more than 0.003. 
The reduced cost function RCF was obtained by dividing 
the CF value after assimilation (cf28) by the CF value before 
assimilation (CF1), and the reduced cost function (RCF) 
was less than 0.12 for each process, and the ratio of MAE28 
divided by MAE1 before assimilation was less than 0.3. 
After averaging the results of 72 processes (Fig. 2), RCF and 
MAE decreased rapidly in the first five steps of assimilation, 
and then reached stable values of 0.05 and 0.002, respec-
tively. It shows that the adjoint assimilation method can not 
only optimize the parameters of spatial variation, but also 
optimize the parameters of temporal and spatial variation.

4.2. Comparative experiment and result analysis

Based on the above, the temporal and spatial distribu-
tion of the five key parameters is obtained in this paper, 
denoted as KPk (i,j,t), k  =  1,2,3,4, and 5; where, KP1, KP2, 
KP3, KP4, and KP5, respectively, represent VM, DZ, E, DP, 
GM, i, and j represent the spatial position of parameters, 
and t represents time. In this paper, we obtain KP (KPS) that 
changes only with space, KP (KPT) that changes only with 
time, constant KP (KPC), and another form of KP (KPST) that 
changes only with time through the following ways.

KPS: for each KP, the 72 plots of spatial varia-
tion are averaged in time. Therefore, the spatial distri-
bution of 5 parameters in the study area is obtained, 
KPS KPi j i j tk

t
, , , / ,( ) = ( )∑ 1 334 , k = 1, 2, 3, 4, 5; KPS1, KPS2, 

KPS3, KPS4, KPS5 represent a two-dimensional array of 
VM, DZ, E, DP, and GM spatial distribution, respectively. 
The parameter values are reduced, that is, the assimilated 

value/initial value. For each parameter, there is only one 
spatial distribution, which does not change with time.

KPT: for each KP, the 72 scenes of its spatial variation 
are respectively in the KPT KPk k

i j
t i j t( ) = ( )∑ , , /

,
72 h param-

eter, the author obtains a constant in each process. KPT1, 
KPT2, KPT3, KPT4, and KPT5 are one-dimensional time 
series representing the time distribution of VM, DZ, E, DP, 
and GM.

For each process, the parameter values in the study area 
are no longer spatial changes, but constants. For 1 y, there are 
72 groups of constants (Fig. 3):

KPC: average KPSk(i,j) in space (or 
KPC KPS KPTk k k

ii j
i j t= ( ) = ( )∑∑ , / , /

,
1 334 72  constants KPC1, 

KPC2, KPC3, KPC4, and KPC5 are obtained. The values of 
VM, DZ, E, DP, and GM are 0.5878, 0.4934, 0.0978, 0.0540, 
and 0.0241.

KPST: using KPSk(i,j), KPTk(t), KPCk, another form of 
spatiotemporal distribution of parameters KPSYk(i,j,t)  = 
KPSk(i,j)·KPTk(t)/KPCk is constructed.

It can be seen from Fig. 3 that the five parameters show 
obvious spatial and temporal changes, and VM, DZ, and 
E decrease with the increase of GM and DP in both space 
and time. Therefore, they can be divided into two groups: 
(1) VM, DZ, and E have the same trend in most regions; 
DZ is the mortality rate of zooplankton. The larger the 
value is, the faster the zooplankton will decrease, and cor-
respondingly, the more phytoplankton will be. E represents 
the mineralization rate of detritus. The larger the value is, 
the faster the detritus will be converted into nutrients, 
which is more conducive to the growth of phytoplankton. 
The smaller the value of GM is, the better the growth of 
phytoplankton is; DP is the mortality rate of phytoplank-
ton, and the smaller the value is, the more conducive to the 
growth of phytoplankton. Therefore, the smaller the value 
of GM and DP is, the more conducive to the growth of phy-
toplankton biomass. The correlation coefficient between 
DP and GM is as high as 0.99, which shows that there is a 

Fig. 2. 72 average process results.
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strong negative correlation between them, which verifies the  
above analysis.

Experimental results are compared with experimen-
tal results of KPM (1.0, 4.0) in the same model (Fig. 4), and 
the results are compared with those obtained in KPM (1.4) 
and 4.0 (KPM), respectively. The annual mean of MAE is 
about 0.0022  mmoln × m–3; in contrast experiment 4, MAE 
obtained in each process is also less than 0.004 mmoln × m–3, 
and MAE annual average value is about 0.0029  mmoln × 
m–3, which is close to the actual experimental results. In con-
trast experiment 1, the method of only considering the spa-
tial variation of KP is similar to fan and LV, and the annual 
average MAE obtained by this method is 0.008 mmoln × m–3; 
in contrast experiment 2, the MAE annual average value is 
0.008  mmoln × m–3; in contrast experiment 2, the average 
MAE is 0.0029 mmoln × m–3, in contrast experiment 3, KP is 
a constant and MAE is 0.04 mmoln × m–3, which is 20 times 
of the results obtained by considering the temporal and 
spatial distribution of the parameters. On the other hand, 
any parameter KP is a three-dimensional array. It can be 
expressed by the product of a two-dimensional array repre-
senting spatial changes and a one-dimensional array repre-
senting time changes, namely KPST. In long-term numerical 
simulation, this method can reduce the number of variables 
in the program and improve the simulation efficiency.

5. Conclusion

In this paper, the spatial and temporal distribution of 
chlorophyll in the northern ocean is studied by using the 
spatial-temporal data assimilation method. For each param-
eter in KP, firstly, it is averaged in time and space to obtain 
the spatial distribution field (KPS) and time distribution 
sequence (KPT); secondly, the KPS is averaged in space 
(or KPT is averaged in time) to obtain a constant (KPC), 
KPS, KPT, and KPC are used to represent another kind of 
KP (KPST) with spatiotemporal variation. It is found that 
VM, DZ, and E have the same distribution characteristics 
and change trend in both time and space, so do DP and GM, 

while the change trend of VM, DZ, and E is negatively cor-
related with that of DP and GM. The correlation coefficient 
can reach –0.99. The correlation between the parameters in 
time and space is in accordance with the physical mean-
ing and ecological mechanism, which provides a strong 
basis and reference for how to optimize the parameters in 
the future numerical simulation experiments, It is obvious 
that the experimental error is the smallest and the simu-
lation accuracy is the highest when considering the spa-
tial-temporal distribution of parameters. Compared with 
the results obtained when the parameters are constant, the 
MAE is reduced to 1,120. It is reasonable and necessary to 
consider the spatial-temporal distribution of parameters in 
the numerical simulation of marine ecosystem dynamics, 
and the adjoint assimilation method is an effective method 
to optimize the parameters of space-time variation, KPST, 
as a representation of KP spatio-temporal variation, reduces 
the number of variables in long-term numerical simulation.
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