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a b s t r a c t
There are always some operational management problems in water plants using conventional man-
ual control approaches, such as the stability of water treatment operation and the safety of treated 
water quality. With the increasing shortage of water resources and serious water pollution, how 
to ensure safe and energy-saving water supply is particularly concerned. This paper proposes a 
water plant optimization control system based on machine learning, which is able to design opti-
mized schemes for pump group scheduling, backwashing and reagent dosing, etc. Based on 
machine learning algorithms, the system has the ability to model and configure parameters for 
water treatment operations, which makes the water treatment process work in an optimal mode. 
Our system not only ensures the clean and safe treated water quality but also benefits the ratio-
nal use of water plant equipment. Through learning the historical operation big-data, the empirical 
models are established by the approaches of random forest and support vector machine. Thus, it 
is proposed of optimized configuration schemes with high stability, good water purification effect 
and low energy consumption. By the prediction results, the effectiveness of our system for water 
treatment optimization has been verified.

Keywords:  Safe and energy-saving water supply; Optimization control system; Machine learning; 
Random forest; Support vector machine

1. Introduction

In traditional water plant water treatment, the oper-
ation of water plant is done through the experience of the 
workers. The backward water treatment technology always 
leads to unsafe and unstable operation of water produc-
tion process, high water production cost and poor effluent 
quality. Therefore, it is necessary to design a system based 
on advanced technology to optimize the operation of water 
plant. The system must meet the following goals. First, it 
must keep water plant running. Second, satisfying the efflu-
ent requirements. Third, minimizing operation costs [1,2].

Due to the nonlinear and complex characteristics of 
water treatment process, it is difficult to establish an effec-
tive model for water treatment process with conventional 
mathematical model [3]. With the rapid development of 
machine learning algorithm, various algorithm models 
have been proposed and widely used in the research field 
of water treatment. For example, Szelag et al. [4] proposed 
to use the model established by data mining method to pre-
dict sewage water quality indicators: biochemical oxygen 
demand, chemical oxygen demand, total suspended solids. 
Yongeun et al. [5] presented a model of groundwater arsenic 
pollution prediction based on artificial neural network and 
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support vector machine algorithm. The model is combined 
with water quality reference to predict groundwater arsenic 
pollution. Ding et al. [6] proposed to mine water pump data 
based on support vector machine in water plant. Sharafati et 
al. [7] used random forest to predict water quality parameters 
of water plant. But few people have proposed to use support 
vector machine and random forest to optimize the water pro-
duction process of water plant, which is also the significance 
of this paper. By using support vector machines and random 
forests, the amount of data generated along drinking water 
treatment plants allows developing data-based models [8], 
which helps to predict operational parameters [9] and be 
incorporated into decision support system. Through learn-
ing the historical operation big-data, the system models and 
configures the parameters of water treatment operation. It 
achieves the optimization of the whole water supply sys-
tem, including the pump unit scheduling system, the water 
production process and the secondary pump station. After 
optimization, the system sends instructions to complete the 
intelligent process from water intake, water purification 
to water delivery. It will avoid the problem of equipment 
aging [10] and inefficient operation caused by long-term 
unreasonable use of human factors, which ensures the safe 
and stable operation of water production process, improve 
work efficiency, reduce energy consumption and save cost.

At the same time, the system has greatly improved the 
water quality. Water plant purification methods include 
flocculation, sedimentation, sand filtration and chlorina-
tion [11]. Even though these purification methods may be 
effective, deterioration of source water quality may require 
modern optimization methods to ensure the effective purity 
of the water [12–14]. Coagulation, sedimentation, disin-
fection, etc. need to be completed by dosing. The dosage 
should be based on water quantity, water temperature, pH 
value, raw water turbidity, dissolved oxygen, oxygen con-
sumption, and so on. But the general water plant will still 
be controlled by human observation and experience of the 
drug delivery, as the result of the dosage may not be rea-
sonable enough. The system can detect the water condition 
in real time and predict the water quality more sensitively 
combined with the empirical data model, and predict the 
optimal dosage of chemicals quickly and accurately, so as to 
achieve the optimal water purification effect.

The major contribution of this work is the develop-
ment of water plant optimization control system, which 
optimizes the water production process, water purifica-
tion effect and save water production cost. The water treat-
ment process, machine learning, random forest algorithm, 
and support vector machine algorithm are introduced in 
Section 2. The optimization results of each subsystem are 
given in Section 3. So far, the system has been successfully 
applied in Bai yang wan water plant.

2. Water treatment process and methods

2.1. Water treatment process

The production of tap water is inseparable from many 
water treatment processes, which make the raw water from 
turbidity, black, carrying a large number of bacteria and 
microorganisms to clear, safe tap water. There is also energy 

consumption in water treatment. The following will first 
describe the water plant water treatment process. The water 
treatment process includes water intake – coagulation – pre-
cipitation – filtration – disinfection – water supply. When 
raw water is pumped into the storage tank of water plant by 
water intake pumps, the next coagulation step will become 
the first step of water treatment. Coagulation process could 
make water treatment agent fully mixed with raw water, 
from which the water will be difficult to precipitate colloi-
dal particles and micro suspended substances combined 
to form easy to precipitate flocs. Floc particles are easier to 
separate from water and precipitate, among which the mix-
ing operation to generate floc particles needs to be carried 
out quickly after the drug is put into the water. By means of 
vigorous stirring by machinery, the water treatment agent 
can be evenly distributed into the raw water to make it fully 
reacted, leading to preliminary preparations for the next 
step of precipitation and filtration. Water treatment agent 
is generally composed of flocculant and disinfection drugs, 
of which the latter plays the role of algicides. Flocculants 
commonly used include alum, polyaluminum chloride, 
basic polyaluminum chloride, polyaluminum chloride, etc. 
Disinfection drugs commonly used include ozone, chlorine 
and chlorine dioxide. The operation of precipitation is car-
ried out in the second step of water treatment: sedimenta-
tion tank, in which the flocs in the water will be separated 
from the water under the action of gravity, and the sludge 
will be formed at the bottom of the sedimentation tank. 
The sedimentation tank of water plant is shown in Fig. 1.

The settled water in the sedimentation tank is col-
lected from the collecting tank to the filter tank (shown 
in Fig. 2), and the water flow will pass through the gran-
ular filter material layer with gaps, which is the third step 
of water treatment: filtration. The filter layer removes fine 
suspended matter, bacteria and viruses due to its adhe-
sion, at which point the water becomes clear. In the filtra-
tion process, excessive use of the filter material layer will 
cause blockage. The water plant always adopts the process 
of backwashing to make sure the flow of the filter material 
layer. Backwash can make the plug in the gap of the filter 
material remove reversely to clean it, and finally discharge 
the water. Backwash can use air and water, which can be 
used simultaneously or independently. So it is difficult 
to avoid the use of high power consumption of machine, 
such as fan, water pump. As the result, if the collocation 
of water pump and air blower frequency can be predicted 
in the current water quality situation back flush, energy 
consumption can be convenient to provide better reference 
configuration collocation to water management.

After the former several processes, the residual bacte-
ria, viruses and microorganisms in the water will lose the 
turbidity that they can attach to, which is benefit to the final 
disinfection and sterilization process. Disinfection pro-
cess can remove pathogenic pathogens to ensure drinking 
water bacteriological indicators. Generally, ozone, chlorine 
or sodium hypochlorite, etc. are used to oxidize and steril-
ize some microorganisms in water. Ozone is more effective 
than chlorine in oxidizing while the dosage is less, result-
ing in less chemical pollution, and the properties of water. 
Under normal circumstances, due to the long urban pipe 
network extension, ozone is easy to decompose in water. 
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In order to avoid the internal pollution of urban pipe net-
work and ensure the residual disinfection level, a small 
amount of chlorine or chlorine ammonia will be added 
before the water into the pipe network mouth. Eventually 
the treated water will be pumped into the city’s water grid 
and turned into tap water. The process flow of water plant 
is shown in Fig. 3.

Electric consumption runs through the water treatment 
process, among which the power consumption gener-
ated by the high-power mechanical processes such as the 
fetching pump (primary pump room), the lifting pump 
(secondary pump room), the backwashing system and the 
mud discharge system account for a high proportion. Of 
course, in addition to the electricity consumption, there is 

also reagent dosing in the water plant. For example, floc-
culant or even chlorine or ozone should be added during 
coagulation, and ozone or chlorine should be added during 
disinfection. Therefore, reasonable collocation can ensure 
the safe and stable operation of the water production pro-
cess, improve the water quality and reduce the energy 
consumption of the water plant.

2.2. Optimized control system

2.2.1. System technical architecture design

It is based on spring boot framework in the realiza-
tion of the optimal control system of water plant proposed 

Fig. 1. Sedimentation tank of water plant.

Fig. 2. Water plant filter tank.
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in this paper. The framework is newly provided by pivot 
team, who used specific ways to configure, so that defin-
ing the template configuration is unnecessary. According 
to the design structure of the water plant optimization 
system, the system operation is divided into visual layer, 
logic control layer, service layer and data layer. As shown 
in Fig. 4, the spring boot framework is shown, and the 
system operation principle is shown in Fig. 5.

Visual layer is a set of interfaces that interact with 
consumers. The main task of visual layer is human–com-
puter or human–data interaction. In the visual layer, 
the system instructions triggered by users will be allo-
cated by the control layer, which arrives at the specified 
business logic code and carry out business operations. 
The service layer usually refers to the interface and the 

implementation class of the interface. There is not much 
business logic in the service layer, whose majors is to real-
ize the decoupling with the database, so as to make the 
system hierarchical and improve the security of the system 
to a certain extent. The main function of the interface in 
the service layer is to link with the data layer, and then 
add, delete, modify and query the database. The data 
layer can operate the tables in the database directly.

2.2.2. System structure design

Since the water treatment process is continuous, decou-
pled and each process can be carried out independently. 
Water plant optimization system proposed in this paper 
divides the water treatment process into independent, 

Fig. 3. Flow chart of water plant.
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including the water intake process, reagent dosing, back-
wash and sludge discharge process and secondary water 
pump. Each subsystem can predict the corresponding energy 
consumption, and the prediction method is based on the his-
torical data training model or empirical formula calculation. 
In addition, each subsystem will propose a reasonable 
parameter configuration scheme to support the water sup-
ply plant staff, which helps to provide more energy-saving 
optimal configuration scheme where the water treatment 
quality reaches the standard. The overall function design 
of water plant optimization system is shown in Fig. 6.

2.3. Machine learning

Alpaydin put forward his definition of Machine learn-
ing in 2004: Machine learning is programming comput-
ers to optimize a performance criterion using example 
data or past experience. Machine learning algorithm is 
generally called training data. According to the different 
training data, machine learning algorithm can be divided 
into supervised learning and unsupervised learning, semi 
supervised learning, and enhanced learning [15,16]. The 
common methods of machine learning includes regression 
algorithm, neural network, support vector machine and ran-
dom forest. Although the principle of regression algorithm 
is simple, it cannot adapt to nonlinear prediction. Neural 
network has good generalization ability as a design pat-
tern classifier, but it has many disadvantages such as over 
learning and local optimization. Meanwhile, its classifi-
cation performance is far inferior to that of support vector 
machine and random forest. Support vector machine (SVM) 
has many unique advantages in solving small sample, non-
linear and high-dimensional pattern recognition, and has 
good classification performance. The generalization ability 

of random forest is better than that of SVM. However, ran-
dom forest is inferior to support vector machine in imbal-
anced classification. In terms of classification performance, 
SVM and random forest have their own advantages and 
disadvantages. Therefore, support vector machine and 
random forest are selected as the mathematical models of 
pump unit scheduling optimization system, secondary 
pump subsystem and reagent dosing system, respectively. 

2.3.1. Random forests

Ho [17] proposed the concept of random forests in 1995. 
Random forest is a tree based on machine learning, which 
uses the power of multiple decision trees to make deci-
sions. Decision tree (DT) is a supervised machine learn-
ing algorithm used in solving classification and regression 
problems. Decision tree can be simply understood as a 
series of decisions to achieve a certain result. In machine 
learning, decision tree (DT) [18] classification algorithm 
is a prediction model. It describes a mapping relation-
ship between object attributes and object values, and 
is composed of decision nodes, branches and leaf nodes.

The decision tree is shown in Figs. 7 and 8.
The value of entropy describes the degree of complex-

ity and confusion of information contained in a set of data 
sets. The higher the value of entropy is, the more cha-
otic the information in the data set will be. The calculation 
formula of entropy is as follows:

H S p n p n
n N

( ) = −
∈
∑ ( )log ( )2  (1)

In the formula, S plays the role of calculating entropy 
of the data set, N is a collection of classes, p(n) is the 

Fig. 5. System operation principle.
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probability of the data set as part of the class N. When all 
the elements in the collection belong to the same class, the 
collection of information will be minimized. While the 
entropy of a node is equal to 0, it won’t split in the ID3 
algorithm. Selection of the root node selected while the 
attribute information gain maximum but not randomly, 
the information gain formula is shown below.

IG( , ) ( ) ( )A S H S p t H t
t T

= ( ) −
∈
∑  (2)

Including entropy H(S) is A collection of S, T is obtained 
by A attribute space S collection of subsets, the number 
of elements in p(t) is A subset of T and S the ratio of the 
number of objects in the set H(t) is A subset of entropy as 
A root node chooses. The next decision is to select the 
remaining property of the attribute information, which gain 

maximum, and then each decision point selection attribute 
of information gain in accordance with the residual prop-
erties of the rules of the maximum. Drop speed of every 
decision between information entropy is the fastest by the 
above rules. However, ID3 algorithm has some defects, for 
example, when a property under many different categories, 
each attribute category contains less elements and his infor-
mation entropy is very low. If the property has no strong 
correlation between the results and even no correlation, it 
will lead to the failure. In order to solve the problem, C4.5 
algorithm is put forward, which is according to the informa-
tion gain rate to choose decision node and selecting infor-
mation gain rate by selecting decision points every time. 
Calculating the information gain rate formula is as follows:

IG
IG

A
A S

H A
( ) = ( )

( )
,

 (3)

Fig. 6. Overall function design of water plant optimization system.

Fig. 7. Decision tree.
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where IG(A) represents the information gain of attribute 
A, H(A) represents the information entropy of attribute 
A. The information gain ratio of attribute A to its own 
entropy is the information gain rate.

2.3.2. Multi-output least squares support vector machine

SVM is a data-based machine learning model based 
on structural risk minimization (SRM) [19,20]. The SRM 
minimizes the empirical error and model complexity 
simultaneously which contribute to the improvement of 
generalization ability of the classification or regression 
problems [21]. It uses the maximum edge hyperplane as 
the decision plane for binary classification of data. The loss 
function and regularization method are used to calculate 
the empirical risk and optimize the risk structure. SVM 
can use kernel function to classify low dimensional data, 
in order to achieve the purpose of high-dimensional non-
linear classification. The solution objective and constraint 
conditions of support vector machine are shown in Eq. (4).
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where yi is the output value, wTx + b is hyperplane.
However, the standard support vector machine is long 

in training time and the computational complexity is high. 
In order to solve this problem, we think of its conven-
tional improved least squares support vector machine first. 
The difference between the least squares support vector 
machine and the standard support vector machine is that 
the loss function adopts the two norm of error and changes 
the inequality constraint into equality constraint, which 
greatly reduces the computational complexity and train-
ing time. But the least squares support vector machine is 
only for the case of single output. When dealing with the 
multi output pump system, multiple single output least 

squares support vector machines are often used to esti-
mate the model. It will also increase the complexity of the 
model. Therefore, an improved SVM multi output least 
squares regression algorithm is proposed. It not only has the  
characteristics of transforming the original non-equality con-
straints of support vector machines into the current equal-
ity constraints but also has better generalization ability and 
lower computational complexity when dealing with multi 
output systems. It can produce multiple arguments, to adapt 
to the complex multiple input multiple output system, its 
optimization objectives and constraints are as shown below:
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f x K x x bj i

l

i i j m i z j( ) = +( ) ( ) +
=∑ 1
β α , ,  (6)

where Cj is a single output of fitting error of punish coeffi-
cient, C0 is fitting for all the output error of punish coeffi-
cient, λi is the fitting error of i dimension input to all output 
dimensions, ηi,j is the fitting error between the i dimension 
input and the j dimension output, Km(xi,xz) is a kernel func-
tion. On one hand, Eq. (6) takes the loss function of input 
variables into account the fitting errors of each compo-
nent in the model, which makes each individual error be 
a certain role to the objective function and then optimize 
the overall. On the other hand, it can reduce the influence 
of noise data and improve the anti-noise performance.

During the modeling of the pump subsystem in this 
paper, radial basis function (RBF) was adopted, as shown 
below:

K x z x z, exp( ) = − −( )γ
2

 (7)

RBF is widely used because of the advantage of strong 
adaptability and just require few parameters, which are 
the default kernel function of libsvm. In the process of 
building the model, the combination of C and γ parame-
ters has an important influence on the performance and 
accuracy of the model. In this paper, genetic algorithm [22] 
is adopted to solve the optimal parameter combination of 
the model (C, γ).

3. Prediction results and discussion

3.1. Prediction results of pump unit scheduling 
optimization subsystem

Between water pump room and water distribution 
throughout the valve in the pipe, the system designs the 
selection of the valve switch interface. When entering the 
parameters of the valve switch, system will return the raw 
water pressure, flow into the factory, and then the pump is 

Fig. 8. Tree structure.
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tie-in. The last step includes the open frequency of vari-
able frequency pump, water pump, water pump efficiency 
and prediction of power consumption, which benefits for 
providing a valve switch in input combination cases of 
several pump collocation efficiency, power consumption, 
and so on. In this part, the realization of the function is 
mainly to provide history data from water plant and pro-
fessional management reference configuration data water 
supply factory. After running the program, the system 
will collect the operation data in real time, and find all 
the information of the same valve configuration in the 
database. Then it display these data in order from low 
to high according to power consumption. Fig. 9 shows 
the parameter input prediction interface of the slurry 
pump subsystem. The operation of the interface is easy to 
understand and operate, only need to input the required 
water flow and the approximate range of pressure.

Based on massive historical data and professional con-
figuration data, the system selects the pump plan accord-
ing to the current pump configuration, and finally outputs 
it to the system page for employees’ reference.

Fig. 10 shows the optimal pump matching scheme. 
Due to the experience, the water staff could obtain best 

solution to reduce unnecessary power consumption, which 
helps to improve the efficiency of the pump set and ensure 
safe and stable water production.

For solving the problem of pump matching efficiency, 
the system uses the multi output least squares SVM model 
through historical data. In the sewage pump subsystem, the 
input is the state of each valve in the pipe network, and 
the matching mode of six pumps is shown as the output 
parameter. At last, the selection of water supply pump 
from high flow rate to low energy consumption is pro-
vided. As shown in Fig. 10, the optimal pump unit com-
bination given by the system is consistent with the opti-
mal value of historical data (group 20 data) in Table 1. 
So, the matching results given by the system are identical 
and the system prediction is accurate.

3.2. Prediction results of sludge discharge optimization subsystem

The sludge discharge optimization subsystem could 
predict the period and power consumption of sludge dis-
charge. In this subsystem, input is raw water flow, exter-
nal drainage volume and raw water turbidity. Meanwhile, 
the output consists of the sludge discharging period, total 

Table 1
Experience configuration and power consumption of pump unit scheduling[TS: Please check the entry “4’6(7Hz)”.]

Muddy water  
pressure (Mpa)

Water inflow  
(m3/h)

Water pump  
matching scheme

Efficiency  
(%) 

Power consumption  
(kwh/km3)

1 0.29 9,438.89 3(45.9 Hz), 4 74.64 101.68
2 0.29 9,415.74 3(46.9 Hz), 5 76.81 101.69
3 0.29 9,438.89 3(45.9 Hz), 4 76.93 101.45
4 0.29 9,412.85 3(45.9 Hz), 4 77.01 101.43
5 0.29 9,427.31 3(45.9 Hz), 4 77.17 101.32
6 0.27 9,025.12 3(7 Hz), 4, 6(7 Hz) 77.43 95.4
7 0.27 9,004.86 3(48 Hz), 4 77.52 95.27
8 0.27 9,019.33 3(40.69 Hz), 4 77.85 95.16
9 0.27 9,019.33 3(48.69 Hz), 4 77.98 94.91
10 0.27 9,013.54 3(40.69 Hz), 4 78.03 94.68
11 0.27 9,007.75 3(48.69 Hz), 4 78.05 95.03
12 0.27 9,033.8 3(48.69 Hz), 4 78.11 94.73
13 0.27 9,016.43 3(48.69 Hz), 4 78.17 94.7
14 0.27 9,042.48 3(40.69 Hz), 4 78.22 94.94
15 0.24 8,177.31 3(30.69 Hz), 4 79.01 84.23
16 0.24 8,258.33 3(40.69 Hz), 4 79.6 83.3
17 0.24 8,240.97 3(30.69 Hz), 4 79.61 83.5
18 0.24 8,232.29 3(30.69 Hz), 4 79.67 83.5
20 0.24 8,500 3(49.9 Hz), 6(45.9 Hz) 79.67 83.2

Fig. 9. Input parameter interface of slurry pump subsystem.
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displacement, water yield ratio, and electricity consumption 
of sludge removal.

Mud drainage mainly includes two processes: siphon 
mud drainage and perforation mud drainage. In this 
part of the function, the prediction of mud discharge is 
mainly based on empirical judgment, empirical data and 
corresponding calculation formulae.

When the original water quantity is 300,000 m2, the fol-
lowing empirical data are obtained for the discharge period, 
the single discharge water quantity and the average unit 
power consumption of the two processes.

• mud discharge period

The interval of raw water turbidity has the following 
relation with the mud discharge period of the two sludge 
discharge processes.

The turbidity of raw water is inversely proportional 
to the period, which means the more turbidity the water 
is, the more frequently the mud discharge word should 
be carried out. According to this table, we can get the 
siphon drainage period T1

* and perforated drainage period 
T2

* under the inlet water amount of 300,000.

• a single discharge of mud water, average unit power 
consumption

According to experience, the water volume and 
average unit power consumption of a single discharge of 
mud in two sludge discharge processes are shown in the 
following table:

When we know the parameters such as the period, the 
single discharge volume and the average unit electricity 
consumption of the two types of sludge discharge. We are 
able to calculate the period, water production ratio, water 
quality, electricity consumption and sludge discharge unit 
consumption required for sludge discharge under a cer-
tain amount of water. The calculation formula of mud 
discharge period is shown in formula (8):

T L T
T L T
1 1

2 2

300 000
300 000

= ×
= ×







, /
, /

*

*
 (8)

where T1 is the siphon mud drainage period, T2 is the per-
forated mud drainage period, L is the actual original water 
input, and the unit is m2.

The calculation formula of single mud discharge 
water is shown in formula (9):

Lm
Lm

1 900 24
2 150 24

1

2

= ×
= ×





T
T
/
/

 (9)

where Lm1 is the siphon water quantity of a single mud 
discharge, Lm2 is the perforation water quantity of a sin-
gle mud discharge. Fig. 11 shows the prediction of sludge 
discharge period and the amount of single sludge.

Finally calculate the total displacement, water pro-
duction ratio, electricity consumption, mud discharge per 
consumption.

The calculation formula of total displacement is shown 
in Eq. (10):

Lm Lm Lm= +( )×1 2 S  (10)

where Lm is the total displacement and S is the total number 
of pools.

The calculation formula of water yield ratio is shown 
in Eq. (11):

Lr
Lm Lh

=
− −( )L

L
 (11)

where Lr is the ratio of water production, Lh is the 
amount of water input and external drainage for reuse.

The calculation formula of power consumption 
is shown in Eq. (12):

Ec Lm= ( ) ×/ , .1 000 34 5  (12)

where Ec is the power consumption.
The calculation formula of mud discharge per consump-

tion is shown in Eq. (13):

ec Ec Lr= ×( )/ /L 1000  (13)

where ec is the mud discharge per unit.
Fig. 12 shows input parameters of sludge subsys-

tem. When the raw water is input every day, the water is 
drained back to the raw water and becomes turbid. It can 
be used to predict the period and power consumption of 
different sludge discharge methods.

As shown in Fig. 13, the results of sludge discharge opti-
mization scheme can clearly guide the water plant staff to 
regularly carry out sludge discharge work.

The period of sludge discharge, the amount of sludge 
discharged in a single time, energy consumption and effi-
ciency of each sludge discharge process are the results 
obtained by optimizing the above formula through empir-
ical data (The data are obtained based on the condition 
that the inlet water amount of the studied water plant 
is 300,000 m2, as shown in Tables 2 and 3). If the sludge 
discharge period and energy consumption of other water 

Fig. 10. Prediction results of pump unit scheduling.
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plant are predicted, it should be adjusted and opti-
mized of the calculation formula of energy consumption 
and period according to the actual working conditions. 
At present, the scheme has been applied to the water 
plant with remarkable results.

3.3. Prediction results of backwash subsystem

In the backwash subsystem, the backwash period can 
be predicted by inputting the raw water flow, the surface 

Fig. 11. Flow chart of sludge discharge prediction.

Fig. 12. Input parameters of sludge subsystem.

Fig. 13. Optimization scheme of sludge subsystem.

Table 2
Mud discharge period division

Raw water turbidity 
interval (NTU) Siphon mud Perforated mud

<50 48 h
8 h50–100 32 h

100–150 24 h
>150 24 h 6 h



D. Wang et al. / Desalination and Water Treatment 222 (2021) 168–181178

density of algae and the turbidity of precipitation effluent. 
The power consumption can be predicted by inputting pump 
and blower frequency of air, water mixed flush, single air 
flush and water flush.

Table 4 shows the prediction results of various parame-
ters in the filter on the backwash period.

The first thing that the water plant staff should do is 
to configure the frequency and power of the water pump 
and blower, and then input the frequency and time in 
the prediction interface to calculate the power consump-
tion based on the configuration data. The system designs 
a configuration interface for backwashing, in which 
we can configure the frequency F and efficiency P of 
water, air and mixed flushing pumps and blowers, at the 
same time the input frequency f and time t (min) can be 
calculated according to Eq. (14):

Ecb /= ( ) × × ( )f F P t / 60  (14)

where Ecb is backwash power consumption.
Table 5 shows the prediction of power consumption of 

backwash equipment under different collocation conditions. 
Through the above calculation formula (14), the power con-
sumption of different flushing modes can be calculated. 
It can make the water plant monitoring personnel know 
the flushing method with the lowest energy consumption.

3.4. Prediction results of reagent dosing subsystem

Reagent dosing is mainly in the process of coagulation 
and disinfection. Based on the historical data and medica-
tion habits of a water plant, the system could predict the 
amount of alum, pre-ozone, main ozone and sodium hypo-
chlorite in the water plant. In this subsystem, the dosage 
can be predicted after the input of raw water flow, turbidity, 
water temperature, pH value, dissolved oxygen and oxygen 
consumption and other parameters. For predicting ozone, 
we should input raw water smell, water ozone standard 
and ozone concentration before exhaust destruction to the 
system. Then the system will return the optimal quantity 
of primary ozone and pre-ozone. Sodium hypochlorite is 
mainly used for maintaining the residual chlorine level of 
the tap water in the urban pipe network, so that the con-
tamination of the tap water caused by microorganisms in 
the pipeline network can be avoided. It is usually put into 
the municipal pipe network before the tap water enters 
through the lift pump. After predicting the amount of 
sodium hypochlorite, input raw water oxygen consump-
tion, raw water ammonia nitrogen, raw water temperature, 
factory water residual chlorine control standard and other 
parameters of the system, the optimal dosage of sodium 
hypochlorite could be output.

The interactive design diagram of water treatment 
agent dosage prediction is shown in Fig. 14. The predic-
tion of reagent dosing mainly refers to the establishment of 
prediction model based on random forest according to the 
historical data of dosage. Through a large number of previ-
ous empirical data and the external environmental param-
eters that affect the dosage, the trained model system will 
compare the input parameters with the historical data to 
obtain the optimal dosage. The application of the model 
system can regulate the dosing of chemicals and avoid the 
safety of water quality caused by human error operation.

3.5. Prediction results of secondary pump subsystem

The secondary water pump system is responsible for 
delivering the sterilized water to every household. It is nec-
essary to control the water volume and increase the water 
pressure, for keeping the water used normally at a certain 
height, which contribute to avoiding the inconvenient use 
of tap water in the upper floors due to low water pressure. 
The best prediction of lifting level and power consump-
tion of the system is to output the level curve by input-
ting required parameters such as lifting water level and 
lowest and highest level before lifting.

As shown in Fig. 15, when inputting parameters such 
as lifting water amount and lifting level range, the system 
will search the relevant data within the range in the data-
base, and display the relationship curve of water level, 
power consumption and efficiency, so as to provide advice 
to the staff. At the same time, the optimal liquid level is 
found by random forest algorithm.

Table 6 shows the historical data of secondary pump 
operation. It includes raising water level, liquid level, 
working efficiency and power consumption. The pre-
diction of the subsystem is to query the data in the data-
base according to the input lifting water volume, such as 
the input in the above figure: the lifting water volume is 
4,900, the min liquid level is 3, and the max liquid level is 
4. When the lifting water volume is 4,900 and the liquid 
level is between 3 and 4, the lowest power consumption is 
regarded as the best lifting level. Fig. 15 is the graph fitting 
according to the found data. At present, it has been put into 

Table 3
Single discharge of mud water and average unit power consumption

Every time the sludge  
discharge quantity (m3)

Average unit power  
consumption (kwh/km3)

Siphon mud 150 34.5
Perforated mud 900 34.5

Table 4
Backwash parameters and prediction of period

Raw water quantity 250,000 m3

Algae density of raw water 44 ten thousand/L
Effluent turbidity of sedimentation tank 20 NTU
Prediction period 14 h
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Fig. 14. Prediction of dosage of water treatment reagent.

Fig. 15. Interaction design drawing of two-stage pump release prediction.

Table 5
Power consumption prediction

Pump 1 
frequency/(Hz)

Pump 2 
frequency/(Hz)

Blower 1 
frequency/(Hz)

Blower 2 
frequency/(Hz)

Time/
(min)

Power consumption/
(kwh/km3)

Air flushing \ \ 30 30 30 16.07
Water flushing 30 30 \ \ 30 25.02
Mixed flushing 1 40 \ 33 33 30 25.09
Mixed flushing 2 30 35 35 \ 30 35.35
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the actual operation of the water plant. Through the pre-
diction curve, the staff of the water plant can understand 
the data under the highest efficiency and the lowest energy 
consumption, and can intuitively compare the optimal 
operation parameters.

4. Conclusion

This paper proposes a waterworks optimization control 
system based on machine learning, through the historical 
data of plant water treatment process. The main advantage 
of this article can be summarized as: first, although machine 
learning technology has been widely used, the application 
and research towards waterworks optimization control 
aspect is insufficient. This paper proposed a waterworks 
optimization control system based on machine learning, 
offered a new way for optimal control of water, at the same 
time confirmed the effectiveness of the machine learning 
in the application of water energy consumption prediction 
and configuration optimization direction. Second, this paper 
designs an optimization control system for water plant opti-
mization, consisting of a concise and convenient control 
interface for the above subsystems, and combines the theory 
and the use of the water plant optimization control system.
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