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a b s t r a c t
This research was based on selected daily haze occurrences between the year 2006 until 2015 in 
five regions of Malaysia (Borneo, Central, Eastern, Northern, and Southern regions). The general-
ized linear model (GLM), principal component regression (PCR), incorporation of artificial neu-
ral network and sensitivity analysis (ANN-SA) techniques were applied in this study to gener-
ate respective models namely as MLP-HM-GLM, MLP-HM-PCR, and MLP-HM-LO and identify 
the relationship of air pollutants and meteorological factors to particulate matter (PM10) variabil-
ity. The performances of these models were compared based on coefficient of determination (R2), 
root-mean-square error (RMSE), and squared-sum error (SSE). From the findings, ANN-SA that 
generated the MLP-HM-LO model was the most suitable technique to identify the main contrib-
utors to PM10 variability. Ultraviolet-b (UVb) and sulphur dioxide (SO2) were found as the most 
significant pollutants that affected the PM10 variation. UVb also had consistently influenced PM10 
variability over five regions. MLP-HM-LO model had rendered the highest R2, with the low-
est RMSE and SSE values compared with MLP-HM-GLM and MLP-HM-PCR models. Thus, the 
ANN-SA technique was highly practicable in determining future haze circumstances in Malaysia.

Keywords: �Artificial neural network; Sensitivity analysis; Haze episode; Principal component regres-
sion; Generalized linear model
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1. Introduction

A series of continuous unresolved issues related to haze 
episodes are currently considered as one of the annual occa-
sions in South East Asia with Malaysia as one of the most 
affected countries. The haze occurrences for the past 20 year 
were frequently concentrated on urban areas, specifically 
in the Central and Southern areas of Peninsular Malaysia. 
The slower and drier winds and anomalous weather phe-
nomena such as El-Nino Southern Oscillation (ENSO) may 
have had accelerated the haze formation [1]. 

In addition to these factors, any prolonged transbound-
ary haze or localized transient haze could deteriorate this 
condition. Localized transient haze within urban areas due 
to anthropogenic emissions under stagnant wind circum-
stances had been recorded during Southwest monsoon or 
inter monsoonal season as early as April 1983, October 1991, 
and between August and October 1994 [2]. Furthermore, 
in 1997, a massive open burning of biomass in Southern 
Sumatera and Kalimantan had caused a transboundary 
haze and became a catastrophic level due to its intensity 
and duration to the surrounding receptors [3,4]. Activities 
such as agricultural production, industrial, and trans-
portation emission had contributed to this condition that 
imposed limited visibility and serious health concerns [5].

Although a number of studies were reported in demon-
strating the haze distribution, intensity, and health effect in 
Malaysia [6], the information on contributing parameters 
towards the haze occurrences is quite negligible. In 2012, air 
pollutants were successfully detected in eight monitoring 
stations using Hierarchical Agglomerative Cluster Analysis 
(HACA), principal components analysis (PCA) and multi-
ple linear regression [7]. Meanwhile, the performance of the 
long-term air quality assessment has been analyzed using 
sensitivity analysis (SA), HACA, and principal component 
regression (PCR) from the background station [8]. Both 
studies succeed in interpreting the air quality assessment 
during normal conditions but not during the hazy period. 
Thus, to understand the inter-relationship between param-
eters during the haze, artificial neural network (ANN) cou-
pled with SA was introduced. The main advantage of using 
ANN is its capability to mimic the human brain system 
by learning complex interaction between datasets (inde-
pendent and dependent variables) and carry out predic-
tion, clustering, and classification processes [9]. Neuron, 
which may in the form of single or multiple structures, 
holds and processes the information from the input. With 
this capability, ANN can solve non-parametric (non-lin-
ear) problems. Also, ANN-SA had provided a directional 
semi-quantitative and quantitative estimation of the emis-
sion changes [10]. Artificial neural networks, coupled 
with a sensitivity analysis (ANN-SA), will be then applied  
in order to extract the vital parameters from the Borneo, 
Central, Eastern, Northern, and Southern regions of Malaysia. 

2. Methodology

2.1. Data collection

The air-quality dataset from January 2006 until December 
2015 was provided by Air Quality Division, Department of 
Environmental (DOE), Ministry of Environment and Water. 

The data were obtained from 52 monitoring stations across 
Malaysia with a total of 11,207 sets of daily data, involv-
ing 15 variables. These stations entailed Borneo, Central, 
Eastern, Northern, and Southern regions of Malaysia, 
and all 52 stations covered rural, urban, suburban, and 
industrial areas [11].

Since this study was focusing on haze occurrences, only 
PM10 ≥ 150 µg/m3 and selected air pollutants were taken into 
consideration for data analysis. To understand the distribu-
tion of the air pollutants and their contributions to haze occur-
rences, the air pollutants were divided into three groups of 
independent variables: (1) air-pollutant-index (API) pollut-
ants (sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone 
(O3), and carbon monoxide (CO)); (2) non-air-pollutant-in-
dex (NAPI) pollutants (nitrogen monoxide (NO), nitrogen 
oxides (NOx), methane (CH4), non-methane hydrocarbon 
(NmHC), and total hydrocarbon (THC)); and (3) meteo-
rological factors (wind speed (WS), wind direction (WD), 
temperature (T), relative humidity (RH), and ultraviolet-b 
(UVb)). From all, only particulate matter (PM10) was selected 
as a dependent variable. No imputation procedure was 
employed for the treatment of missing data. The PM10 read-
ings were logged using a BAM-1020 Beta Attenuation Mass 
Monitor (Met One Instrument Inc., USA) with the capability 
to log on the PM10 reading every 1- and 24-h basis. The read-
ings of SO2, NO2, O3, and CO were taken using Teledyne 
API Model 100A/100E, Teledyne API Model 200A/200E, 
Teledyne API Model 300/300E, and Teledyne API Model 400/ 
400E, respectively (Teledyne Technologies Inc., USA) [12]. 

Methane, non-methane hydrocarbon, and total hydro-
carbon were monitored by using the instrument, which 
was Teledyne API M4020, whilst NO and NOx also shared 
the same instrument (Teledyne API Model 200A/200E) 
such as nitrogen dioxide (NO2). In order to record the 
meteorological factors, Met One 010C, Met One 062, and 
Met One 083D were used in wind speed, temperature, and 
relative humidity, respectively [12]. The model equipment 
model for continuously monitoring program (CAQM) 
on each atmospheric pollutants and meteorological 
parameters [12] are listed in Table 1. 

2.2. Statistical analysis

2.2.1. Development of air pollutant and 
meteorological-apportionment models

In this study, three types of models, namely as MLP-
HM-GLM, MLP-HM-PCR, and MLP-HM-LO, were con-
structed based on generalized-linear-model (GLM), PCR, 
and ANN-SA techniques, respectively. The details of each 
technique were described as follows:
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2.2.2. PCR technique

PCR is a combination of ordinal least square and PCA 
[8]. The PCR is very useful in identifying inter-relationship 
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between air pollutants and meteorological factors by reduc-
ing any multicollinearity issues amongst independent 
variables. Thus, in this study, PCR identified any strong 
factor loading that equal and above 0.70 (with Kaiser-
normalization) to be selected as significant to be compared 
with ANN [13]. 

2.2.3. ANN-SA technique

Artificial neural network incorporated with sensitivity 
analysis (ANN-SA) was used to examine the relationship 
between independent variables (air pollutants and meteoro-
logical factors) and dependent variable (PM10). All 15 vari-
ables were statistically analyzed using JMP10 (Ver. 2015, 
USA) and XLSTAT (Ver. 2014, USA) software. ANN struc-
ture comprises three main components: input, hidden node 
(neuron), and output. In this study, the air pollutants and 
meteorological factors were set as the input, while PM10 was 
selected as the output. The interaction between neurons 
provides a better interpretation of pattern recognition and 
prediction [14]. 

Sensitivity analysis (SA) is a powerful tool to identify 
the best parameters for model development of the envi-
ronmental system [15]. In this study, SA was employed to 
estimate and examine the response of air-pollutant char-
acteristics (independent variables) to the PM10 variability 
(dependent variable) using the leave-one-out technique [16]. 
The individual air-pollutant parameter was removed, and 
the remaining parameters were taken as the neuron inputs 
for the ANN model. The coefficient of determination (R2) 
for each ANN model was then calculated and converted 
into percentage form [17]. The best definition to describe 
R2 is the proportion of dependent variable (x), that is, con-
tributed from the independent variable (y). To calculate the 
percentage contribution for individual leave-out parameter, 
the following formula was applied [18]:

% Contribution =
−

×
b a
c

100 	 (2)

where a was the R2 value after the leave-one-out calculation 
for each model, b was the reference R2 value from multilayer 
perceptron-haze model-all parameter (MLP-HM-AP), and 
c was the sum of R2 difference. This percentage represented 
the contribution of each air pollutant to the PM10 variabil-
ity. Only data of air pollutants that gave >10% contribution 
will be taken for further analysis. The best model will fit the 
highest R2 (near to 1) with the lowest RMSE (near to 0) [19]. 
The R2, RMSE, and SSE can be calculated as follows: 
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3. Discussion

3.1. GLM and PCR

Two models, namely MLP-HM-GLM and MLP-HM-
PCR, were developed using GLM and PCR to compare 
the main contributors to PM10 variation. Table 2 shows the 
effect test of GLM to select the significant parameters that 
contribute to the PM10. Six parameters entailed WS, WD, 
RH, NOx, NmHC, and SO2 had demonstrated significant 
contributions (p < 0.05) to PM10 variability.

For PCR, the acceptance criterion for a significant 
parameter was to possess factor loading (FL)  ≥  0.70. 
As shown in Table 3, only T, NOx, UVb, NmHC, and THC 
fell into this criterion.

3.2. Development of model for air pollutant and meteorological 
apportionment by ANN-SA technique

The result from ANN-SA, which was used to identify 
the significant contributors to haze occurrence in Malaysia, 

Table 1
Model of equipment for continuous monitoring program

Parameter Equipment model

Particulate matter (PM10), µg/m3 BAM-1020 Beta Attenuation
Wind speed (WS), km/h Met One 010C
Air temperature (AT), °C Met One 062
Relative humidity (RH), % Met One 083D
Nitrogen oxides (NOx), ppm Teledyne API Model 200A/200E
Nitrogen monoxide (NO), ppm Teledyne API Model 200A/200E
Ultraviolet-b (UVb), J/m2h Not available
Methane (CH4), ppm Teledyne API M4020
Non-methane hydrocarbon (NmHC), ppm Teledyne API M4020
Total hydrocarbon (THC), ppm Teledyne API M4020
Sulphur dioxide (SO2), ppm Teledyne API Model 100A/100E
Nitrogen dioxide (NO2), ppm Teledyne API Model 200A/200E
Ozone (O3), ppm Teledyne API Model 400/400E
Carbon monoxide (CO), ppm Teledyne API Model 300/300E
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is shown in Table 4. The ANN technique had rendered 
several haze models, which consisted of a model of multi-
layer perceptron using all air-pollutant parameters (MLP-
HM-AP) and a model of multilayer perceptron using leave-
one-out parameter (MLP-HM-LO). The MLP-HM-AP model 
was the reference model, whilst the MLP-HM-LO models 
entailed 14 parameters that were individually removed for 
calculation of R2 and R2 difference. From Table 4, the MLP-
HM-AP model possessed the highest R2 (0.6974) compared 
with all MLP-HM-LO models since MLP-HM-AP is the ref-
erence model. Upon removal of individual air pollutants, 

the R2 of each MLP-HM-LO model ranged between 0.312 
and 0.616, and the R2 difference was between 0.082 and 
0.385. Among the MLP-HM-LO models, MLP-HM-LOUVb 
(ultraviolet-b) model exhibited the lowest R2 (0.3124) with 
the highest R2 difference (0.6156). Thus, it indicated that 
the removal of UVb parameter from the reference model 
had significantly reduced the efficiency of the MLP-
HM-AP model. This finding also signified UVb as the main 
contributor to the haze occurrence in this study. 

To study the effect of air pollutant and meteorologi-
cal factor toward variability of PM10 by only depending 
on the R2 and R2 difference was insufficient. It would only 
tabulate the relationship between independent variables 
towards the dependent variable, but it cannot determine 
what the most significant variable to the PM10 variability 
during haze is. The previous study showed that the calcu-
lation of percentage contribution from SA had helped to 
identify the independent variables that contribute to the 
variation of the dependent variable [18].

From Table 4, MLP-HM-LOUVb and MLP-HM-LONO2 
had the highest and lowest percentage contributions to 
PM10 variability, respectively. The descending hierarchy 
of SA towards PM10 variation was as follows: UVb  >  SO2 
> NOx > NO > O3 > RH > T > CO > THC > CH4 > WD > W
S  > NmHC  >  NO2. From SA result, the effective mod-
els were selected based on their percentage contributions 
that exceeded 10% [18]. Only MLP-HM-LOUVb and MLP-
HM-LOSO2 models had shown percentage contributions 
of 14.93% and 10.37%, respectively (Table 4), and since 
these models had percentage contribution >10%, UVb and 
SO2 were chosen as the strongest contributors to PM10 
variability and haze occurrence in this study.

The UVb had a strong association with PM10 that was 
by our result. Also, the PM10 was claimed to be one of the 
significant UVb absorbers in the long run [20]. Likewise, as 
haze occurrence is an annual event, the UV radiation tends 
to decrease over the years. This claim was supported by the 
reduction of UV radiation from 36.90% during hazy days 
(250 μg/m3 ≤ PM10 ≤ 350 μg/m3) to 22.00% during normal non-
hazy days (PM10 ≤ 150 μg/m3) [21]. This finding had proven 

Table 2
Effect tests of generalized linear model

Source DF L-R Chi Square Probability > Chi square value

Wind speed (WS) 1 11.35708 0.0008
Wind direction (WD) 1 3.84836 0.0498
Temperature (T) 1 0.37965 0.5378
Relative humidity (RH) 1 21.40204 <0.0001
Nitrogen oxides (NOx) 1 21.86194 <0.0001
Nitrogen monoxide (NO) 1 0.00169 0.9672
Ultraviolet-b (UVb) 1 3.34758 0.0673
Methane (CH4) 1 3.79977 0.0513
Non-methane hydrocarbon (NmHC) 1 4.39644 0.0360
Total hydrocarbon (THC) 1 0.05474 0.815
Sulphur dioxide (SO2) 1 25.84933 <0.0001
Nitrogen dioxide (NO2) 1 0.52892 0.4671
Ozone (O3) 1 13.83975 0.0002

Table 3
Factor loading by principal component regression

Parameter Factor loading 1

Wind speed (WS) –0.567
Wind direction (WD) 0.091
Temperature (T) –0.728
Relative humidity (RH) 0.663
Nitrogen oxides (NOx) 0.718
Nitrogen monoxide (NO) 0.580
Ultraviolet-b (UVb) –0.701
Methane (CH4) 0.378
Non-methane hydrocarbon (NmHC) 0.718
Total hydrocarbon (THC) 0.749
Sulphur dioxide (SO2) 0.305
Nitrogen dioxide (NO2) 0.683
Ozone (O3) –0.532
Carbon monoxide (CO) 0.434

Statistics Value

Eigenvalue 4.894
Variability (%) 34.959
Cumulative (%) 34.959

a Bold values had factor loading ≥0.70.
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the gradual reduction of UVb to 20% at Mexico City, which 
experienced haze occurrence [22]. 

In contrast to the UVb circumstance, the SO2 contribu-
tion was mostly driven by fossil-fuel consumption due 
to industrialization and personal-vehicle usage, which 
had distressed the ecosystem in urban areas. Time-series 
sampling was applied to study the relationship between 
daily-mortality rate, PM10, and sulphate compound [23]. 
They found that sulphate appeared to have a strong cor-
relation with PM10. It was reported that inorganic contam-
inants derived from sulphate were suddenly increased 
during the haze period [24].

3.3. Performance evaluation of MLP-HM-LO, MLP-HM-GLM, 
and MLP-HM-PCR models

The MLP-HM-LO, MLP-HM-GLM, and MLP-HM-PCR 
models had identified significant parameters that contrib-
uted to PM10 variability for air pollutant data in Malaysia 
(Table 5). 

These models also performed the same process on 
region basis: Borneo, Central, Eastern, Northern, and 
Southern regions. As a comparison, there were inconsis-
tencies between MLP-HM-LO, MLP-HM-GLM, and MLP-
HM-PCR identifications. For the MLP-HM-LO model, the 
ANN-SA technique had predicted UVb as a significant con-
tributor in all regions (Table 5) while the MLP-HM-GLM 
model had predicted T in Malaysia, Eastern, and Northern 
regions. The inconsistent prediction was also proven when 
the MLP-HM-PCR model had predicted NOx as the main 
air pollutant in all regions. Since these models had iden-
tified different significant parameters, we had selected 
the best model based on their performances using R2, 
RMSE, and SSE result in Table 6. 

The R2 result of MLP-HM-LO model had exhibited the 
highest values for Eastern, Central, Northern, and Southern 
regions (0.9009871, 0.4556180, 0.2445727, and 0.1908602), 
respectively, while MLP-HM-GLM and MLP-HM-PCR 

Table 4
Result of ANN for pollutant-apportionment models

Model (R2) R2 difference % Contribution to 
PM10 variability

MLP-HM-AP 0.6974a

MLP-HM-LOUVb 0.3124b 0.385 14.93
MLP-HM-LOSO2 0.4300b 0.267 10.37
MLP-HM-LONOx 0.4914b 0.206 7.99
MLP-HM-LONO 0.5111b 0.186 7.22
MLP-HM-LOO3 0.5114b 0.186 7.21
MLP-HM-LORH 0.5163b 0.181 7.02
MLP-HM-LOT 0.5203b 0.177 6.87
MLP-HM-LOCO 0.5244b 0.173 6.71
MLP-HM-LOTHC 0.5317b 0.166 6.42
MLP-HM-LOCH4 0.5501b 0.147 5.71
MLP-HM-LOWD 0.5503b 0.147 5.71
MLP-HM-LOWS 0.5504b 0.147 5.70
MLP-HM-LO NmHC 0.5691b 0.128 4.98
MLP-HM-LONO2 0.6156b 0.082 3.17
Total Nr 2.579 100.00

R2 with the different superscript alphabet were significantly different (p < 0.05);
Nr = not related.

Table 5
Significant parameters identified by models

MLP-HM-LO

Malaysia UVb and SO2

Borneo NO and UVb

Central UVb, CO, SO2, and WD
Eastern WS, THC, RH, NOx, and UVb

Northern UVb, T, RH, and WS
Southern UVb, NO2, and T

MLP-HM-GLM

Malaysia WS, T, UVb, THC, SO2, and O3

Borneo N/A
Central CO
Eastern T, RH, and SO2

Northern T
Southern UVb

MLP-HM-PCR

Malaysia NOx and NO
Borneo T, NOx, UVb, NmHC, and THC
Central NOx, NO, NmHC, and THC
Eastern NOx, NO, CH4, NmHC, THC, and O3

Northern NOx, CH4, and THC
Southern NOx and NO
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models only demonstrated the highest R2 values for the 
whole Malaysia (0.2631731) and Borneo (0.9681503) region, 
respectively.

Despite R2 comparison, other indicators to deter-
mine the best model performance were RMSE and SSE 
values. From Table 6, the MLP-HM-LO model had the 
lowest RMSE value for three regions (Central, Eastern, 
and Southern regions) compared with only a region for 
MLP-HM-GLM (Malaysia) and two regions for MLP-HM-
PCR (Borneo and Northern regions). The MLP-HM-LO 
model also had exhibited the lowest SSE value for Central, 
Northern, and Southern regions. In comparison, the MLP-
HM-GLM model had the lowest SSE value for Malaysia and 
Eastern regions, while the MLP-HM-PCR model had shown 
the lowest SSE value for the Borneo region. This finding 
denoted that the MLP-HM-LO model was the most suit-
able model to explain the haze occurrence in high-density 
areas such as Central, Eastern, Northern, and Southern  
regions.

3.4. Evaluation of main contributors to PM10 variation in 
Borneo, Central, Eastern, Northern, and Southern regions 
using MLP-HM-LO model

By using the MLP-HM-LO model, the ANN-SA tech-
nique selected the main contributors to PM10 variability in 
Borneo, Central, Eastern, Northern, and Southern regions 
based on their percentage contributions >10% (Table 7). 

The summary of the main contributors in the five regions 
is illustrated in Fig. 1. In an overview, ultraviolet-b had 
percentage contribution >10% in all regions where Central, 
Southern, and Northern regions had percentage contribu-
tion >30% of UVb.

The Borneo region had NO (48.840%) and UVb 
(48.071%) as dominant contributors that made up to 
97.00%. This huge gap of percentage contribution between 
these parameters could be due to limited monitoring sta-
tions to cover this large region. Since the Borneo region 
entailed Sabah and Sarawak states, these monitoring sta-
tions had produced insufficient and misrepresent datasets. 
For the record, Borneo only has 14 monitoring stations 
or 27% compared with 38 stations (73%) in peninsular  
Malaysia.

The Central region which comprised of Selangor and 
Negeri Sembilan states and Federal territories of Kuala 
Lumpur and Putrajaya had shown significant (p  <  0.05) 
parameters that affected PM10 variability with the hierar-
chy of UVb (25.380%) > CO (15.237%) > SO2 (10.490%) > WD 
(10.126%). It might appear due to anthropogenic emission 
and rapid urbanization in this region, including industri-
alization [25] and high usage of vehicles [26]. Extensive 
application of biomass fuel, incomplete combustion, and 
endless exploitation of forest to cater to the need of urban 
development had worsened this situation [27,28]. 

Unlike Borneo and Central regions, the annual Northeast 
Monsoon (NEM) affects the Eastern region between 

Table 6
Overall performances of MLP-HM-LO, MLP-HM-GLM, and MLP-HM-PCR models for air pollutant apportionment in Malaysia, 
Borneo, Central, Eastern, Northern, and Southern regions

MLP-HM-LO MLP-HM-GLM MLP-HM-PCR

Region Coefficient of determination (R2)

Malaysia 0.1001773 0.2631731 0.0146705
Borneo 0.1840220 N/A 0.9681503
Central 0.4556180 0.1134654 0.1161727
Eastern 0.9009871 0.1419211 N/A
Northern 0.2445727 0.0034610 0.1676596
Southern 0.1908602 0.0380241 0.0439994

Region Root-mean-square error (RMSE)

Malaysia 38.505052 33.194499 46.240427
Borneo 25.002358 N/A 4.004759
Central 20.920946 45.875815 31.12534
Eastern 28.212191 39.799997 N/A
Northern 32.219578 43.878379 31.772294
Southern 43.414998 46.788598 47.398515

Region Sum-square error (SSE)

Malaysia 1,414,437.7 794,767.68 17,610,027
Borneo 53,135.024 N/A 272.64761
Central 89,287.943 539,614.24 539,614.24
Eastern 166,348.89 272.64761 N/A
Northern 216,963.15 497,672.97 497,672.97
Southern 493,833.86 4,084,353.8 4,084,353.8
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November and February [29], in which it had caused addi-
tional parameters that contributed to PM10 variation. Since 
the Eastern region faces the South China Sea, WS became 
the highest contributor (23.020%) and was followed by 
THC (18.098%), RH (17.517%), NOx (12.653%), and UVb 
(10.982%). Besides, cloudy weather during NEM had limited 

the sunlight and UVb from reaching the Eastern region and 
thus, supported the low percentage contribution of UVb [30]. 
Nonetheless, T and two API pollutants, which were SO2 and 
NO2 had negative prediction value, indicated that the higher 
T, SO2, and NO2, do not have any interaction between PM10 
during the haze period.

Table 7
ANN-SA for haze prediction in Malaysia, Borneo, Central, Eastern, Northern, and Southern regions

Model Percentage contribution (%)

Malaysia Borneo Central Eastern Northern Southern

MLP-HM-LOWS 5.700 0.001 1.436 23.017 11.127 –1.070
MLP-HM-LOWD 5.705 0.000 10.126 2.065 –0.897 9.912
MLP-HM-LOT 6.867 0.000 5.721 –0.221 25.204 12.937
MLP-HM-LORH 7.022 0.000 4.489 17.517 21.451 –0.783
MLP-HM-LONOx 7.986 0.000 3.066 12.653 6.920 4.368
MLP-HM-LONO 7.223 48.840 4.738 5.929 1.417 –5.720
MLP-HM-LOUVb 14.929 48.071 25.380 10.982 32.883 44.907
MLP-HM-LOCH4 5.712 2.977 5.900 4.593 –2.019 0.471
MLP-HM-LONmHC 4.975 0.000 4.607 0.185 –3.782 0.771
MLP-HM-LOTHC 6.423 0.000 2.573 18.098 –3.189 0.577
MLP-HM-LOSO2 10.369 0.000 10.490 –0.440 –4.119 6.387
MLP-HM-LONO2 3.172 0.002 1.602 –0.442 2.069 26.044
MLP-HM-LOO3 7.211 0.010 4.635 4.413 8.645 –5.274
MLP-HM-LOCO 6.706 0.100 15.237 1.652 4.290 6.473

Bold values had percentage contribution >10%;
ANN-SA data of air pollutants in Malaysia were used as reference.

Fig. 1. Main contributors to PM10 variation (percentage contribution >10%) in Borneo, Central, Eastern, Northern, and Southern region.
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For the Northern region, only meteorological factors 
such as UVb (32.883%), T (25.204%), RH (21.451%), and 
WS (11.127%) had influenced the PM10 variability while 
CH4, THC, NMHC, WD, and SO2 had a negative contribu-
tion (Table 7). The T and RH that affected haze occurrence 
in this region was probably because of dry and humid 
weather and its location near the dry area of Thailand. 
The MLP-HM-LO model also had identified UVb, NO2, 
and T as dominant contributors over the Southern region. 
As been discussed in the Central region, UVb showed the 
highest rank with 44.91% percentage contribution, while 
NO2 and T were 26.04% and 12.94%, respectively. Besides, 
other factors such as WD, CO, and NO (4.37%–9.91%) had a 
slight effect on the PM10 variability.

4. Conclusions

This study had successfully proven the applicability 
of ANN-SA technique in two aspects: (1) identification 
on main contributors to PM10 viability or haze circum-
stance in Malaysia between 2006 and 2015, and (2) iden-
tification on main contributors during haze episodes in 
Borneo, Central, Eastern, Northern, and Southern regions. 
Statistically, ANN-SA able to demonstrate a better predict-
ing technique than PCR and GLM techniques as proven 
with higher R2 and lower RMSE and SSE values in the five 
regions. Hence ANN-SA was selected as the most suitable 
technique in this study. Our results had demonstrated the 
dissimilarities of contributing parameters in each region 
except UVb. The UVb also was the highest contributor in 
the Northern, Central, and Southern regions but appeared 
as the least contributor as compared with WS, THC, RH, 
and NOx in the Eastern region. The temperature was also 
among the dominant parameters in the Northern and 
Southern regions. This finding could assist the Department 
of Environment (DOE) in tackling haze-related issues in 
the near future. However, the deterioration in the qual-
ity of natural water due to haze and other natural mining 
activities could be key issues in any environmental prob-
lems as observed in the Eastern region especially Kuantan 
water bodies (especially in the Balok and Tunggak rivers 
Kuantan in the state of Pahang) in 2016. The main problems 
caused due to bauxite mining activities along with haze 
pollution could be correlated with severe water pollution. 
In fact it was occurred in 2016 at Kuantan riverine areas 
which needed further details studies in the near future.
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