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a b s t r a c t
Water quality prediction plays a vital role in water pollution warning and control. However, 
traditional prediction models usually suffer from low efficiency and poor robustness. To predict 
accurately the dissolved oxygen concentration in the marine pasture, a dissolved oxygen predic-
tion model, based on wavelet analysis and hybrid gray wolf algorithm (HGWO) optimized vector 
regression, was established. Because of the water quality data in the marine pasture is a station-
ary time series. To improve the accuracy of water quality data, wavelet analysis was applied for 
data pre-processing in this paper. Besides, after the gray wolf algorithm (GWO) was optimized 
by the differential evolution algorithm (DE), it was used to optimize the support vector regres-
sion (SVR). Hence, the SVR’s disadvantages of optimization ability and prediction accuracy both 
were improved. Back propagation neural network (BPNN), SVR, GWO-SVR, DE-SVR, and this 
model were, respectively, used to predict the dissolved oxygen concentration of Beidaihe marine 
pasture. The experimental results show that the mean square error, mean absolute error, and 
average percentage error of the model are 0.1658, 0.359, and 0.0305, respectively, which are better 
than the traditional prediction model. So this model has higher prediction accuracy and stronger 
generalization ability, and it can provide a reference for the precise regulation of aquaculture.

Keywords:  Wavelet analysis; Gray wolf algorithm; Differential evolution algorithm; Support vector 
regression; Dissolved oxygen

1. Introduction

Water resources play a vital role in the survival and
development of human beings. With the development of 
industrialization, water pollution has become increasingly 
serious, which has caused close attention to water resources 
management departments [1]. Water quality prediction 
is an important means for water environmental planning, 
management, and control. It is also an important part of 
studying water pollution and basic work for water environ-
mental protection and governance [2]. In aquaculture, the 

dissolved oxygen concentration is an important indicator of 
the growth status of aquaculture products and can reflect 
the water quality [3]. Therefore, to prevent the deterioration 
of water quality and control the outbreak of aquatic prod-
uct diseases, it is necessary to make an accurate prediction 
of the dissolved oxygen concentration.

Achieving an accurate prediction of dissolved oxygen 
concentration has always been a scientific problem in the 
field of aquaculture [4]. Because the concentration of dis-
solved oxygen in water is easily affected by many factors, 
such as hydrometeorology, biology, physical chemistry, etc. 
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Therefore, it has the characteristics of non-linearity, time lag, 
and fuzzy uncertainty [5]. Moreover, seawater is corrosive 
to water quality monitoring equipment, which may cause 
problems such as equipment aging and data transmission 
failure. These problems easily lead to data loss, errors, and 
unavoidable noise in the collected water quality data. If the 
raw water quality data is directly used for the prediction of 
dissolved oxygen concentration, the prediction accuracy of 
the model will be seriously affected [6].

At present, domestic and foreign scholars have con-
ducted a lot of research on the prediction of dissolved oxy-
gen. The most widely used model is the prediction model 
based on time-series, such as autoregressive integrated 
moving average model, linear discriminant analysis model, 
and logistic regression model [7]. These models are simple 
in structure and require that time-series data must be stable. 
Therefore, it can only capture linear relationships, and the 
predictions are not well for non-linear, high-dimensional, 
and small-sample water quality data [8]. The artificial 
neural network has good non-linear mapping character-
istics and self-learning capabilities. Therefore, it has been 
widely used in water quality prediction [9]. For example, 
[10] proposed a water quality prediction model based on 
FS-RBFNN, which can dynamically change the structure 
of the algorithm to maintain prediction accuracy [11]. 
Combined principal component analysis (PCA), genetic 
algorithm (GA), and back propagation neural network 
(BPNN) to predict the water quality of rivers and achieved 
satisfactory results [12]. Established an ANFIS model and 
used it to predict biochemical oxygen demand, which per-
formed quite well [13]. Combined ANN modeling technol-
ogy with general regression neural network (GRNN) and 
multilayer perceptron (MLP), and successfully applied it to 
the prediction of seawater quality. Nevertheless, it also has 
some certain disadvantages in water quality prediction, like 
complex structure, fixed learning rate, slow convergence 
rate, the randomness of weights, etc. Hence, prediction 
results are difficult to meet the needs of precise regulation 
of aquaculture [14–16].

Support vector regression (SVR) follows the principle 
of structural risk minimization, which is good at solving 
some problems such as small sample, non-linear, and high 
dimensional pattern recognition [17]. Moreover, it is differ-
ent from classical methods of machine learning which fol-
low empirical risk minimization. The SVR model can avoid 
problems such as overfitting, difficulty in accommodating, 
and slow convergence [18–20]. Therefore, it has been widely 
used in many fields, particularly in environmental problems 
like solar radiation prediction [21], forest modeling [22], 
and air and water quality estimation, to give some exam-
ples [23–25]. However, the actual performance of the SVR 
depends on the parameters of the learning machine, such 
as the penalty factor, the nuclear parameter, etc. There is no 
uniform method in the world to select the parameters of the 
SVR [26]. At present, the meshing method is often used to 
find the best penalty factor and kernel parameter. Although 
the meshing method can find the global optimal solution 
in the sense of CV, it has low search efficiency and takes 
a long time. However, the heuristic optimization algorithm 
can be used to optimize the SVR parameters and improve 
the operating efficiency of the model [27].

The gray wolf optimization algorithm (GWO) is a new 
swarm intelligence optimization algorithm proposed by 
Mirialili et al. (2014) [28]. The GWO algorithm seeks the 
optimal solution by simulating the social rank and hunting 
behavior of the gray wolf. It has the advantages of not con-
sidering gradient information, simple structure, few param-
eter settings, and strong global search ability. Therefore, it 
is widely used in the optimization field of neural networks. 
However, it has the disadvantages of low accuracy and 
easy prematureness in solving high-dimensional and multi-
modal complex function optimization problems [29]. As a 
representative evolutionary algorithm, the differential evolu-
tion algorithm (DE) has strong global search ability and good 
robustness. Therefore, it works well when solving complex 
optimization problems such as discontinuous and multi-
peak. However, there are defects such as weak local search 
ability, low search efficiency, and the search performance 
has a certain dependence on parameters [30].

Aiming at the above problems, a dissolved oxygen pre-
diction model, based on wavelet analysis and hybrid gray 
wolf algorithm (HGWO) optimized vector regression, was 
established. First, to improve the accuracy of the origi-
nal data, the multi-scale decomposition characteristics of 
wavelet analysis were used to reduce the noise of the data. 
Meanwhile, the DE algorithm was used to optimize the GWO 
algorithm, which improved the global search ability and the 
optimal solution search speed of the GWO algorithm and 
avoids the premature phenomenon. Then, this HGWO was 
used to optimize the SVR model, which improved the prob-
lems of insufficient optimization ability and low prediction 
accuracy of the SVR model. Finally, BPNN, SVR, GWO-SVR, 
DE-SVR, and this model were respectively used to predict 
the dissolved oxygen concentration of Beidaihe marine 
pasture. The experimental results show that the model has 
higher prediction accuracy and stronger generalization 
ability, which can provide a reference for the precise regu-
lation of aquaculture.

2. Experimental area and data source

Beidaihe District (39°47′N–39°53′N, 119°24′E–119°31′E) 
is located in Qinhuangdao City, Hebei Province, with a vast 
area and rich aquatic resources. To promote the sustainable 
development of fisheries, the Beidaihe marine pasture was 
established in the southwest waters of Jinshanzui. Beidaihe 
marine pasture is the best water area for the protection of 
fishery resources and ecological environment restoration 
in Qinhuangdao. It plans to build 650 ha and has already 
built 218 ha. It restores the ecological environment by 
artificially placing fish reefs, fry, and transplanting algae. 
After efforts, the aquatic species in Beidaihe marine pas-
ture have increased significantly, the continued decline in 
fishery resources has been effectively curbed, and marine 
biodiversity has gradually been restored.

As shown in Fig. 1, to monitor water quality in real-time, 
Beidaihe marine pasture is equipped with a high-precision 
amlodipine (AML) sensor. It can effectively detect six param-
eters such as temperature, salinity, depth, pH, chlorophyll, 
and dissolved oxygen. The AML sensor supports setting 
acquisition frequency, and we set it to collect every minute. 
The AML sensor has been operating stably for 2 y, so, we 
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can use the continuous-time water quality data it records for 
experiments.

3. Data preprocessing

3.1. Data repair

Due to sensor failure or network interruption, data loss, 
and abnormal data may occur during the water quality 
data collection process. To reduce the data processing cost 
and improve the accuracy of the prediction model, the data 
collected by the sensor must be repaired [31].

3.1.1. Data missing repair

If the interval between the missing data is not large, the 
missing data can be repaired by simple linear interpolation 
of Eq. (1).
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where xk is the water quality data collected at the known 
time k; xk+j is the water quality data collected at the known 
time k+j; xk+i is the missing water quality data at the time k+i.

If there are more missing data, it can be repaired by 
the weighted average method of Eq. (2).

x d t x d t x d t, , ,( ) = ( ) + ( )ω ω1 1 2 2  (2)

where x(d,t) is the water quality data at the time t on the day 
d; x(d1,t) is the water quality data at the time t on the day 
d1, d1, and d have similar weather and they are closest; ωi 
is the weight.

3.1.2. Abnormal data repair

The water quality data of marine pasture is a con-
tinuous-time series, and the change is relatively stable. 
Therefore, the moving average method can be used to solve 
the step-change problem of water quality data in a short 
time, and its formula is shown in Eq. (3).
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where ϑ1 and ϑ2 represent error thresholds between adjacent 
data.

When the meteorological conditions are similar, the 
water quality data of the adjacent dates will change little. 
Therefore, if the meteorological conditions are similar, the 
water quality data recorded at the same time on the sec-
ond day is more than ±20% change from the previous day, 
the data is abnormal and can be processed by the average 
method of Eq. (4).
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Marine Pasture Water Quality 
Monitoring Location

Fig. 1. Water quality monitoring location and monitoring equipment of marine pasture.
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where x(d,k) is the water quality data at the time k on day 
d; ϑ3 is the error threshold between the acquired data; x̄k 
is the average of the data in recent days.

3.2. Wavelet noise reduction

When collecting the water quality data, due to environ-
mental interference or sensor failure, the collected water 
quality data may contain noise. To reduce noise interference 
and improve the accuracy of the dissolved oxygen predic-
tion model, the collected data needs to be noise-reduced. 
Wavelet transform is an emerging signal analysis tool. Its 
development and ideas come from the Fourier transform. 
Wavelet analysis not only preserves the advantages of 
Fourier analysis but also resolves the contradiction between 
time resolution and frequency resolution [32]. According 
to the characteristics of water quality, the layered thresh-
old wavelet noise reduction method was used to reduce 
the noise of water quality data.

• The water quality data collected by the sensor was used 
as the input sample, and the function db3 was selected as 
the wavelet base function. Then the water quality data 
was divided into three layers by the Mallat algorithm, 
and the lowest approximate component coefficients and 
discrete detail component coefficients of each layer were 
obtained.

• The soft threshold filtering rule was used to perform 
threshold quantization on discrete detail components of 
each layer. In this way, high-frequency interference in the 
signal was removed. The soft threshold filtering rule is 
shown in Eq. (5).
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where ω is the detail component coefficient and λ is the 
threshold.

• According to the detailed component coefficient and the 
approximate component coefficient, the Mallat algorithm 
was used to reconstruct the signal. The reconstructed 
signal was the water quality signal after noise reduction.

3.3. Data normalization

Because water quality parameters have different dimen-
sions. To improve the prediction accuracy of the model, the 
water quality data needs to be normalized. In this paper, 
the water quality data was converted to a number between 
[0,1], Therefore, the order of magnitude difference between 
different water quality parameters was eliminated [33]. 
The specific formula is shown in Eq. (6).
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where xmin is the minimum value in the data sequence; xmax 
is the maximum value in the data sequence.

4. Hybrid gray wolf algorithm optimization SVR 
prediction model

4.1. SVR algorithm

SVR is based on the VC dimension theory and the prin-
ciple of structural risk minimization in statistical learning. 
It uses the idea of kernel function to transform the non-linear 
problems in low-dimensional space into high-dimensional 
space. Then, seek a linear regression hyperplane in high- 
dimensional space to solve the non-linear problem. Even if 
the sample size is small, it can guarantee an accurate predic-
tion effect and strong generalization ability [34].

Given the training data set G = {(x1,y1),…,(x2,y2)}. Where 
xi ∈ Rn is the input eigenvector, yi ∈ R is the output target 
value, n = 1,2,…i, and Rn is the n dimensional vector space. 
The goal of the SVR model is to find a regression func-
tion g(x). The deviation of the regression function g(x) 
from the training set needs to be less than the user-defined 
insensitive loss function ε. The calculation formula of the 
regression function g(x) is shown in Eq. (7).

y g x x b= = +( ) ω  (7)

where y is the output; ω is the weight vector which 
determines the direction of the hyperplane; b is the displace-
ment and determines the distance between the hyperplane 
and the origin. ω and b can be obtained by the structural risk 
minimization function of Eq. (8).
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The constraint conditions are shown in Eq. (9):
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where c is the penalty coefficient, which is used to balance the 
weight between algorithm complexity and sample error; ε is 
the deviation between the training set and the actual obser-
vations; ξi and ξi* are slack variables; αi and αi* are Lagrange 
multipliers. According to the Eq. (9), the Lagrange function is 
established to solve the dual problem of the original problem, 
and finally, the regression function of the optimal hyperplane 
is obtained. The regression function is shown in Eq. (10).

f K x x bi i
i

N

i= ( ) ( ) +∑ α α+ * ,  (10)

where K x x
x x

i
i( , )=exp −
−













2

2σ
 is a kernel function that satis-

fies the Mercer condition. By comparison, this paper chooses 
the Gaussian radial basis function as the kernel function. 
Where σ is the Gaussian kernel width coefficient; x and xi 
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are the feature vectors of the training set and the test set, 
respectively; αi and αi* are Lagrange multipliers.

4.2. Gray wolf optimization algorithm

The gray wolf optimization algorithm is a new type 
of swarm intelligence optimization algorithm proposed 
by Mirialili et al. (2014). It obtains the optimal solution 
by simulating the gray wolf’s predation process, which 
mainly includes tracking, encircling, hunting, and attack-
ing. This algorithm has the advantages of ignoring gradient 
information, simple structure, and strong global search abil-
ity. The gray wolf population has a clear social hierarchy, 
which can be divided into α, β, δ, and ω according to their 
status in the population from high to low. Among them, α, 
β, and δ are responsible for hunting prey, and ω is respon-
sible for tracking prey. Set α as the current best individual 
in the wolves, β and δ are the second and third best indi-
viduals, respectively, and the remaining individuals are ω. 
In the search space of wolves, α, β, and δ lead ω to search 
for the optimal region. Through continuous iteration, the 
prey position is finally found, that is, the global optimal 
solution [35].

During the predation process, the gray wolf first needs 
to determine the distance between itself and the prey. 
The distance formula is shown in Eq. (11).

D C X t X tp= ⋅ −( ) ( )  (11)

where D is the distance between the prey and the gray wolf; 
Xp(t) is the position of the prey after t iteration; X(t) is the 
position of the gray wolf after t iterations; C = 2r1 is the 
swing factor; r1 is a random number between [0,1].

Then the gray wolf adjusts its direction and position 
according to this distance. The location update formula is 
shown in Eq. (12).

X t X t A Dp( ) ( )+ = − ⋅1  (12)

where A = 2ar2 – a is the convergence factor; r2 is a random 
number between [0,1]; a decreases linearly from 2 to 0 as 
the number of iterations increases. When |A| ≥ 1, the gray 
wolf shows better global search ability, and when |A| < 1, 
it shows better local search ability.

After the gray wolf estimates the position of the prey, α, 
β, and δ begin to hunt down the prey. The position update 
formula is shown in Eqs. (13)–(19).

D C X t X tα α α= ⋅ −( ) ( )  (13)

D C X t X tβ β β= ⋅ −( ) ( )  (14)

D C X t X tδ δ δ= ⋅ −( ) ( )  (15)

X X A D1 1= − ⋅α α  (16)

X X A D2 2= − ⋅β β  (17)

X X A D3 3= − ⋅δ δ  (18)
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According to Eqs. (13)–(18), the distance between the 
gray wolf and its prey can be calculated, and the updated 
position of the gray wolf can be determined. Besides, the 
position of the prey can be determined according to Eq. (19).

4.3. Differential evolution algorithm

Differential evolution algorithm (DE) is a heuristic 
global search algorithm proposed by Storm and Price in 
1995. It seeks optimal solutions by simulating mutation, 
crossover, and selection in the biological evolution mech-
anism. The algorithm has the advantages of strong global 
search ability, simple structure, less adjustable parameters, 
and strong robustness. It is widely used to solve non-linear, 
high-dimensional complex functions, and linear system 
optimization problems [36].

First, the DE algorithm needs to initialize the popula-
tion. Suppose the population consists of M vectors, and the 
dimension of the vector is D. Besides, the cross probabil-
ity of the population is CR and the mutation probability is 
F. Initialize the population to X(t) = (X1(t), X2(t),… Xi(t),… 
XM(t)), where Xi(t) = (xi1(t), xi2(t),… xij(t),… xiD(t)) represents 
the individual i in the t generation, xij represents the com-
ponent j of the individual i. The specific calculation steps 
are as follows.

4.3.1. Mutation operation

Three individuals are randomly selected from the pop-
ulation for mutation operation, and the mutation formula 
is shown in Eq. (20).

v t x t F x t x tij cj aj bj( ) ( ) ( ( ) ( ))+ = + ⋅ −1  (20)

where vij(t+1) is the population obtained after mutation; 
t is the current number of iterations; F is the scaling fac-
tor, generally within [0,1]; xaj(g), xbi(g), and xcj(g), are three 
different individuals randomly selected from the population.

4.3.2. Cross operation

First, the cross operation needs to use the function 
randint(a,b,[]) to generate a random number R. Then, the 
mutant population is crossed with the original population 
to realize the diversity of the population. The operation 
method is shown in Eqs. (21) and (22).
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where Vij(t+1) is a new population obtained by crossing; r and 
is a random fraction between [0,1], R∈[1,N], and CR∈[0,1].
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4.3.3. Select operation

By comparing the fitness values of Vij(t+1) and Xi(t), 
individuals with better fitness are selected as the next 
generation. The selection formula is shown in Eq. (23).
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where Xi(t+1) is the selected offspring individual; f(Vij(t+1)) 
and f(Xi(t)) are the fitness values of Vij(t+1) and Xi(t), respec-
tively. This selection mechanism can ensure that the off-
spring population is better than the parent population, which 
improves the average performance of the population.

After the population is mutated, crossed, and selected, 
a new population with better performance is obtained. 
The new population is shown in Eq. (24).

X t X t X t X t X ti M+( ) = + +( ) +( ) +( )( )1 1 1 1 11 2( ), ,... ,...  (24)

After the new population is generated, the differen-
tial evolution algorithm will continue to mutate, cross, and 
select. When the precision or number of iterations reaches the 
set value, the iteration stops.

4.4. Hybrid gray wolf algorithm optimization SVR

It can be seen from Section 3.1 (Data repair) that the 
SVR model needs to set the optimal penalty coefficient c 
and the radial basis parameter g to determine the optimal 
hyperplane. However, there is no internationally recognized 
best method to find the best parameters c and g. At present, 
the most widely used method is the grid method. Although 
the grid method can find the global optimal solution in the 
sense of CV, if you want to find the best parameters c and 
g in a wider range, it takes a long time and the precision 
is not high. However, heuristic optimization algorithms can 
be used to find the optimal parameters c and g to improve 
the operating efficiency of the algorithm.

The GWO algorithm has the advantages of fast con-
vergence speed and high optimization precision. Its two 
random self-tuning parameters A and C guarantee that 
the algorithm can effectively search for the optimal value. 
However, as the number of iterations increases, A decreases 
linearly, when |A| < 1, it no longer emphasizes exploration. 
Therefore, the algorithm is easy to fall into local optimum 
when faced with multi-extreme global optimization prob-
lems. Besides, the GWO algorithm is a guided random 
search algorithm. It’s α, β, and δ wolves play an absolute 
guiding role in the hunting process. If their position is not 
ideal, it is easy to make the whole wolf group fall into local 
optimum. However, the crossover, mutation, and selec-
tion of the DE algorithm are conducive to maintaining the 
diversity of the population. Hence, it has better optimiza-
tion effects for non-continuous, non-differentiable, noisy, 
and multi-modal complex optimization functions. But its 
search efficiency is low [37].

To solve the above problems, a dissolved oxygen pre-
diction model based on HGWO-SVR was proposed in this 

paper. First, the crossover and mutation of the DE algorithm 
were used to optimize the gray wolf algorithm. Therefore, 
the diversity of the gray wolf population was guaranteed. 
Then, the three values with the best fitness in the population 
were selected as α, β, and δ, respectively. Later, the crossover 
and selection of the DE algorithm were used to update the 
position of the gray wolf. Keep iterating until the final posi-
tion of the prey was determined. Finally, the prey position 
output from the HGWO model was brought into the SVR 
model to predict the dissolved oxygen in the marine pas-
ture. In this way, the global search capability of the model 
was improved, and the shortcoming of the algorithm easily 
falling into a local optimum was overcome. The algorithm 
flow chart is shown in Fig. 2. The specific implementation 
steps are as follows:

• To eliminate the influence of the dimension between 
the water quality factors, the original water quality data 
was normalized to the range of [0,1], which improved 
the prediction accuracy of the model.

• The normalized water quality data was divided into a 
training set and a test set by the 10-fold cross-validation 
method. That was, 90% of data was used as a training set 
and 10% of data was used as a test set.

• Initialized the population size npop, the maximum itera-
tion number MaxIt, the independent variable dimension 
nVar, the crossover probability pCR, the upper bound of 
the parameter value ub, the lower bound lb, the upper 
bound of the scaling factor Fu, and the lower bound of 
the scaling factor Fl.

• First, the parent and offspring populations of the gray 
wolf were initialized, and then, the position of each gray 
wolf was assigned to the parameters c and g of the SVR 
model, respectively. Finally, the training set was used for 
the dissolved oxygen regression prediction.

• The individual fitness of each wolf was calculated by 
Eq. (25). Then, the three wolves with the best fitness of 
the parent population were selected as α, β, and δ wolves.

f
K

i
i

k

= =
∑Acc

1  (25)

where K = 10, Acci is the average accuracy of the i fold 
cross-validation.

• Set the current number of iterations t and its correspond-
ing a value.

• Initialized the convergence factor A and the swing fac-
tor C. After that, the positions of the gray wolf parent 
population were updated according to Eqs. (13)–(19). 
Then the position of the parent gray wolf was assigned 
to the parameters c and g of the SVR model, respectively. 
Finally, the training set was used for regression predic-
tion, and the individual fitness of each wolf was calcu-
lated by Eq. (25).

• First, the gray wolf parent population used the crossover 
and mutation of the DE algorithm to generate the gray 
wolf offspring population. Then, the position of the off-
spring gray wolf was assigned to the parameters c and g 
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of the SVR model, respectively. Finally, the training set 
was used for regression prediction, and the individual 
fitness of each wolf was calculated by Eq. (25).

• First, the individual fitness of the parent population and 
the offspring population were compared, and then the 
DE greedy selection algorithm was used to select individ-
uals with better fitness to update the parent population.

• The three wolves with the best individual fitness in the 
updated parent population were selected as α, β, and δ 
wolves, and the number of iterations was increased by 
one.

• If the maximum number of iterations had not been 
reached, repeat steps (6)–(10). If the maximum number 

of iterations was reached, the position of the α wolf 
was assigned to the parameters c and g of the SVR 
model, respectively. Retrain the SVR model with the 
training set, and used the test set to predict the dis-
solved oxygen concentration in the marine pasture. 
Finally, the performance of the model was evaluated 
and analyzed.

4.5. Model evaluation method

To verify the performance of the HGWO-SVR model, 
the model was evaluated by the mean square error (MSE), 
average absolute error (MAE), average percentage error 
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Fig. 2. HGWO-SVR dissolved oxygen prediction model flow chart.
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(MAPE), and correlation coefficient (R2). The calculation 
formula for each indicator is as follows.

MSE =
i
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where N is the total number of samples; ŷi is the pre-
dicted value of the model; yi is the observed value; ȳ is the 
average of the predicted model output.

5. Experimental verification

5.1. Water quality data noise reduction experiment

This paper used the data of Beidaihe marine pasture 
from April 1 to 10, 2019 for experiments. Every day from 
00:00, six kinds of water quality data such as temperature, 
salinity, depth, pH, chlorophyll, and dissolved oxygen 
were collected every 1 min. Due to external interfer-
ence and sensor failure, the water quality data collected 
by AML sensors must have noise. First, to reduce the 
impact of erroneous data and improve the reliability of 
water quality data, the data was repaired by the formu-
las in Section 3.1 (Data repair). Then, the layered wavelet 
threshold noise reduction method was used to denoise 
the water quality data. Due to the limited space of the 
article, the wavelet noise reduction experiment was only 
taken as an example of temperature, salinity and depth. 
The wavelet noise reduction results are shown in Fig. 3.

According to Fig. 3, after using the layered wavelet 
threshold noise reduction processing, the signal-to-noise 
ratios of temperature, salinity, and depth are 23.3632, 21.9817, 
and 28.5008, respectively. The curve becomes smooth, 

Fig. 3. Water quality data noise reduction experiment results.
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besides the effects of noise and peaks are reduced, and the 
reliability of the data is improved.

5.2. Dissolved oxygen prediction experiment

The water quality data in the marine pasture will not 
be abrupt in a short time. To improve the efficiency of the 
model, the water quality data was selected every 10 min. 
Then, this data set was used for the dissolved oxygen predic-
tion experiment in this paper. The data set was normalized 
by MATLAB, and then it was scrambled by random sort-
ing. In this model, five kinds of water quality parameters 
such as temperature, salinity, depth, pH, and chlorophyll 
were used as input, and the dissolved oxygen was used 
as output. To ensure the accuracy of the HGWO-SVR dis-
solved oxygen prediction model, according to the existing 
research results, the model parameters were set according 
to Table 1.

First, set the model parameters according to Table 1. 
Then, the HGWO-SVR model was used to predict the dis-
solved oxygen of the Beidaihe marine pasture. The model 
prediction results are shown in Fig. 4, and the model predic-
tion errors are shown in Fig. 5.

From Figs. 4 and 5, the MSE, MAE, MAPE, and R2 of the 
HGWO-SVR model are 0.1658, 0.359, 0.0305, and 93.48%, 
respectively. Therefore, the model has a higher predic-
tion accuracy. To verify the accuracy and superiority of the 
HGWO-SVR model in the prediction of dissolved oxygen, 
the HGWO-SVR model was compared with the BP neural 
network model, SVR model, GWO-SVR model, and DE-SVR 
model. Under the same conditions, the prediction results of 
each model are shown in Fig. 6, and the prediction errors are 
shown in Fig. 7.

As shown in Figs. 6 and 7, the HGWO-SVR dissolved 
oxygen prediction model has a better fitting degree, and 
higher prediction accuracy. Therefore, it is more suitable for 
the prediction of dissolved oxygen in the marine pasture. 
To comprehensively evaluate the HGWO-SVR model, MSE, 

MAE, MAPE and R2 were used to evaluate each model. The 
evaluation results of each model are shown in Table 2.

As shown in Table 2, in all models, the MSE, MAE, and 
MAPE indicators of the HGWO-SVR model are the lowest 
and R2 is the highest. Besides, the BP neural network model 
has the highest MSE, MAE, and MAPE indicators, and the 
lowest R2. According to the evaluation results, compared 
with the BP neural network model, the SVR model is more 
suitable for small sample prediction. Intelligent optimization 
algorithms such as the GWO algorithm, DE algorithm, and 
HGWO algorithm can optimize the SVR model and improve 
the performance of the SVR model. Compared with the BP 
neural network model, the MSE, MAE, and MAPE indica-
tors of the HGWO-SVR model are reduced by 0.7059, 0.3566, 
and 0.037, respectively, and the R2 is increased by 17.04%. 
Compared with the SVR model, the MSE, MAE, and MAPE 
indicators of the HGWO-SVR model are reduced by 0.3877, 
0.3566, and 0.037, respectively, and the R2 is increased by 
10.73%. Compared with the GWO-SVR model, the MSE, 
MAE, and MAPE indicators of the HGWO-SVR model are 
reduced by 0.2873, 0.1596, and 0.0187, respectively, and R2 is 
increased by 3.09%. Compared with the DE-SVR model, the 
MSE, MAE, and MAPE indicators of the HGWO-SVR model 
are reduced by 0.3903, 0.2329, and 0.0256, respectively, and 
the R2 is increased by 3.56%. In summary, compared with BP 

Table 1
Dissolved oxygen prediction model parameters

Parameter meaning Parameter symbol Ranges

Population size npop 30
Number of iterations MaxIt 500
Variable dimension nVar 2
Cross probability pCR 0.2
Parameter value [lb,ub] [0.01,100]
Scaling factor [Fl,Fu] [0.2,0.8]

Fig. 4. Water quality data noise reduction experiment results.
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Fig. 5. HGWO-SVR prediction model prediction error.

Fig. 6. Do prediction model prediction results.

Fig. 7. Do predictive model prediction error.



B. Yin et al. / Desalination and Water Treatment 222 (2021) 156–167166

neural network model, SVR model, GWO-SVR model, and 
DE-SVR, the HGWO-SVR model has higher prediction accu-
racy. Therefore, it is more suitable for the prediction of dis-
solved oxygen concentration in the marine pasture.

6. Conclusion

Water quality prediction plays an important role in 
water quality monitoring, management, and planning. 
Through the prediction of the dissolved oxygen concentra-
tion in water, the changing trend of the dissolved oxygen 
concentration can be grasped in time. Therefore, it can lay 
a certain foundation for the precise regulation of aquacul-
ture. Given the shortcomings of the traditional water quality 
prediction model, such as low prediction accuracy and poor 
generalization ability, a dissolved oxygen prediction model 
based on wavelet analysis and HGWO optimization SVR 
was proposed in this paper. First, the multi-scale decom-
position characteristics of wavelet analysis were used to 
denoise the data collected by the sensor. Therefore, the accu-
racy of the data was improved. Then, the DE algorithm was 
used to improve the GWO algorithm, therefore the global 
search ability of GWO was improved. Besides, the defect 
that the algorithm was easily trapped into a local optimum 
was overcome. Subsequently, the HGWO was used to find 
the best penalty coefficient and kernel parameters of the 
SVR model. Hence the SVR’s disadvantages of optimization 
ability and prediction accuracy both were improved. Finally, 
the HGWO-SVR model was used to predict the dissolved 
oxygen concentration of Beidaihe marine pasture. Besides, 
to fully evaluate the HGWO-SVR model, the BPNN model, 
SVR model, GWO-SVR model, and DE-SVR model were 
used for comparison. The experimental results show that 
the model has higher prediction accuracy and stronger gen-
eralization ability, which can provide a reference for aqua-
culture regulation.
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