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ABSTRACT

Forward osmosis (FO) membranes development has made real progress over the last decade with
a significant number of membranes reported in the literature. However, performances of these
membranes are difficult to compare as diverse experimental conditions are used. In this study, the
productivity of R&D FO membranes is predicted using a model by setting the same operating con-
ditions, so that the water flux only depends on membranes intrinsic parameters. On this basis, a
rigorous analysis of the obtained results is carried out. Membranes selectivity is discussed through
the ratio of solute and water permeability coefficients. Results showed that the six best perform-
ing FO membranes in terms of water flux are thin-film composite (TFC) membranes of which four
have polyvinylidene fluoride (PVDF) nanofibers support layers modified with hydrophilic materials.
Advantages and limitations of different fabrication methods, membranes structures, morphologies
and materials are discussed. Comparison with commercial FO membranes has also been carried out.

Keywords: Membranes developments; Desalination; FO membranes benchmark; Water and energy

nexus; Forward osmosis.

1. Introduction

Despite the valuable efforts undertaken in terms of
water management strategies and policies promoting
energy efficiency, the demand for water and energy is
constantly increasing. Several regions of the world suffer
nowadays from water stress while a significant part of the
population does not have access to safe drinking water [1].
According to the World Resources Institute (WRI), 17 coun-
tries, representing a quarter of the world’s population, are
currently facing extremely high water stress while 44 oth-
ers are suffering from high levels of water stress [2]. The
threat of water scarcity and its consequences on the econ-
omy, health and human development makes water supply
issues a universal challenge. In response to this situation,
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the desalination industry is expanding to more than 18,000
plants operational worldwide by 2030 to produce an esti-
mated 54 billion m® of water per year [3]. Given that con-
ventional desalination processes such as reverse osmosis
(RO) and multistage flash distillation require an energy
input representing 50% to 60% of the water production
cost [4], the development of energy-efficient technologies
is of great interest. Over the last decades, forward osmo-
sis (FO) has been increasingly recognized as a promising
technology, offering the possibility of using low-grade
thermal energy that can be from renewable sources [5,6].
Despite the technology’s potential, its development
has been relatively slow since its introduction in the 1950s.
This is mainly due to the limited membrane development
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and the concentration polarization phenomena that have a
drastic impact on the process performances [7-10]. Before
commercialization of the first cellulose triacetate (CTA) FO
membrane by Hydration Technology & Innovation (HTT) in
1990, osmotic processes only attracted little interest [7,8].
Prior to that dedicated membrane, RO membranes were
used in the FO process, which resulted in high internal con-
centration polarization (ICP) and poor water fluxes [11-13].
ICP can be defined as the dilution of draw solution within
the support layer of the membrane due to water diffusion,
resulting in a significant decrease in osmotic gradient.
Reverse solute flux (RSF) and ICP significantly reduce the
osmotic pressure gradient, hence a reduction in water flux
across the membrane. This represents the main FO process
limitations [5,11]. With a better understanding of transport
phenomena involved in osmotic processes and the develop-
ment of the first thin-film composite (TFC) FO membrane
by OASYS Water in 2010, performances have been greatly
improved. This paved the way for a new era of membrane
technologies. The last decade has saw unprecedented
momentum in FO membranes R&D, with an increasing
number of publications as shown in Fig. 1 [14]. The reported
literature on forward osmosis membranes is mainly focused
on development of new preparation methods [12,15,16],
integration of nanoparticles and the use of new innovative
materials [13,17-19] to improve membranes performances:
productivity (water flux) and selectivity (RSF). These devel-
opments aim to improve membranes performances, namely,
productivity (water flux) and selectivity (RSF). Despite
the significant progress achieved in FO membrane devel-
opment, its extent is hard to quantify as FO membranes
performances reported are tested under diverse experi-
mental conditions. Draw solution (DS), feed solution (FS),
transmembrane pressures, temperatures and flow regimes
are such parameters varying from study to study; hence
making membrane performances comparison difficult.
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In the present work, a benchmark of literature R&D
FO membranes is carried out using productivity and
selectivity as evaluation criteria. The productivity (water
flux) is estimated using the study by Tiraferri et al. [20]
model, while solute permeability (B) and water permea-
bility (A) ratio is used as selectivity indicator. This enables
the identification of the best and worst performing mem-
branes. The various preparation methods, materials and
morphologies are analyzed to identify development path-
ways for FO membranes with high productivity and selec-
tivity. Finally, a comparative study of the best performing
R&D FO membranes and commercial ones has been real-
ized. Market access conditions and challenges are also
discussed. This work aims to evaluate the current state of
R&D FO membranes and provide guidance toward best
practices.

2. FO process and membrane development

Forward osmosis desalination occurs as a two-steps
process (Fig. 2). In the first step, water diffuses through
a semi-permeable membrane from a less concentrated
solution (FS) to a more concentrated solution (DS) under
the effect of osmotic pressure gradient. The second stage
is used to regenerate the draw solution and recover the
water that has permeated. Depending on the osmotic
agent, using an external energy supply is often required
[5-7,21-24]. Process performances thus rely mainly on the
osmotic agent and FO membrane used. Reverse solute
flux (RSF) and ICP phenomena have been reported as the
main technology limitations [6,23,24]. These phenomena,
while linked to thermodynamic properties of the draw sol-
ute such as molecular size, solubility and diffusivity, are
essentially defined by the FO membrane used [5,11,14].
A high-performance FO membrane is, therefore, essential to
achieve high water flux and selectivity.
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Fig. 1. Number of FO membranes publications reported in Science Direct from 1999 to 2020 [14].



I. Chaoui et al. / Desalination and Water Treatment 223 (2021) 71-98 73

2.1. History of membrane development

Development of osmotic processes has been relatively
slow because of lack in membrane improvement since the
primary membrane of the “1950s”. Membrane processes
such as ultrafiltration (UF), nanofiltration (NF) and RO only
established viability after production of the first asymmetric
membrane in the late 1950s [25,26]. Such membrane, made
by immersion precipitation (Loeb-Sourirajan Technique)
[27], consists of a dense layer on top of a porous one of the
same material. Asymmetric membranes have significantly
improved performances of membrane processes. These
membranes have shown better permeability and selectivity,
resulting in low water transport resistance and operation at
lower pressures [8]. Most of the asymmetric membranes are
made by cellulose acetate (CA), one of the few polymers that
permits the immersion precipitation technique [8,28]. CA
material has, however, several limitations, including low salt
retention [29], and high tendency tohydrolysisif operated outside
its restricted pH range (3-7) and temperature above 35°C [11].

A breakthrough in permeability and selectivity was
achieved with the first TFC membrane that outperformed
asymmetric membranes [8,9,21]. As RO was the most
prevalent process for desalination, TFC-RO membranes
were the first membranes thus tested in FO, yielding very
low water fluxes due to high ICP effects [11,29,30]. The
first modelling works on transfer phenomena [7] helped
researchers understand the impact of ICP on osmotic pro-
cesses performances. The crucial role of the support layer,
previously considered to have only a mechanical func-
tion, on ICP phenomena has also been highlighted [5,8]. In
the “90s”, the introduction by HTI of the first CTA mem-
brane made specifically for FO processes helped research
gain traction, especially the optimization of support layer
properties. The first TFC-FO membrane with significant
increase of performances was commercialized in 2010 by
OASYS Water [31]. This paved the way for a new era in
FO membrane development, resulting in the emergence
of several companies manufacturing and commercializing
membranes for FO applications. Today’s main suppliers
of FO membranes are Porifera, Toyobo, Aquaporin, Trevi
Systems, Fluid Technology Solutions (FTSH20O) (2482 SW
Ferry St., Albany, OR97322, USA), Oasys Water and Modern
Water, mainly manufactures TFC and CTA membranes [32].

2.2. FO membranes

FO membranes are typically asymmetric, we can
distinguish asymmetric phase inversion membranes
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Fig. 2. FO process schematic description.

and composite membranes [5]. While fully asymmetric
membranes are prepared by immersion precipitation (e.g.,
phase separation induced by a non-solvent) and consist of
a single material, composite membranes consist of differ-
ent materials structured as a selective layer over a support
layer. The membrane support layer is generally prepared
by immersion precipitation [33-35], temperature-induced
phase separation [36,37] or electrospinning [19,38-40]
while the active layer is made by interfacial polymerization
(IP) [29,41,42] or through layer-by-layer (LBL) deposition
[43,44]. Various materials can be used to prepare FO mem-
branes. For asymmetric membranes, most used materials are
cellulose (CA, CTA) and polybenzimidazole (PBI).

Because of its hydrophilic properties and good chemical
and mechanical stabilities, PBI was one of the first materi-
als used in fully asymmetric FO membranes; the first PBI-FO
membrane has been developed by Wang et al. [45]. Other
PBI-FO membranes have been synthesized, including some
chemically treated with p-xylylene dichloride [46] or PBI/
polyethersulfone (PES) membranes obtained by co-extru-
sion [47]. Cellulose, also used for FO membranes, is an
inexpensive hydrophilic material with good mechanical
properties [28]. Several works on the development of cel-
lulosic membranes for FO applications have been reported
in the literature [28,48-52]. Wang et al. [48] have prepared
and tested membranes made from CA while cellulose
ester (CE) membranes have been synthesized by Ong et
al. [52]. The main limitations of cellulosic and PBI mem-
branes remain the relatively low water flux. PBI membranes
also demonstrate low retention of monovalent salts.

TFC membranes are the most commonly used mem-
branes in FO due to their higher performances. Several
materials such as polysulfone (PSf), PES, PVDF, polyac-
rylonitrile (PAN) [29,39,42,53] have already been used for
the support layer of TFC membranes. The selective layer
consists on the other hand of a PA layer prepared by IP
generally from 1,3-phenylendiamine (MPD) and trimeth-
ylene carbonate (TMC) monomers [41]. The first TFC-FO
membrane marketed by Oasys Water was inspired by the
work of Phillip et al. [29], who synthesized for the first time
an optimized TFC membrane to achieve better FO perfor-
mances. To improve FO performances, the support layer of
the membrane was made of PSf on which a layer of PA was
deposited by IP. A number of studies [54-59] later focused
on physical or chemical modifications to the different lay-
ers to improve performances. Obaid et al. [59] incorporated
SiO, nanoparticles into PVDF substrates. Ghanbari et al.
[60] modified the active layer of the membrane by adding
nanoparticles of HNTs during the preparation of the aque-
ous solution for IP. Liang et al. [56] integrated aquaporin
proteins into the selective layer of a TFC membrane made
from PSf substrate to improve its permeability. The concept
of chemically modifying the surface of the support layer or
active layer was also investigated by researchers [54,55,61].
These are electrically charged membranes, which their
selection mechanism is dominated by the Donnan effect
[62], making them a poor candidate for FO desalination.

Recently, Li et al. [63] have prepared by evaporation-
induced phase separation an integrally symmetrical
membrane for the FO process. With a zero structural
parameter (S), identical performances were obtained for
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both orientation modes meaning no ICP. Smart FO mem-
branes with pH-responsive properties were also recently
investigated. Salehi et al. [64] synthesized a polysul-
fone-graft-poly(2-dimethylaminoethyl methacrylate) (PSf-
g-PDMA), where the pH-responsive co-polymer was
blended with PSf during the phase inversion process of
the support layer preparation, followed by IP to form the
active layer. Authors reported pH-reversibility as higher
water fluxes were achieved in acidic pH (3) than in basic
pH (10). This was explained by protonation of the -N(Me)2
groups covering the supports layer pore surfaces, leading
to an increase in the osmotic pressure gradient in FO mode.
Ceramic-based FO membranes have also been explored
for improved mechanical, chemical and thermal stability.
Zhang et al. [16] have prepared a mullite ceramic sub-
strate coated by a TiO,/ CNT interlayer to overcome the
low porosity and coarse surface of the ceramic substrate
to allow the PA layer formation. Authors reported good
membrane selectivity and water flux (<5 g/m?h, ~19 LMH).

Table 1 gives materials, preparation methods, intrinsic
parameters, experimental water flux and RSF correspond-
ing to each FO membrane.

3. Benchmark of FO membranes performances
methodology

3.1. FO model description

An FO membrane is considered to be high-performance
depending on its ability to achieve a high water flux while
restricting the passage of solutes. These performance indi-
cators depend both on the membrane and the draw and
feed solution properties. FO literature membranes being
tested under various DSs, FSs and operating conditions,
it is difficult to make a comparison based on the reported
experimental data. The same testing conditions should,
therefore, be used in order to compare membranes’ perfor-
mances. To do so, a modelling approach has been adopted
to compare FO membranes performance.

Several models for water flux prediction in FO are
proposed in the literature [8,25,65-68], but most do not
account for all phenomena taking place in a FO process
such as the concentration polarization (CP) and reverse
solute flux (RSF). Tiraferri et al. [20] proposed a model to
predict water flux in FO mode that accounted for the var-
ious phenomena involved in the FO process. The resulting
water flux equation, | is expressed as follows:

nDexp[]BSjnFexp(]ka
(1)

1+ E exp ]i —exp —E

I, k D

where 7. and n, are the osmotic pressures of the feed and
draw solutions, respectively; k is the mass transfer coeffi-
cient and D is the solute diffusivity and A, B and S are the
membranes intrinsic parameters.

In this model, the terms exp(J /k) and exp(J S/D)
take into account the ECP and ICP respectively, while
the term 1/[1+(B/] )lexp(/ /k))-exp(-(J ,S/D))] takes into

J,=A

account the back diffusion of solutes across the mem-
brane. The parameters A and B measure the capacity of the
membrane to allow water molecules and solutes passage,
respectively. The structural parameter, S, is given by the
following expression:

)

S )

€

Eq. (2) shows that the S parameter is a function of tor-
tuosity (1), thickness () and porosity (¢) of the support
layer, which can also be considered as a measure of ICP
[69]. ICP is known to be the main cause of reduced osmotic
water flux, especially when the membrane is oriented
in FO mode [5,66].

Many research groups [20,70-72] have already used
this model in their work and shown its reliability. First, by
testing different membranes, Tiraferri et al. [20] showed
that the model predicted water flux with good accuracy.
Later, Xiao et al. [70] prepared two different TFC mem-
branes using PSf as substrate and PA as active layer. The
membranes were tested at various DS concentrations (0.5
- 4 M NaCl) with DI water as FS. Authors found a good
agreement between the water flux calculated using the
model and experimental measures over the entire concen-
tration range of DS. Boo et al. [71] tested two commercial
HTI membranes using different DSs (trimethylamine-car-
bon dioxide (TMA-CO,), ammonia-carbon dioxide
(NH,-CO,) and NaCl) against DI water as FS. Experimental
results were successfully compared with those calculated
using the model. Pan et al. [72] developed a self-sustained
TFC membrane using PAN nanofiber as substrate and PA
active layer (PA/PAN-eTFC). Authors also obtained good
agreement between model predictions and experimental
data. Comparison between experimental and calculated
data (Fig. 3) shows a high correlation coefficient of 99.8%.
The model predicts water flux with good accuracy; the
average absolute error is equal to 2.6% and does not exceed
4.4% as shown in Table 2.

3.2. Calculation procedure

The model given in Eq. (1) is used to predict mem-
branes water flux. It was solved numerically, using
Levenberg-Marquardt iterative algorithm [75], using
Python software, following procedure presented in Fig. 4.
NaCl being the reference DS in all FO experiments due to
its numerous advantages, namely, high osmotic proper-
ties, high water solubility, abundance, low cost and non-
toxic, it has been selected as DS [11,76]. In addition to
that, most FO membranes intrinsic parameters have been
defined for NaCl [11]. The osmotic pressure and diffusivity
of the DS (1 M NaCl) were taken from the literature and
are equal to 48 atm and 1.41 x 10 m/s, respectively [71].
Thermodynamic properties of DI water as FS and 1 M NaCl
as DS were used for a temperature of 25°C. Under these
conditions, the water flux equation only depends on the
intrinsic parameters characterizing each membrane. The
mass transfer coefficient was assumed infinite, thereby
neglecting any ECP effects. This assumption implies that
negligible FS concentrations are implemented in the FO
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process [20]; which is true in this case as DI water is used
as FS. A rigorous comparison of each studied membrane
is carried out on the basis of productivity and selectivity.
Selectivity is evaluated through the B/A ratio; the lower
this ratio is, the more selective the membrane is expected
to be [62]. This ratio, expressed in units of pressure, can be
considered as the effective osmotic pressure loss caused
by the reverse diffusion of draw solutes [77].

This procedure was followed for all membranes using
reported intrinsic parameters given in Table 1. Integral
LbL membranes were not selected in this study except
for the M80 membrane as it shows high NaCl retention
[78]. These membranes generally show low selectivity to
monovalent ions such as NaCl due to their solute rejec-
tion mechanism governed by the Donnan effect [62]. LbL
membranes are usually tested using multivalent sol-
utes such as MgCl,, explaining the lack of available data
related to their permeability to NaCl.

0.1+0.01 324.42 + 34 [150]

1.59 +0.02

4. Results and discussion

Table 3 lists predicted water fluxes for various FO
membranes collected from the literature (Table 1), as well
as their selectivity. These membranes have been classi-
fied based on their productivity (water flux) as primary
criterion, with selectivity as the secondary criterion. This
makes it possible to consider all the parameters affecting
membranes performances, thus easing identification of
desired properties for different FO applications. In appli-
cations such as water treatment or desalination for exam-
ple, high water flux can be preferred, while the selectivity
criterion can be preferential in applications where a high
rejection rate is critical (pharmaceutical, food industry, bio-
medical, etc.). High water flux and selectivity are generally
both significant performance indicators, but a compromise
must be reached depending on the targeted application.

The FO membranes presented in Table 3 can be cat-
egorized into sulfonated membranes (PES, PSf), cel-
lulosic membranes (CA, CTA, CE), PVDF membranes,
PAN membranes and polyketone membranes. These
materials are usually associated to other polymers such
as sulfonated poly (ether ether ketone) (SPEEK) [79],
sulfonated poly(phenylene oxide) (SPPO) [80], carbox-
ylic polyethersulfone (CPES) [81] and others, or incor-
porate diverse other materials (such as TiO, [57,82], SiO,
[13,59], Zn,Ge nanowire [35], carbon nanotubes (CNTs)
[19,83], graphene oxide GO [67,84,85]) to constitute the
support layer. To a lesser extent, materials such as plastic
[18] and ceramics [16] have also been used as substrates
for FO membranes fabrication.

1.11

18.1

(1 M NaCl)

MF commercial DI water

interfacial
polymerization
membrane,
CNT coating,
interfacial
polymerization

TiO,/CNT
interlayers, PA
active layer
CNT-PES-
CNT, PA
active layer
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70
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50

40 *

Sandwich-like
coated TFC FO
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Predicted water flux (LMH)
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Fig. 3. Comparison of predicted and experimental water flux.
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Table 2

Model predictions and experimental water flux data relative error

Membranes Feed and draw solutions testing conditions ~ Average experimental water flux (LMH)  Error (%)  Ref.
Oasys-TFC DI water, 1.05 M NaCl 24 417 [20]
PA/PAN-eTFC DI water, 0.5 M NaCl 18.2 4.40
PA/PAN-eTFC DI water, 1 M NaCl 29.33 1.13 [72]
PA/PAN-eTFC DI water, 2 M NaCl 41 2.44

HTI-CTA DI water, 1 M NaCl 9 0.67 [(73,74]
HTI-CTA DI water, 1 M NaCl 13.5 1.48 !
TFC-FO DI water, 1 M NaCl 18 2.78

CTA-FO DI water, 1 M NaCl 12.5 3.20 711
PSE-TFC DI water, 0.5 M NaCl 19.5 2.56

PSE-TEC DI water, 1 M NaCl 30 3.33

PSE-TEC DI water, 2 M NaCl 42 2.38 [70]
PSE-TEC DI water, 3 M NaCl 53 3.77

PSE-TEC DI water, 4 M NaCl 63 1.59

(Jwsinitial)

Assume initial water flux

Use Jw, calculated as

A\ 4

J W initial

Data bank for physical properties of
solutions

A

A

Diffusivity D, Mass transfer coefficient k,
feed solution (nF), bulk draw solution (nD)

Membrane parameters

Water permeability A, solute permeability
B, structural parameter S

Calculate new water flux

(Jwscalculated) using equation 1

NO IF

J Woinitial =

J wscalculated

Check convergence

J W calculated

— STOP

Fig. 4. FO model resolution algorithm.

About 53% of the studied membranes are made from
sulfonated materials of which 30% are PSf and 23% are
PES, with an average water flux of 23.33 and 22.96 LMH,
respectively. PVDF-based membranes represent 14%
and exhibit the highest average water flux at 30.81 LMH.
Cellulosic and PAN-based membranes each represent
7% of the studied membranes, having an average water
flux of 18.48 and 23.3 LMH respectively. Polyketone

membranes have an average water flux of 28.16 LMH
and represent about 5% of the membranes studied.
Result analysis and classification are given below.

4.1. Highest performing FO membranes

The six membranes with the highest productivity are
shown in Fig. 5, namely, M53, M48, M80, M65, M72 and
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Table 3
Predicted water flux of studied FO membranes
Memb. ] (LMH) Selectivity (bar)  Memb. J, (LMH) Selectivity (bar) ~ Memb. J, (LMH) Selectivity (bar)
Mé61 6.650 0.964 M12 19.621 0.064 M36 29.446 0.207
M70 9.191 0.909 M88 19.910 0.138 M62 29.548 0.050
M84 10.400 1.149 M83 20.400 0.498 M38 29.718 0.073
M50 12.539 0.744 Mb6 20.650 0.221 M29 29.830 0.208
M67 12.672 0.347 M26 21.82 0.832 M78 29.968 0.025
M71 13.280 0.116 M19 22414 0.091 MS81 30.290 0.024
M14 13.703 0.200 M33 24.032 0.393 Mb59 31.300 0.171
M85 13.990 0.075 M47 24.268 0.195 Mb57 31.536 0.074
M15 14.099 0.342 M18 24.576 0.190 M31 31.550 0.177
M46 14.680 0.126 M82 24.680 0.077 M86 32.210 0.124
M39 15.440 0.448 M28 25.363 0.298 M44 32.293 0.269
M34 15.642 3.400 M24 26.039 0.038 M79 33.150 0.138
Mi11 15.988 0.091 M25 26.255 0.740 M37 33.388 0.092
M23 16.857 0.325 M66 26.310 0.131 M72 34.861 0.105
M43 17.044 0.357 M45 26.960 0.072 M74 35.460 0.025
M49 17.480 0.443 Mb51 27.281 0.169 M65 36.880 0.194
M68 18.480 1.056 M73 27.579 0.087 M80 37.800 0.092
M27 19.088 0.194 Mb5 28.389 1.156 M48 38.9 0.137
M87 19.450 0.110 M35 28.636 0.108 M53 48.835 0.650
60 0.9
Lowest B Highest A Lowest S 08
50
l 0.7 =
<
—~ 40 0.6 A
= 05 B
E 30 o2
X 20 0.3 g
LE 10 02 g
8 % % 0.1 =
<
= 0 7 w772 Z 0.0 %
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95

® Predicted water flux (LMH)

Selectivity parameter (bar)

Fig. 5. FO membranes with highest predicted water flux and their selectivity indicators (B/A).

M74 membranes. The highest water flux at 48.83 LMH
is obtained by the M53 membrane. This may be ascribed
to its small structural parameter of 29.7 um, the lowest S
value obtained in the study. This low structural parame-
ter is in fact attributed to a very low tortuosity that signifi-
cantly reduces ICP effects, hence enabling very high-wa-
ter flux. The M53 PVDF nanofiber substrate incorporates
SiO, nanoparticles, which improve the membrane’s hydro-
philicity, thereby achieving good water permeability. The
membrane’s selective layer is made of PA by interfacial
polymerization. The high B/A ratio of the M53 membrane
(0.65 Bar) indicates a reduced selectivity as shown in
Fig. 5. Obaid et al. [59] reported a measured specific RSF
of 0.67 bar using 1 M NaCl and DI water as DS and FS,

respectively. M48 [86] is a thin film nanocomposite (TFN)
membrane with silica nanoparticles embedded in the
polyetherimide (PEI) matrix as substrate and a PA active
layer. The membrane shows high predicted water flux of
38.9 LMH. Integration of silica in the nanofibrous substrate
led to increased porosity (83% for 1.6 wt.% of silica loading)
and pore size. The reduced structural parameter and nano-
fibrous interconnected macropores morphology resulted in
ICP mitigation and enhanced water flux. The M48 mem-
brane has also a low selectivity indicator of 0.137 bar that
suggests a high rejection rate. The M80, M65, M74 and
M72 membranes have estimated water fluxes of 37.8, 36.88,
35.46 and 34.861 LMH, respectively. The M80 [78] is a TEC
membrane with a PVDF nanofiber support layer coated
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with PAA and a selective double-layer constituted of a PEI/
PAA layer formed by the layer-by-layer deposition method
on which a PA layer is deposited by IP. In contrast with
other LbL membranes, M80 has a higher NaCl rejection rate
(96.46%) than that of the HTI's TFC membrane [78]. This is
due to its selective barrier consisting of a PA layer and a
PAA/PEI layer. This membrane has also a high water per-
meability coefficient of 4.12 LMH/bar owing to the presence
of the PAA/PEI layer, which has improved the hydrophilic-
ity of the membrane. Nevertheless, the LbL preparation
method can be expensive, which could hinder the indus-
trialization and large-scale production of such membranes.
The M65 membrane consists of a polyketone support layer
made by phase inversion (NIPS) and a PA active formed
by IP [87]. This membrane has interesting intrinsic proper-
ties: a relatively high permeability of 2.79 LMH bar™, low
structural parameter and solute permeability of 176 pum
and 0.54 LMH, respectively. Its relatively low B/A ratio
(0.194 bar) also suggests a good membrane selectivity. The
structure of support layer obtained by NIPS with small sur-
face pores is favourable for hosting a PA layer [88]. M74
[89] and M72 [55] membranes are TFC membranes with
nanofibers substrates. M74 support layer is made of PVDF/
CA produced by coaxial electrospinning, which consists
in covering the hydrophobic PVDF with hydrophilic CA,
thus producing a dual layer composite nanofiber substrate.
TFC membranes having coaxial electrospun PVDF/CA
substrates possess superior performances compared with
the PVDF electrospun substrate as shown in the study by
Shibuya et al. [89]. The structure of the PVDF/CA nano-fi-
brous substrate is also favourable for ICP effects mitigation.
The M74 membrane has excellent selectivity with a B/A
ratio of 0.025, the lowest among the membranes studied. Its
specific RSF of 0.03 g L™ is by far the lowest value reported
in the literature [89]. The M72 membrane has also a support
layer made of PVDF nanofibers coated with a hydro-
philic PVA layer, which explains its good water permea-
bility. M72 also presents good selectivity with a B/A ratio
of 0.104 bar.

Although the M53 membrane has shown the high-
est water productivity, its poor selectivity can represent a
serious weakness in specific applications such as in phar-
maceutic or food industry where it becomes an important
criterion. Poor selectivity has also a significant impact on
the economic feasibility of the process as it affects replen-
ishment costs, a critical factor in establishing OPEX costs
[90-92]. The M80 and M74 membranes could, therefore,
be considered as better candidate as they associate high
water flux to high selectivity. But as LBL fabrication method
(M80) is still expensive [11], this could impede its indus-
trial development and commercialization. The membrane
M74 composed of PVDEF-core/CA-sheath composite nanofi-
bers exhibits the lowest B/A among all studied membranes.
Its hydrophilic CA-sheath with small surface pore size is
favourable for the formation of a highly cross-linked PA
layer, hence the high selectivity.

Results have shown that nanofiber TFC membranes
exhibit the highest performance in terms of water fluxes;
among the six highest-productivity membranes, four have
nanofiber support layers. Electrospun membranes gen-
erally have low structural parameters due to their open,

porous and non-tortuous structure. Their use in FO pro-
cesses, therefore, reduces ICP effects [72], which represent
one of the main limitations for FO membranes. Since the
degree of ICP is dependent on the structure of the mem-
brane support layer, it is crucial to design membranes
with reduced structural parameters. Electrospun supports
may, however, be subject to low mechanical strength [72]
explaining why they are still in the R&D stage. A compro-
mise is thus required between selectivity, structural param-
eter and mechanical strength of membranes [93]. The S
parameter is a function of membranes tortuosity, porosity
and thickness [11,20]. It can be reduced either by decreas-
ing the tortuosity or thickness, or by increasing porosity
of the support layer. Reducing the thickness or increasing
the porosity of the support layer (which would reduce
its density) may, however, result in a reduced membrane
mechanical strength. The porosity and thickness of a mem-
brane must, therefore, be optimized to provide the ability to
simultaneously withstand the operating conditions while
minimizing ICP effects. The mechanical behavior of the
material must be taken into account; the better the mechan-
ical behavior of the material is, the better the mechanical
strength of the membrane is. Porosity and tortuosity can be
controlled through the manufacturing process. While mem-
branes prepared by electrospinning often have low tortuos-
ity, phase-inversion membranes exhibit a “finger-like pore”
structure when phase separation occurs instantaneously
and a “sponge-like pore” structure for delayed phase
separation. The scaffold-like structure of nanofibers and
the finger-like pore structure are less tortuous and more
favourable to reduce ICP, hence to achieve high productivity.

4.2. Least performing FO membranes

The three least performing membranes are the M61,
M70 and M84, with respective water fluxes of 6.65, 9.191
and 10.4 LMH. A comparison of predicted water fluxes and
selectivity parameters of these membranes is presented
in Fig. 7. The M61 [94] membrane is a TFN membrane
having a PSf support layer incorporated with imogolite
nanotubes and a PA active layer. Despite a high A param-
eter (3.03 LMH bar), the membrane shows poor water
flux mainly due to its very high structural parameter of
2,090 um, giving rise to high ICP effects. Compared with
the M65 membrane [87] (176 pm and 2.79 LMH bar™), the
M61 has a structural parameter of about 12 times higher
for a similar water permeability coefficient. Thickness and
porosity of M61 (e = 76.4%, t = 64.2 um) being similar to
those of M65 (e = 84.5%, t = 82.7 um), the M61 membrane,
therefore, presents a very high tortuosity estimated at
13.89, which is approximately 14 times higher than that
of M65. This high tortuosity can explain its high struc-
tural parameter, thus resulting in high ICP effects. The low
selectivity of the M61 membrane, shown by a B/A ratio of
0.9637 bar could result in high RSF, which may exacerbate
ICP effects and further impact the FO water flux.

As shown in the SEM image (Fig. 6) [59,94], the M61
top layer has a sponge-like pore structure known for sub-
strates with high tortuosity, which explains the high struc-
tural parameter of the membrane. On the other hand, the
SEM image of the M53 membrane, which has the lowest
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Fig. 6. SEM images of membranes substrates: (a) M61 membrane [94] and (b) M53 membrane [59].

S parameter of all the studied membranes shows scaf-
fold-like pore structure, with low tortuosity and high sur-
face porosity.

The M70 [95] and M84 [96] membranes are, respectively,
a commercial TFC membrane coated with a PDA layer,
and a TFN membrane composed of a CA substrate with
a PA selective layer integrating functionalized hydroxy-
apatite. These two membranes also show high structural
parameters, with respective to values of 1,250 and 865 um.
The water permeability parameter of both membranes
being comparable with other studied membranes, their
low water fluxes can, therefore, be attributed to the high
structural parameters. The lack of data related to the tor-
tuosity, porosity and thickness of these membranes do
not allow for more in-depth analysis.

4.3. Classification and analysis of the other studied membranes

All membranes that weren’t previously identified as
best or worst performer can be classified by water flux

12

—_
(=]

Highest A & S

ee}

Water flux (LMH)
~ (@)

[\

Me61

M70
B Predicted water flux (LMH)

values into a low-to-medium flux (12.5 to 22.5 LMH) cate-
gory and a high flux (24 to 34 LMH) category. Fig. 8a illus-
trates the calculated water fluxes, with the center zone being
the low-to-medium flux range and the outer colored zone
corresponding to the high water flux range. Membrane
selectivity, while not the primary selection parameter for
performances, is illustrated in Fig. 8b. In this case, higher
selectivity is found at periphery and lower selectivity
toward the center.

4.3.1. Low-to-medium water flux membranes

Low-to-medium water flux membranes exhibit values
ranging from 12,539 LMH (M50) to 22,414 LMH (M19).
The predominant membranes in this class are prepared by
phase inversion mainly using PSf, PES, CA/CTA materi-
als (M15, M14, M50, M40, M39, M34, M27, M88). Most of
these membranes have a relatively high structural param-
eter, averaging 422.02 um, which has a negative impact on
the water flux. The calculated average water and solute
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Fig. 7. FO membranes with lowest predicted water flux and their selectivity indicators (B/A).
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Fig. 8. Predicted water fluxes (a) and calculated selectivity indicators (b) of low-to-medium and high water flux membranes catego-

ries.

permeability coefficients A and B are 2.021 LMH bar™ and
1.22 LMH, respectively.

The M83 and M68 membranes have the highest struc-
tural parameters of all membranes in this category, with
respective values of 668.5 and 653.9 pm, and should,
therefore, have a lower water flux than the other mem-
branes due to higher ICP effects. These two membranes
have, however, the highest water permeability parameters
among all studied membranes (7.29 and 5.31 LMH bar™,
respectively) that help ICP mitigation. In contrast, the M49
[84], M87 [56] and M19 [97] membranes have the lowest
water permeability coefficients of this category (0.61, 0.73
and 0.75 LMH bar”, respectively) but possess structural
parameters (148, 153 and 107 um, respectively) significantly
lower than the calculated average, meaning lower ICP
effects and thus enhanced water flux.

4.3.2. High water flux membranes

Membranes with a water flux above 22.5 LMH are con-
sidered to have a high flux. These membranes consist of TFC
mostly prepared by phase inversion or, to a lesser extent, by
electrospinning. Many of these membranes, namely M26,
M31, M35, M36, M51, M55, M62 and M66, are made from
PSf or PES nanoparticles (NPs) integrated support layers
and a PA selective layer. Different types of NPs are used,
including TiO, [82] silica (SiO,) [34], GO [98], LDH [18],
etc. A few membranes, such as M24 and M28, consist how-
ever of PSf support layers and active layers incorporating
functionalized CNTs NPs [99] and silica NPs [58], respec-
tively. The presence of NPs into the active layer enhances
the membrane’s hydrophilicity and a better crosslinking of
the PA layer.

Other approaches for support layers preparation have
been investigated, among which are the blending of two
polymers [79,80,100], dual-layered substrate [69] or dual-se-
lective layers [101] have been investigated. The support
layers of M29 [80], M57 [79] and M73 [100] membranes
have thus been prepared by blending PSf with hydrophilic
polymers. The M59 [69] substrate is instead a dual layered
PSf/GO nanosheets fabricated by a double blade casting
technique to form a bottom structure with high porosity
and a dense top layer to allow a better PA layer deposi-
tion. The M29 substrate is made from a polymer blend of
PSf/SPPO prepared by phase inversion, on top of which a
PA active layer was deposited by IP. It is a TFC membrane
with internal generation of osmotic pressure by immo-
bilization of counter ions (Nat+) in the SPPO, which helps
attenuate the osmotic gradient reduction due to ICP phe-
nomena. The M57 support layer consists of a PSf/SPEEK
blend prepared by phase inversion via co-casting. This
approach yielded an improved porosity due to an open
pore structure at the bottom surface of the support layer,
hence reducing the membrane structural parameter. The
enhanced hydrophilicity and reduced S parameter lead to
higher water fluxes. The M73 membrane consists of a PA
layer deposited by IP on an electrospun polymeric blend of
PSf/PAN nanofibers. Membranes with high water flux have
an average a structural parameter of 250.06 um, a water
permeability coefficient of 2.45 LMH bar! and a solute
permeability coefficient B of 0.549 LMH.

The water flux of a membrane is mainly determined
by its structural parameter and water permeability coeffi-
cient. From the low-to-medium water flux to the high water
flux membranes, it can be noted that the average struc-
tural parameter has decreased by ~41% while the average
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A-parameter has only slightly increased (+17.5%). It can be,
therefore, concluded that the observed increase in water
flux is more related to a significant reduction of the mean
structural parameter rather than an increase of the A param-
eter. Regarding membranes selectivity, a decrease of 55%
has been noticed between the two categories, which indi-
cates a better overall selectivity of the high water flux cat-
egory membranes. Considering that a high RSF contributes
to the accentuation of CP phenomena and thus a reduced
water permeation, selectivity also distinguishes membranes
from the low and high water flux categories.

4.4. Commercial FO membranes

After Oasys Water commercialized, the first TFC mem-
brane designed specifically for FO applications, develop-
ment of FO membranes has gained a renewed interest lead-
ing to the creation of new companies. Available data from
commercial FO membranes have been collected and their
water flux predicted under the same conditions as those
used for R&D membranes. This allows for a fair comparison
with the best R&D FO membranes identified in this study.
Membranes selectivity of commercial FO has also been
evaluated through the B/A ratio.

The commercial FO membranes reported in Table 4 are
either CTA- or TFC-based membranes. They are supplied
by Fluid Technology Solutions (FTS), previously Hydration
Technology Innovation (HTI), Porifera, Toyobo, Oasys
Water and Aquaporin A/S. Aquaporin Inside™ hollow fiber
are TFC membranes integrated with biomimetic aquaporin
proteins into the PA active layer that act as “water chan-
nels” [102]. Various membrane module configurations are
commercialized, including spiral wound modules using
flat-sheet membranes (FTS, Oasys Water and Porifera)
and hollow fibers modules (HF) (Toyobo and Aquaporin).

As shown in Table 4 and reported by other studies
[32,103], the Porifera membrane shows the highest water
flux compared with other commercial membranes, fol-
lowed by the Oasys Water and HTI TFC membranes.
Generally, TFC membranes tend to perform better than
CTA membranes as they have demonstrated reduced water
permeance. In addition to a restricted pH and tempera-
ture operating range [11,71,104], cellulosic membranes are
also subjected to hydrolysis, which severely impacts their

Table 4

performance. These limitations make TFC membranes
the most commonly used in FO.

4.5. From R&D to commercial production

R&D membranes clearly show better water flux and
selectivity than commercial membranes as shown in Fig. 9.
While a real progress has been made in commercial TFC
membranes for FO process, more development is required
to improve their performance. The structure (porosity,
tortuosity, thickness) of the support layer, materialized
through its structural parameter, is generally the limit-
ing factor of performance for membranes [93]. To the best
of our knowledge, commercial membrane substrates are
manufactured using a phase inversion process, leading to
a tortuous structure with sponge-like pores, which may
exacerbate the effects of ICP [93,107]. It is, therefore, nec-
essary to develop new approaches for the preparation of
TFC-FO membranes substrates.

Among the possible development pathways, the first
is on the efficient use of electrospinning for the prepara-
tion of substrates with low tortuosity [59,108,109]. The
second pathway is on developing an appropriate fabri-
cation process using hydrophilic materials that can yield
self-supported membranes with the mechanical strength
required to operate in FO process. This would remove the
reinforcing layer currently used in commercial membranes
to increase their mechanical strength, but has the side-ef-
fect of increasing mass transfer resistance. The third area
of development is on the active polyamide layer that, while
exhibiting a good solute rejection rate, is susceptible to
chlorine attack and fouling because of its surface chemical
structure [110]. The aromatic PA layer obtained by polym-
erization of the MPD and TMC monomers is well known
for its “ridge-and-valley” structure, which significantly pro-
motes fouling [37,110,111] while a smooth surface would
minimize fouling. To mitigate this fouling issue, some
researchers have proposed to deposit an anti-fouling layer
on the PA layer [112,113] while others are trying to improve
its hydrophilicity through incorporation of hydrophilic
nanomaterials [33,114,115], but progress is still needed.

The lab-to-industry transition is, however, subject to
a number of conditions [32,93,116] making the launch of
a new membrane a very challenging process especially

Commercial FO membranes, intrinsic membranes parameters, predicted water flux and calculated selectivity parameter

Membranes A (LMH/bar) B (LMH) S (um) Predicted water flux (LMH) Selectivity parameter (Bar) Ref.

Oasys Water 1.94 1.99 274 24.02 1.025 [105]
HTI-CTA 0.51 2.19 600 8.076 4.29 [105]
HTI-TFC 1.63 1.42 295 21.46 0.871 [105]
Aquaporin 0.43 0.05 210 12.358 0.116 [102]
Toyobo HF-A 0.27 0.08 1024 4.83 0.296 [102]
Toyobo HF-B 0.29 0.02 724 5.948 0.068 [102]
Toyobo HF-C 0.55 0.04 639 8.749 0.072 [102]
Porifera 22 0.576 215 29.657 0.261 [103]
FTS CTA 0.69 0.34 707 9.092 0.492 [106]
FTS HTI 1.25 0.19 471 14.906 0.152 [106]
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Fig. 9. Best performing R&D vs. commercial FO membranes.

when the technology is still in its infancy. For an innova-
tive membrane to enter the market, extensive testing is
required where the membrane is subjected to every pos-
sible operating condition to simulate realistic operation
in various FO applications. In addition to high water
flux and selectivity, high mechanical and chemical stabil-
ity must be proven as well as compatibility with a wide
range of chemicals/draw agents. Ease of fabrication,
availability of used materials, reproducibility and cost
production considerations are crucial to achieve industri-
alization and commercialization. To succeed scaling-up,
the long-term performances and stability must be proven
through pilot testing. The next generation of FO mem-
branes should consider these criteria and be designed with
available and low-cost materials to reduce manufacturing
costs and enable the laboratory-to-industry transition.

5. Conclusion

In this work performances of various R&D and com-
mercial FO membranes were evaluated, using water flux
as primary criterion. The water flux of each membrane was
predicted using a model to standardize both operating and
thermodynamic conditions, thus allowing a fair comparison
of performances and subsequent classification of membranes.
Membrane selectivity was calculated via the B/A ratio.

FO membranes are mainly prepared from sulfonated-
(PES, PSf), cellulosic- (CA, CTA, CE), PVDF-, PAN- or
polyketone-based materials. Half of the membranes studied
were composed of sulfonated materials, yielding relatively
high water fluxes. The best performances were, however,
achieved with PVDEF-based membranes.

This study has shown that nanofiber-based PVDF mem-
branes constitute an interesting candidate for future FO
membranes development as they represent four of the six
best performing membranes and only 14% of the studied
membranes. Thus, efforts to improve next generation of

commercial FO membranes should be focused on three main
axes:

e TFabrication process: optimization of preparation tech-
niques, to design low ICP membranes with excellent
mechanical properties, which will prevent the need for a
reinforcement layer.

® Materials: use more hydrophilic materials to replace
hydrophobic substrate materials as PSF, PES usually
employed in TFC membranes.

® Selective layer: modification of the active layer to
form low fouling propensity, chemically stable and
high-selectivity TFC selective layer.

Finally cost considerations and ease of fabrication need to
be taken into account to lower market entry barriers.
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