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a b s t r a c t
In the present research, we reported TiO2 subsidized periodic mesoporous organosilicates (TiO2@
PMOS) to reduce organic pollutants by photocatalytic degradation. TiO2@PMOS was prepared by sim-
ply direct adsorbing of TiO2 onto the PMOS and the PMOS organized on polysorbate 80 (C64H124O26) 
templates through co-condensation of sodium silicate (Na2SiO3) and 3-methacryloxypropyltrime-
thoxysilane (C10H20O5Si). The resultant TiO2@PMOS were characterized by analytical techniques 
and showed the successful synthesis of template-assisted PMOS which provided a platform for the 
preparation of TiO2@PMOS which exhibited efficient surface area reflected in effective degradation of 
methyl orange (MO) as an organic azo dye and found 5.36% and 9.02% reduction under visible and 
UV-lights respectively. Moreover, the addition of H2O2 with TiO2@PMOS produced excessive hydroxyl 
free radicals which improved the degradation abilities up to 14.55% and 64.63% under visible and 
under UV-conditions. Results showed that PMOS provided well-support to TiO2 for photo-degrada-
tion of MO due to the availability of long life-time to photo-generated electron–hole pairs. This profi-
cient degradation is recognized to specific incapacitation of metallic nodes into the porous structure 
of PMOS. Moreover, TiO2@PMOS were reused several times and showed 53% photocatalytic degra-
dation of MO at optimized conditions. The small decrease in degradation competency of TiO2@PMOS 
after several cycles also showed their durability to longtime for the reduction of organic pollutants.
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1. Introduction

In the textile industry, cotton, silk, nylon and wool 
are extensively colored with azo dyes and their excessive 
amount is released in effluents [1] which becomes harm-
ful and toxic [2], causing environmental problems and 
forced the researcher for environmental protection [3]. 
Subsequently, degradation of azo dyes in industrial efflu-
ents becomes the need of the hour. Photo-catalysis provided 
an impressive way to change the previous methods for the 
treatment of wastewater and disinfection of disease-caus-
ing contaminants [4]. Photo-catalysis found to be highly 
efficient, cost-effective and has a tendency to produce 
non-toxic and harmless products from pollutants degra-
dation [5]. Modified magnetic ZnO composites also have 
effective potentials for photo-catalysis and are separable 
energy tools [6,7]. Periodic mesoporous silicates (PMOS) 
were a new phase of composites with the hybrid frame-
work of organic and inorganic moieties. These composites 
were responsible to enhance characteristics on and into 
the surfaces of catalysts and adsorbents which were quite 
different from the conventional materials [8]. In the pres-
ent study, economical TiO2@PMOS was prepared [9] for 
photo-degradation of methyl orange (MO) to investigate 
photocatalytic efficiencies.

Recently, the fabricated nano carbon dots entail gra-
phitic carbon nitride found to be valuable energy carriers 
[10–12]. Moreover, the mesoporous silica materials acquired 
massive significance after their discovery [13] and showed 
electrifying applications after structural modifications in 
supporting catalysis, adsorption, drug delivery, sensors 
and chromatography [14]. In the structural-network of 
PMOS, silicon atoms are in connection with organic moi-
eties such as methyl, ethyl or phenyl and by using multi-
ple precursors of organosilanes all together with definite 
templates multifunctional PMOS can be synthesized by 
hydrolysis and condensation reaction. These modifica-
tions enhanced the mechanical and optical characteristics 
of materials and prevent their surfaces from destruction 
[15]. At present, a large number of PMOS were synthe-
sized for catalytic applications. PMOS modified sulfonic 
group provided effective reaction sites and consequently 
used in acid catalysis [16,17]. The surface area and poros-
ity of PMOS facilitated catalytic moieties and metal atoms 
to combine in the PMOS-framework and also supported 
charge-transfer characteristics. Likewise, the catalytic mod-
ification of PMOS with Au and Ti nanoparticles [18,19] 
removed the drawbacks such as the heterogeneous distri-
bution of catalytic sites and low stability of the modified  
surface.

In the present research, initially, PMOS was pre-
pared by using an economical sodium silicate precursor 
which has many other advantages like low optical loss 
[20], high thermal resistance [21] and ease in the attach-
ment of organic-inorganic hybrid synthesis [22] and pro-
duce more stability [23]. The synthesized PMOS managed 
direct incorporation of TiO2 on PMOS surfaces to prepare 
TiO2@PMOS rather than using TiO2 nanoparticles [19]. 
Finally, photocatalytic efficiencies of TiO2@PMOS were 
investigated by facile degradation of methyl orange which 
proved them an economical and durable catalysis source.

2. Experimental

2.1. Materials

Sodium silicate (Na2SiO3), hydrochloric acid (HCl), 
ethanol (C2H5OH), titanium dioxide (TiO2) and acetone 
were purchased from Sinopharm Chemical Reagent Co., 
Ltd., Shanghai, China. 3-methacryloxypropyltrimethox-
ysilane (C10H20O5Si), lithium aluminum hydride (LiAlH4), 
methyl orange (MO), hydrogen peroxide (H2O2), sodium 
hydroxide (NaOH), potassium chloride (KCl) and tereph-
thalic acid (TA) were supplied by Sigma Aldrich, Co., Ltd., 
(Germany). Deionized (DI) water was used throughout this 
work. All the chemicals were used as received.

2.2. Methods

2.2.1. Synthesis of PMOS

The synthesis of methylene-PMOS was based on the 
reported methods of hydrolysis and co-condensation with 
small modification [24–26]. A clear solution of polysorbate 
80 templates (0.7 g) and HCl (0.65 g) into 120 g of deionized 
water was obtained with constant stirring at room tem-
perature. Later on, sodium silicate (1.0 g) with 3-methacry-
loxypropyltrimethoxysilane (1.70 g) as silicon foundations 
were added into the mixture and left for 2 h at 45°C with 
continuous stirring. For aging, the mixture was heated at 
85°C for 22 h under constant conditions. The templates 
were removed from the as-synthesized material using 
ethanol (380 g) and acetone (280 g) with constant stirring 
at 56°C for 5 h. The solid product was collected by filtra-
tion and washed systematically with deionized water and 
acetone. The synthesized PMOS was dried in an oven at 
100°C for 24 h.

 

Fig. 1. Schematic design for the template-assisted synthesis of 
TiO2@PMOS.
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2.2.2. Synthesis of TiO2@PMOS

Deionized water (80 mL) was used to make a uniform 
slurry of as-synthesized PMOS (0.7 g) with gentle sonica-
tion. Then TiO2 (0.3 g) was added into the prepared slurry 
which was almost completely adsorbed onto the PMOS 
with constant stirring for 5 h. After that LiAlH4 (0.3 g) 
was mixed to reduce metal-cation if present at room tem-
perature to get TiO2@PMOS [26] (Fig. 1). The final prod-
uct was filtered, lightly washed with distilled water and 
dried in an oven at 100°C for 12 h.

2.3. Characterization

All synthesized PMOS and TiO2@PMOS were studied 
by powder X-ray diffraction (XRD) and Fourier-transform 
infrared spectroscopy (FTIR) for the elucidation of struc-
ture. Thermogravimetric analysis (TGA) was used to 
study the thermal stability of materials. Absorptions 
were studied by ultraviolet/visible (UV/VIS) spectropho-
tometry and photoluminescence respectively. Moreover, 
the surface study was explored by transmission elec-
tron microscopy and Brunauer–Emmett–Teller using a 
nitrogen adsorption instrument.

3. Results and discussion

3.1. Materials synthesis and characterization

Sol–gel synthesis comprised hydrolysis reaction of sil-
icon-precursors in which hydroxyl groups (OH) replaced 

the alkoxy groups (OR). Organosilica linkages are formed 
by succeeding co-condensation reactions of silanol groups 
which consequently formulate PMOS after experienced 
aging [27]. PMOS provided fine support to TiO2 for the fab-
rication and facilitated with a reduction to prepare TiO2@
PMOS. The structure interpretation of PMOS and TiO2@
PMOS was explored by using XRD, FTIR and photolumines-
cence (PL) analysis techniques.

The progressive structural study of PMOS and TiO2@
PMOS was done by employing XRD pattern. Small nodes 
were observed in PMOS spectra through wide angle X-ray 
diffractometer demonstrating the amorphous nature of 
PMOS [28] which was changed after incorporation of 
TiO2 moiety into the orderly crystalline phase (Fig. 2a). 
XRD pattern of TiO2@PMOS nanoparticle showed intense 
diffraction peaks indicating the well-ordered crystalline 
phase. The most important well resolved peaks indexed as 
(110), (200), (211), (220) and (221) (Fig. 2a) associated with 
anatase phase of TiO2 (JCPDS: 00-002-0406) [29] and sup-
ported to the incorporation of organic and TiO2 moieties 
in synthesized material [20]. Scherrer’s equation, D = Kλ/
βcosθ was used to calculate crystallite size. Where D rep-
resents the average size of crystallite under examination, 
K and λ have constant values of (0.9) and (1.54056 Å) 
respectively, β and θ correspond to full-width at half-max-
imum and diffraction angle of the diffraction peaks [30]. 
The most intense peaks at 2θ = 34.42 and 40.04 in TiO2@
PMOS spectra were used to determine the average par-
ticle size by Scherrer’s equation which was found to  
be 13.41 nm.

Fig. 2. (a) XRD, (b) FTIR-spectra of PMOS and TiO2@PMOS, (c) TGA-curves of PMOS and TiO2@PMOS and (d) PL of PMOS and 
TiO2@PMOS with Tauc plot of TiO2@PMOS.
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FTIR analysis substantiated the interactions of PMOS 
and TiO2@PMOS (Fig. 2b). The significant peaks at 495; 
702; 770; 1,100; 1,312; 1,460; 1,726 and 2,940 per cm indi-
cated that organic and metal moieties successfully inte-
grated into the synthesized materials. The absorption peaks 
at 702 and 770 cm–1 showed the presence of –Si–C and –
Si–OCH3, respectively but significant peaks at 2,940 and 
1,460 cm–1 exhibited C–H stretching and bending respec-
tively [20,28,31–34]. The stretching vibrations at 1,726 and 
1,100 cm–1 were due to –C–O–C– and Si–O–Si linkages, 
respectively [35] revealed mixed bridging of organic and sil-
ica moieties in PMOS while a significant peak at 1,312 cm–1 
was recognition of Si–CH2 bending [36] indicated the suc-
cessful anticipation of the organic moiety in synthesized 
PMOS. The decrease in intensities of PMOS peaks (Fig. 2b) 
and the characteristic spectral bands at 495 cm–1 was due 
to Ti–O–Ti linkages [29] confirmed the incorporation of 
TiO2 moiety into PMOS which made the current research 
more crucial which also emphasizes the comparatively 
better efficiency of the direct co-condensation method [37].

TGA was used to study the thermal stability of PMOS 
and TiO2@PMOS (Fig. 2c). The operational condition of 
temperature was 30°C to 1,000°C with a 20°C/min heat-
ing rate and 20 mL/min flow-rate of nitrogen gas. PMOS 
and TiO2@PMOS samples showed an initial weight loss of 
6.9% and 4.74%, respectively due to the loss of water con-
tent up to 200°C. Subsequently, the thermogram showed 
6.36% weight-loss up to 250°C in TiO2@PMOS revealed 
further evaporation of physisorbed solvents but at higher 
temperatures from 250°C–350°C weight loss was 17.9% 
and 3.53% in PMOS and TiO2@PMOS respectively due to 

the removal of chemisorbed water and organics [28,38]. 
These results showed that organic moieties present in 
varying proportions in and onto the material surfaces. 
Lastly, PMOS and TiO2@PMOS showed a total mass 
reduction of 23.6% and 13.29% respectively up to 450°C. 
Afterward, there was no further destruction occurred in 
the mesoporous arrangement [28] revealing higher thermal 
stability of TiO2@PMOS compared to PMOS.

Photoluminescence (PL) and UV-spectroscopic tech-
niques were used for the optical study of PMOS and TiO2@
PMOS. The synthesized PMOS were found to be active for 
fluorescence but the same amount of the successful incor-
porated TiO2@PMOS showed more intense photolumi-
nescence at a wavelength of 700 nm with bandgap ~2.55 
(Fig. 2d) representing the charge transfer point [29].

Transmission electron microscopy (TEM) images 
(Figs. 3a, b and Figs. S2, S3) exhibited spherical shapes 
of PMOS-particles and revealed well-ordered particles 
(Figs. 3c, d and Fig. S4) of TiO2@PMOS. The magnifica-
tion of the TEM image (Fig. 3d) indicated the presence 
of tiny dots of TiO2 in the network of PMOS. ImageJ soft-
ware measurements [39] showed an average particle 
size of 15.42 nm (Fig. S1) favored to an average particle 
size of TiO2@PMOS determined by Scherrer’s equation.

3.2. Adsorption study

Brunauer–Emmett–Teller (BET) nitrogen adsorp-
tion study (Fig. 4 and Figs. S9, S10) showed the highly 
porous nature of the synthesized PMOS. Likewise, 3.26 nm 
in pore diameter demonstrated the mesostructure of 

 
Fig. 3. TEM images of (a and b) PMOS; (c and d) TiO2@PMOS.
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particles. These proficient properties of PMOS enabled them 
for high loading of TiO2 to make TiO2@PMOS and for catalysis.

3.3. Inspecting •OH generation and degradation mechanism

The generation of hydroxyl free radicals was exam-
ined by photoluminescence. In the present study, the 
hydroxyl free radicals (•OH) were produced by TiO2@
PMOS and chemically changed terephthalic acid (TA) 
into hydroxylterephthalic acid (TAOH) which was a flu-
orescent material [40]. The investigation was carried out 
in a 4 mL aqueous solution of 0.01 M NaOH accompa-
nying 3 mM of TA, 0.03 mM of H2O2 (0.3 mL) and 0.1 M 
KCl (2 mL). Another comparable test was a 4 mL aque-
ous solution of 0.01 M NaOH along with 3 mM of TA, 
0.03 mM of H2O2 (0.3 mL), 0.1 M KCl (2 mL) and 2 mg of 
TiO2@PMOS. Both samples were irradiated by visible light 
using a Tungsten bulb (200 W) with constant stirring in a 
2 × 2 × 2.5 ft3 dark box. After 20 min the photoluminescence 
spectra were recorded as shown in Fig. 5 and revealed.

Photocatalysis of organic pollutants by TiO2@PMOS 
required energy to excite electrons from valence band (VB) 
to conduction band (CB) [29]. UV-irradiation full filled 
that energy demand and produced hydroxyl free radicals 
(•OH) after reacting at holes of VB with water molecules 
and hydroxyl ions. The dissolved oxygen molecules were 
also reduced by the electrons present in the CB of TiO2@
PMOS into •O2

– radicals that can also cause degradation [41]. 
However, most of •O2

– radicals were converted to highly 
reactive •OH2 and then changed into H2O2 [42,43]. All the 
free radicals formed were short-lived due to unpaired 
electron, chiefly •OH radicals were highly reactive and 
degraded the MO as expected in Fig. 5. The formation 
of the excessive hydroxyl free radicals (•OH) by TiO2@
PMOS and H2O2 was also monitored and shown in Fig. 5 
by producing an intense fluorescent material hydroxy-
terephthalic acid (TAOH) from terephthalic acid (TA).

3.4. Photocatalytic activity of TiO2@PMOS

Degradation of methyl orange was used to investigate 
the photocatalytic activity of TiO2@PMOS under visible 
and UV-irradiation.

The demonstrative experiment was performed to exam-
ine the photolytic efficiency of TiO2@PMOS. In a typical pro-
cedure, 30 mL of 20 ppm solution of MO was used to check 
degradation ability by using 12 mg of TiO2@PMOS at a 
pH of 2. The whole assembly was kept in the dark box of 
2 × 2 × 2.5 ft3 dimensions fitted with UV-visible light sources 
for 1 h with continuous stirring in order to get absorption 
data after attaining adsorption–desorption equilibrium.

The samples were irradiated by a Tungsten bulb of 
200 W and UV-A lamp as UV-visible light sources for 1 h 
to record the absorption values. Moreover, the samples 
were again irradiated with visible and UV-lights for 1 h 

 

Fig. 4. BET adsorptions study of PMOS.

 
Fig. 5. PL results of terephthalic acid (TA) solution with and 
without TiO2@PMOS and degradation mechanism.
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after the addition of 0.3 mL H2O2 (0.03 M). The UV-visible 
spectrophotometer was used to scan all the samples which 
showed characteristic absorptions near-visible regions 
(Figs. S5 and S6). The absorption data was collected with 
time intervals of 0, 12, 24, 36, 48 and 60 min respectively.

The photocatalytic efficiency of TiO2@PMOS was also 
assessed in terms of rate constant (k) of pseudo-first- order 
reaction. After subtracting dark adsorptions, the values 
of rate constants were 0.00096 and 0.00153 min–1 under 
visible- and UV-light respectively (Fig. 6b). However, 
the rate constant values were increased to 2.79 and 
11.5 times after adding H2O2 which were 0.00268 and 
0.01761 min–1 (Fig. 6b) under visible and UV-conditions 
respectively. The improved strengths of reaction rates 
by using H2O2 showed a large formation of active inter-
mediates in which hydroxyl free radicals were domi-
nant. The overall performance of TiO2@PMOS under 
UV-light to remove MO in the absence and presence of 
H2O2 was 9.02% and 64.63% respectively. Likewise, the 
degradation efficiencies of TiO2@PMOS under UV-light 
without and with H2O2 were 0.15 and 1.07 mg of MO 
per mg of TiO2@PMOS respectively. These results were 
in good agreement with the effective degradation of 
TiO2@PMOS compared to some previously reported 
material shown in Table 1 that made these materials 
more effective and durable to reuse in catalytic studies.

3.5. Reusability of catalyst

TiO2@PMOS was recollected by centrifuging all the 
used samples, successively washed with distilled water 
and dried to reuse it. The catalytic experiment was repeated 

several times under optimized conditions [29] to observe 
photolytic activity of the regenerated TiO2@PMOS. The 
UV-visible spectrophotometer showed the characteristic 
absorption even after fifth recycle (Fig. S8a). The absorp-
tion data collected after time intervals of 00 and 60 min was 
found to be 51% degradation of MO (Fig. 7). The results 
showed that the efficiency of TiO2@PMOS was decreased 
only 20% after five consecutive cycles. The comparative deg-
radation competency of TiO2@PMOS reused made it more 
effective to recycle several times in catalytic studies.

4. Conclusions

The sol–gel technique was found to be much effec-
tive to produce periodic mesoporous organosilicates. 

 
Fig. 6. (a) Photo-degradation competencies and (b) linear fit results of TiO2@PMOS without and with H2O2 under visible 
and UV-irradiations.

 

Fig. 7. Photo-degradation of MO by recycled TiO2@PMOS.

Table 1
Reaction kinetics comparison of photocatalytic degradation

Catalyst (conc.) Removal (%) Time (h) kapp (min−1) Reference

PAM-TiO2 NC and porous TiO2 beads 16.2% and 32.8% 01 0.00016 and 0.00248 [29]
TiO2@PMOS (PMOS: Polyacrylamide) 
Nanocomposite

14.55% and 63.64% 01 0.00153 and 0.0176 Present work
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A similar kind of practice was done in the present study 
by co- condensation of low-cost sodium silicate as sili-
con-precursor using polysorbate 80 templates. The colloi-
dal solution of PMOS was used to soak TiO2 in and onto 
the PMOS-surfaces to prepare TiO2 subsidized PMOS and 
their characteristics result demonstrated the successful 
incorporation of organic and metal moieties in and onto 
the channels of synthesized materials. Subsequently, the 
TiO2@PMOS exposed a higher potential to lessen MO with 
H2O2 under visible and UV light irradiation due to the large 
production of hydroxyl radicals as discussed earlier. These 
results indicated high surface area, reasonable bandgap 
and systematized nature of TiO2@PMOS. Furthermore, 
the impressive degradation by reuse TiO2@PMOS indi-
cated their long-time durability. The effective outcomes 
open new platforms for impressive photo-degradation that 
made the current work innovative to synthesize the harm-
less and cost-effective metal-based periodic mesoporous 
organosilica for photo-degradation of organic azo dyes 
as well as other organic pollutants.
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Supporting information

 

Fig. S1. The average particle size of PMOS calculated by ImageJ 
software using TEM images.

 

Fig. S2. TEM image of PMOS with 10.0 zoom.
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Fig. S3. TEM image of PMOS with 15.0 zoom.

 

Fig. S4. TEM image of TiO2@PMOS.

Fig. S5. UV-visible spectra for photocatalysis of TiO2@PMOS without (a) H2O2 and with (b) H2O2 under visible irradiation.

 
Fig. S6. UV-visible spectra for photocatalysis of TiO2@PMOS without (c) H2O2 and with (d) H2O2 under UV-irradiation.
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Fig. S7. UV-visible spectra for photocatalysis of blanks (a) TiO2 and (b) H2O2.

 

Fig. S8. (a) UV-visible spectra of the 5th cycle by TiO2@PMOS and (b) percentage degradation of blanks (TiO2 and H2O2).

 

Fig. S9. Barrett–Joyner–Halenda graphs PMOS.



413K. Shahzad et al. / Desalination and Water Treatment 223 (2021) 403–413

 
Fig. S10. BET graphs showing the surface area of PMOS.
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